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Abstract

The information obtained from the auxiliary vari-
ables can be utilized in the design or/and inference
stages of sampling survey. For better inference of
the population quantity of interest, ratio estimator
is often recommended when certain auxiliary vari-
able is available. By taking advantage of the corre-
lation between the variable of primary interest and
the auxiliary variable, though design-biased, ratio
estimator often can provide more efficient estimation
result than the sample mean under simple random
sampling. On the other hand, post-stratification is
widely used in practice , especially when the popula-
tion cannot be stratified beforehand. It is also able
to provide more efficient estimate than the overall
sample mean of the population variable of interest.
In this research, these two estimation methods are
compared in terms of their mean squared error via
a design-based perspective. We also discuss the sit-
uations in which whether ratio estimator or post-
stratification should be used in practice.

Key Words: Auxiliary variable, Ratio estimation,
Post-stratification, Relative efficiency, Design-based
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1. Introduction

The primary objective of sampling survey is to col-
lect data and then accordingly make inference for
the population quantity of interest, which is a func-
tion of the population variable of interest, denoted as
y. From the view pint of design-based sampling, no
sampling strategy can be uniformly better than oth-
ers because there is no complete sufficient statistic in
a design-based approach (Godambe 1955). Hence,
how to establish a better inference under different
types of sampling survey situation is always an im-
portant issue in this field, and one can approach this
via either different designs or inference methods, or
both.

In a sampling survey situation, the investigators
often collect observations from more than one vari-
able, including the variable of interest y and some
auxiliary variables x′s. For example, to estimate the
average household living expense, the variable of in-

terest is the living expense of a household, and the
auxiliary variable can be the total income, the num-
ber of household members, the social status or the
residential area of the household. For obtaining a
better inference, one would like to utilize the infor-
mation provided by the auxiliary variable to make
the best use of the survey data.

The utilization of the auxiliary information in a
sampling survey can be roughly divided into design
and inference stages. From the design prospective,
stratified sampling is an family of designs that makes
use of the auxiliary information in the design stage
and it is often able to provide better inference re-
sults. Under a stratified sampling, the population
is divided into several strata and then a sample is
selected by some design within each stratum. The
within-stratum designs are not necessarily to be the
same or restricted by any other certain condition,
but most importantly the selections of the within-
strata sample have to be independent. Stratified
sampling is known to be able to select sample which
is more representative, and provide more precise es-
timation results. However, often in practice it is im-
possible to stratify the population before the sample
is selected. For example, it is possible to stratify the
population by different region beforehand in a tele-
phone survey, but not by the age or gender. Gen-
erally speaking, a population could not be stratified
before the survey by criteria which are unknown be-
fore the sampled units has been observed. For such
a situation, a sample might be selected by a sim-
ple random sampling, and still one could stratify
the sample into strata after the sample has been ob-
served, and a stratified estimate will be used. Such
a procedure, referred as post-stratification, is often
used in practice to utilize the auxiliary information
in the inference stage.

Instead of fixed constants, the within-stratum
sample sizes are random variables under the post-
stratification. Hence extra variability would be
introduced via the random within-stratum sample
sizes. However, the related stratified estimation re-
sult can be expected to be improved from the origi-
nal non-stratified estimate. The main reason is that,
on average the results provided by post-stratification
is similar to what provided by a usual stratified de-
sign with proportional allocation, and it is an well-
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known optimal allocation method when the within-
stratum variances are unknown.

On the other hand, ratio estimator is a widely
used estimator that utilizes the data from the y to-
gether with an auxiliary variable x. For example,
the area of tillage can be considered as a useful aux-
iliary variable when the harvest is the population
quantity of interest. Also, the amount of food re-
source can be used as an auxiliary variable when the
number of certain species of animal is of primary in-
terest. Although it is design-biased, ratio estimator
is well-known for its ability to provide more efficient
estimate in terms of giving lower mean-square error
when certain correlation exists between y and x. The
advantage becomes more considerable as the corre-
lation between y and x increases (e.g. Lohr 1999
pp.71).

With a quantitative auxiliary variable, either one
of post-stratification and ratio estimation could be
used. The exact values of the auxiliary variable
of each population units are not necessary in both
methods. However, the population mean or popu-
lation total of x is assumed given in ratio estima-
tion, whereas it is not a necessary given condition
in post-stratification. Furthermore, the x-value of
each sampled unit usually has to be measured for
ratio estimation, but as long as we could catego-
rize the sampled units into different strata based
on x, the exact x-values are not necessary for each
sampled unit. Hence, compared to ratio estimation,
seemingly post-stratification requires less population
information and sampling cost. Hence, a question
arises naturally is that which of these two methods,
both are widely used in practice, should be suggested
according to their regarding performances.

In this article, we will study the performances
of the inferences established by post-stratification
and ratio estimation in terms of the relative effi-
ciency. The general estimation procedures with an
assumed SRSWOR (simple random sampling with-
out replacement) design are given in Section 2. to-
gether with brief descriptions of their related proper-
ties. A design-based comparison of these two meth-
ods based on a closed form of the difference between
their mean squared estimation errors is given in Sec-
tion 3.. Although no closed form available at this
moment, we will brief address their performances via
a model-based perspective in Section 3. as well. We
also studied the impacts of different factors, such as
the number of strata, correlation coefficient between
y and x, and sample size n on the relative efficiency
of ratio estimation to post-stratification by a numer-
ical simulation study. The related results are pre-
sented in Section 4.. We will conclude our findings

in Section 5. with suggestions of how to properly
utilize auxiliary variable in practice.

2. Estimation Procedures and Related
Properties

As in the usual finite population sampling situa-
tion, the population is considered to consist of N
units that labeled from 1 to N , denoted as u =
{1, 2, . . . , N}. Associated with each unit i, the val-
ues of population variable of interest and the aux-
iliary variable are denoted as yi and xi, respec-
tively. In this article, the sample is selected by
a SRSWOR design. The data d with sample size
n is a collection of the labels of sampled units
s = {i1, i2, . . . , in}, ij ∈ u, the associated y-values
ys, and x-values xs. That is, d = {s,ys,xs}. The
population quantity of interest to be estimated is the
population mean of y

µ =
1
N

N∑

i=1

yi.

Furthermore, the population mean of x

µx =
1
N

N∑

i=1

xi

is assumed given when ratio estimation is used. Un-
der an SRSWOR design, the sample mean of y

ȳ =
1
n
·
∑

i∈s

yi

is an unbiased estimator of µ. ȳ will be used as
a baseline to examine the performances of ratio-
estimation and post-stratification in the following
discussion.

2.1 Ratio Estimation

The ratio estimator of the population mean is

µ̂r =
∑

i∈s yi∑
i∈s xi

· µx =
ȳ

x̄
· µx = β̂µx (1)

where ȳ and x̄ are the sample means of y and x,
respectively, and β̂, referred as the sample ratio, is
an estimator of the population ratio

β =
µy

µx
.

µ̂r is a design-biased estimator, the bias is

E(µ̂r − µy) ≤ CV(x̄)
√

var(µ̂r) = CV(x)

√
var(µ̂r)

n
(2)

ASA Section on Survey Research Methods

2826



It is clear that µ̂r is asymptotically unbiased. Fur-
thermore, the bias decreases when CV(x), the coef-
ficient of variance of x, is smaller. In addition, µ̂r is
known to be able to provide more precise estimate
than ȳ when certain correlation between y and x
exists. The MSE of µ̂r is

MSE(µ̂r) = var(µ̂r) + [E(µ̂r)− µy]2

≤
[
1 +

CV2(x)
n

]
var(µ̂r)

≈ N − n

Nn (N − 1)
SStot

(
β2 σ2

x

σ2
y

− 2βρ
σx

σy
+ 1

)

(3)

where

SStot =
N∑

i=1

(yi − µ)2

is the total sum of squares of y, and ρ is the finite
population correlation coefficient between y and x.

Let
β

σx

σy
= Mρ, (4)

then Equation 3 can be rewritten as

MSE(µ̂r) ≈ N − n

Nn (N − 1)
SStot

[
1 +

(
M2 − 2M

)
ρ2

r

]

(5)
Notice that

β
σx

σy
=

σx/µx

σy/µy
=

CV(x)
CV(y)

is in fact the ratio of the coefficient of variances of y
and x.

According to Equation 5, we conclude the follow-
ings with n is large enough

1. When 0 < M < 2, we have
(
M2 − 2M

)
< 0

and MSE(µ̂r) decreases as ρ increases.

2. The minimum of MSE(µ̂r) happens when M =
1, and accordingly we have

ρ =
CV(x)
CV(y)

The minimum value of MSE(µ̂r) is

MSEM=1(µ̂r) ≈ N − n

Nn (N − 1)
SStot(1− ρr)2

(6)
Equation 6 also indicates that MSE(µ̂r) de-
creases as ρ increases when M = 1.

2.2 Post-stratification

As the usual post-stratification situation, a sam-
ple is selected by SRSWOR and stratified into sev-
eral sub-samples according to some criterion, usu-
ally the associated values of certain auxiliary vari-
able. Suppose that the population can be divided
into H strata accordingly, labeled by h = 1, . . . , H.
In each stratum h there are Nh units, labeled by
uh = {h1, . . . , hNh

}, such that
∑H

h=1 Nh = N . yhi

is the value of population variable associated with
the ith units in the hth strata. The within-stratum
population mean, denoted as µh, is

µh =
∑Nh

i=1 yhi

Nh
.

The overall population mean is a weighted average
of µh

µ =
1
N

H∑

h=1

Nh∑

i=1

yhi =
H∑

h=1

Nh

N
· µh.

The within-stratum sample size is denoted as nh and

n =
H∑

h=1

nh.

Furthermore, denote the within-stratum sample as

sh = {hi1, . . . , hinh
}, hij ∈ {1, . . . , Nh}

The post-stratification estimation of µ is

µ̂post =
H∑

h=1

∑

i∈sh

Nh

N

yhi

nh
=

H∑

h=1

Nh

N
ȳh (7)

where ȳh =
∑

i∈sh
yhi/nh is the within-stratum sam-

ple mean. It is simply the weighted average of ȳh

weighted by the proportion of the hth stratum with
respect to the whole population. µ̂post is a design-
unbiased estimator for µ, and its average perfor-
mance is similar to what in the usual stratified ran-
dom sampling with proportional allocation. Hence,
it is expected to be better than ȳ as long as the
population is properly stratified.

Since µ̂post is a design-unbiased estimator (cf.
Thompson 2002) of µ, therefore MSE(µ̂post) is
equal to Var(µ̂post). Additionally, since under
post-stratification the within-stratum sample sizes
nh’s are random variables which are jointly dis-
tributed as a multivariate hypergeometric distribu-
tion, Var(µ̂post) can be derived by the expected value
of its conditional variance together with Taylor’s ex-
pansion. Also we assume N is large enough such
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that N ≈ N − 1:

MSE(µ̂post) = E[var(µ̂st|n1, . . . , nL)]

= E

[
H∑

h=1

(
Nh

N

)2 (
Nh − nh

Nh

)
σ2

h

nh

]

≈ N − n

Nn(N − 1)

H∑

h=1

Nh∑

i=1

[
N −Nh + nNh

n (Nh − 1)

]
(yhi − µh)2

(8)

Let
K =

N −Nh + nNh

n (Nh − 1)

and assume that Nh ≈ Nh′ so that N ≈ HNh, we
have

KNh≈N ′
h
≈ 1 +

H − 1
n

(9)

Suppose that N is large enough, and the size of
each stratum are approximately equal, we can con-
clude

1. Since 0 < H−1
n < 1, therefore 1 < K < 2, and

we have an approximate MSE

MSENh≈N ′
h

(µ̂post) = K

[
N − n

Nn (N − 1)

]
SSw

(10)

where

SSw =
H∑

h=1

Nh∑

i=1

(yhi − µh)2

is the within-stratum sum of squares.
2. Since H−1

n decreases as n increases, and accord-
ingly K ≈ 1 when n is large enough, therefore
MSE(µ̂post) with large n can then be approxi-
mated as

MSENh≈N ′
h,K=1 (µ̂post) =

N − n

Nn (N − 1)
SSw

(11)

Equation 10 and 11 indicate that MSE(µ̂post) is pro-
portional to SSw. That is, one should stratify the
population in a way that the units within the same
stratum should be as similar as possible for smaller
SSw, which accords to the principal of stratification.

3. Comparison between Ratio Estimation
and Post-stratification

For comparing the performances between µ̂r and
µ̂post, one can evaluate the difference between
MSE(µ̂r) and MSE(µ̂post), and smaller MSE indi-
cates better performance. For the purpose to sim-
plify the discussion, we assume that n is large enough

as well as Nh ≈ Nh′ and then compare Equation 3
to Equation 11. The difference is

MSE(µ̂r)−MSE (µ̂post)

=
N − n

Nn(N − 1)

[
SStot

(
β2 σ2

x

σ2
y

− 2βρr
σx

σy
+ 1

)
− SSw

]

=
N − n

Nn(N − 1)
SStot

[(
β

σx

σy
− ρr

)2

+
(
ρ2

post − ρ2
r

)
]

(12)

where ρ2 = 1− SSres

SStot
, which is in fact the coefficient

of determination of a simple linear regression model
without intercept, y = βx, and ρ2

post = 1 − SSw

SStot
,

the proportion of between-stratum sum of squares
out of the total sum of squares.

Recall that β σx

σy
= Mρ, hence we conclude the

followings based on Equation 12:

1. When ρ2
post > ρ2

r(2M − M2), then we have
MSE(µ̂r) > MSE(µ̂post). Consequently post-
stratification is better than ratio estimation,
and vice versa.

2. When M = 1, under which ratio estimation is
the most advantageous over ȳ , then µ̂post is
better when ρ2

post > ρ2
r, and vise versa.

4. Simulation Study

Relative Efficiency (R.E.) is often used to compare
the performances of two estimators. The definition
of R.E. of estimator t̂1 to t̂2 (under the sample sam-
pling design) is

R.E. =
MSE(t̂1)
MSE(t̂2)

,

hence t̂2 is better when R.E. > 1. Nevertheless,
the closed form of the R.E. of µ̂r to µ̂post is not
currently available, hence a simulation study is con-
ducted in order to evaluate R.E. of µ̂r to µ̂post em-
pirically under different conditions, such as different
ρ, H, and/or n. For each condition, a pseudo popu-
lation with size N = 1000 was generated, and 1000
random sample were selected by SRSWOR design
for each population. For each sample selected, we
calculated µ̂r and µ̂post and the empirical MSE is
defined as the average of the squared errors of the
1000 random sample. Furthermore, the Empirical
Relative Efficiency (E.R.E) is defined as the ratio of
the empirical MSE’s of µ̂r and µ̂post.

The simulation process can be summarized as

1. Population size N = 1000.
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2. Generate x = (x1, . . . , xN ) as the fixed values
of auxiliary variable.

3. Generate the fixed values of population variable
y = (y1, . . . , yN ) based on a bivariate normal
population model with a given correlation coef-
ficient ρ between x and y.

4. Select a random sample of (x, y) with sample
size n.

• Calculate µ̂r.

• Stratified the sample into H strata based
on a given condition of x, and calculate
µ̂post.

5. For each case of correlation coefficient or H,
1000 different random sample were selected to
calculate the empirical MSE for µ̂r and µ̂post,
denoted as M̂SE(µ̂r) and M̂SE(µ̂post), respec-
tively.

6. Calculate the E.R.E. of µ̂r to µ̂post

E.R.E. =
M̂SE(µ̂r)

M̂SE(µ̂post)

In this simulation, we would like to study the
impacts of the population correlation coefficient ρ,
number of strata H, and sample size n on E.R.E..
First we fixed the sample size as n = 100, and then
simulate E.R.E. under different H and ρ. The re-
sults is summarized in Figure 1,
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Figure 1: E.R.E. of µ̂r to µ̂post under different H

and ρ with n = 100.

From Figure 1, it can be seen that the performance
of µ̂post is superior to µ̂r most of the time. E.R.E. of
µ̂r to µ̂post increases as H increases, that is, the per-
formance of µ̂post is more preferable as the number
of strata increases. On the other hand, E.R.E. de-
creases as ρ increases, which is expectable since the
performance of µ̂r highly depends on ρ. However,
µ̂r is better only when ρ is greater than 0.8 when
H = 2, and ρ has to be at least 0.95 for µ̂r performs
better than µ̂post when H ≥ 4. The E.R.E. can be
as high as more than 15 when the population corre-
lation coefficient is low and the number of strata is
8. That is, M̂SE(µ̂post) can be as low as less than
6% of M̂SE(µ̂post). Even with moderate values of
ρ

.= .5 and H = 4, M̂SE(µ̂post) sill is as low as about
20% of M̂SE(µ̂post).

Another simulation study was also conducted to
examine the impact of sample size n as well as ρ
on E.R.E.. The number of strata is chosen to be
4, which is not a large number of strata when N =
1000, so that the simulation would be fair to both
methods. The results are summarized in Figure 2,
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Figure 2: E.R.E. of µ̂r to µ̂post under different n and
ρ with H = 4.

It is clear that µ̂post is superior to µ̂r as what
appeared in Figure 1. Additionally, the sample size
does not seem to be as decisive as ρ and H. With a
smaller sample size n = 20, the E.R.E. is less than
the other cases when n = 50, 70, and 100. One of
the reason is that some of nh has better chance to
be zero with smaller sample size.

For model-based perspective, simulation study
shows the similar results as Figure 1 and 2. It is
not surprising since in the model-based approach,
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the simulation results can be considered as an av-
erage of different populations that generated by the
same population stochastic model.

5. Final Comments

With a appropriate auxiliary variable in a sampling
survey research, both post-stratification and ratio
estimator can provide significant improvement on
the inference of the population quantity of inter-
est. They also help the investigators to better un-
derstand other related phenomena other than the
population quantity of primary interest. For exam-
ple, ratio estimator also estimates the ratio between
the population variable of interest and the auxil-
iary, and it is often considered as an helpful infor-
mation in many sampling survey researches. Post-
stratification is able to provide information in cer-
tain sub-population in addition to the whole popula-
tion. Hence, both have been widely used in practice
by field researchers.

In this article, we did not consider the different
extra information provided by post-stratification or
ratio estimation but only the population quantity of
primary interest in order to compare their perfor-
mances. IN the simulation study, the populations
were generated by a linear model which can be con-
sidered as the preferable model for ratio estimator.
On the other hand, the post-stratification is done
according to the order of x, and such stratification
follows the principal of stratification according to the
linear relationship between x and y. Therefore, the
simulation is in general fair for both methods.

The simulation results indicates that post-
stratification perform considerably better that ratio
estimator. In addition to that, ratio estimation re-
quire more population information such as the pop-
ulation mean of the auxiliary variable. More sam-
pling effort/cost is necessary in order to measure the
x-value of the sampled units. On the other hand,
one would be able to use post-stratification would
be able to use as long as the information from x is
enough to categorize the sampled units into differ-
ent strata. Nevertheless, The stratum sizes Nh’s are
necessary for post-stratification and this might be its
main disadvantage. In any of it, post-stratification
is recommended since it is worse than ratio estima-
tor only when y and x are highly correlated, but it is
doubtful if it is reasonable to expect such population
in practice. Also, if the relation between y and x is
not a ratio model as expected, then ratio estimator
might provide poor results, but post-stratification
would still give fair estimator. If one could have
all the population information such as µx/τx, Nh,

and sampled x-values, a post-stratification together
with the within-stratum ratio estimation should be
the best alternative.
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