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Abstract

In social networks subjects are linked to one another form-
ing components and structures that are usually of interest.
The subjects may have a variable of interest which, in gen-
eral, can only be observed after the subjects have been inter-
viewed. Unfortunately, it is sometimes difficult to obtain this
information, especially when subjects are rare, hidden or hard-
to-reach. Link-tracing sampling designs are commonly used
to draw samples from these special populations. Link-tracing
designs enrich the sample by following relations from subjects
already in the sample to include new subjects. Besides being
convenient, these sampling designs produce biased samples
that make the estimation of quantities of interest difficult. In
this paper we discuss estimation procedures when samples are
obtained after following only a fraction of relations. Using
simulated and real study data, we demonstrate how estimation
for population quantities can be done.

Keywords: Snowball sampling, Adaptive sampling, Link-
tracing, Bayesian, Markov Chain Monte Carlo.

1 Introduction

In conventional sampling designs such as simple random sam-
pling, researchers make decisions about the sample size before
the sampling procedure begins. In these designs the sampling
frame is usually available or can easily be obtained. Obtain-
ing data on the units of interest when conventional sampling
designs are used is usually not difficult.

When studying rare, hard-to-reach or evasive human sub-
jects conventional sampling designs do not produce useful
data for analysis. For instance, when estimating sensitive hu-
man behavioral characteristics such as the use of intravenous
(IV) drugs, involvement in commercial sex and any such il-
legal activities, numerous sampling problems are encountered
(Thompson and Collins, 2002). Because of the relative rar-
ity and elusive nature of these populations, conventional sam-
pling designs such as simple random sampling are inefficient
for producing data on the individuals of interest.

Human populations however tend to form social networks
in which individuals are linked to one another by sociometric
relations. In link-tracing sampling designs investigators use
these relations or links between subjects to find new subjects
to include into the study (Thompson and Frank, 2000; Thomp-
son, 2003; Chow and Thompson, 2003). Any sociometric re-
lation of interest can define a link between two subjects in the
population.

Potterat et. al. (1993) used link-tracing designs in a study of
a ”high-risk” population in Colorado Springs. The study was

on the heterosexual transmission of HIV/AIDS among com-
mercial sex workers and injection drug users (IDUs).

Depending on the manner in which new subjects are in-
cluded into the sample, different terms have been used for
link-tracing designs. Such terms include snowball sampling
(Frank, 1979), adaptive sampling (Thompson, 1990, 1992;
Thompson and Seber, 1996), respondent-driven sampling
(Heckathorn, 1997), random walk sampling (Klovdhal, 1989),
chain sampling (Erickson, 1979) and crawling (Burner, 1997).
The term web-crawling is used when internet search engines
use URL links to sample webpages from the World Wide Web
(WWW). One common characteristic of all link-tracing de-
signs is that new subjects are included into the sample by trac-
ing relations or links from subjects already in the sample.

Link-tracing sampling designs conveniently increase the
sample size. Link-tracing is sometimes the only easiest and
practical way to identify members of rare and hard-to-reach
populations (Spreen, 1992; Thompson and Collins, 2002).
However, samples obtained using link-tracing designs are bi-
ased. This is because subjects with many relationships tend
to be over-represented (Spreen, 1992, Kalton and Anderson,
1986; Erickson, 1979, Thompson and Frank 2000). Thus
estimation using such samples tend to give biased estimates
and getting unbiased estimators is almost impossible without
knowledge of subjects’ inclusion probabilities.

Depending on the population quantity of interest, samples
from network populations can be used to estimate quanti-
ties like population size (Frank and Snijders; 1994), network
density (Granovetter, 1976), mean degree (Capobianco and
Frank, 1982; Frank, 1977b, 1978) or population proportion
(Chow and Thompson, 2003; Salganik and Heckathorn, 2004;
Thompson and Frank, 2000; Spreen and Coumans, 2000,
2003).

In this paper we focus on estimation of a population propor-
tion when the population size is known.

In section 2 we discuss how samples are obtained from net-
work populations and the estimation methods commonly used.
We also introduce the stochastic block model which is the fo-
cus of the rest of the paper in section 2. Section 3 discusses
model-based estimation methods when samples are obtained
after tracing only a fraction of relations. Section 4 show ex-
amples and application results using the proposed estimation
method. Section 5 concludes the paper with a discussion.

2 Sampling and estimation methods

In link-tracing designs subjects are asked sociometric-type
questions and relations with other subjects in the population
are obtained. These relations are then traced to include addi-
tional subjects into the study. In practice, a small sample of
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subjects is initially selected at random. These subject are then
asked with whom they share special relationship. Newly men-
tioned subjects, which form the first wave, are then added to
the sample. Subjects in the first wave are in turn asked the
same question. Also, newly mentioned subjects that are nei-
ther in the initial sample nor the first wave are also added to
the sample. These subjects form the second wave. The pro-
cess continues and stops after a certain number of waves, when
there are no more newly mentioned subjects or when sample
size reaches a predefined size.

Obtaining samples by following all relations is not always
practical. For instance large social networks often have prob-
lems of high sampling costs and non-responses (Coleman J.S.,
1958). This paper will focus on sampling and estimation when
some relations are not followed.

2.1 Modelling networks using graphs

Social networks are conveniently modelled when viewed as
graphs. Consider a population of sizeN subjects having rela-
tions or links between them. Each subject can be viewed as a
node and relations between subjects as edges or links. In most
cases each of theN subjects has a value of interestY .

In a study of injection drug users (IDUs) we can defineYu

as an indicator variable that takes value 1 when subjectu is an
IDU and 0 otherwise. In generalY can either be a continuous
or discrete random variable. A relation between two subjects
can be represented by an arc, if it is directional or simply by
a link if nondirectional. Thus the population and its relations
can be viewed as a graph with node setV = {1, . . . , N} and
link setE = {(u, v)|u, v ∈ V }.

An adjacency matrixX is anN by N matrix of node re-
lations with elementsxuv = 1 if (u, v) ∈ E or 0 otherwise.
For undirected graphs matrixX is a symmetric matrix of 1’s
and 0’s. If the graph is directionalxuv is one if there is an arc
from nodeu to nodev. For convenience we may define the
diagonal elements ofX, that isxuu, to be equal to 0. Thus
there are no self links and diagonal elements of the adjacency
matrix are zero.

In this paper we only consider undirected relations.

2.2 Estimation methods

In order to make proper inference, the procedure by which the
sample is selected must be considered (Thompson and Collins,
2002). Thus, when link-tracing designs are used, computa-
tional procedures taking into account the probability of a sub-
ject being sampled must be used.

When link-tracing sampling designs are used estimation is
complicated because selection or inclusion probabilities can-
not be calculated from the sample data for every subject in
the sample. This is because for some subjects (or nodes) in
the sample investigators do not know how many other sub-
jects would potentially have directed them to the same subject
(Frank, 1977). Also, in practice, a well defined probability
sampling procedure is usually not used to obtain the initial
sample. In a study of IDUs investigators may get the initial

sample from any available source like police stations, jails,
hospitals and the like.

Two estimation approaches namely design-based and
model-based method are generally. Each of these approaches
has its advantages and disadvantages.

2.2.1 Design-based estimation

In a design-based estimation approach attempts are made to
calculate inclusion probabilities of subjects in the sample
without making any assumption made about the population.

Design-based methods have advantages in that they do not
assume any model for the population and estimators do not
depend on any assumed population model for unbiasedness
and consistency. However, the unbiasedness and consistency
of such estimators depends on the sampling design carried out.

Design-unbiased estimators have been developed for some
link-tracing designs. Design-unbiased estimators are estima-
tors with unbiasedness based on the way the sample is selected
but not on any assumptions about the population (Thomp-
son, 1990; Thompson and Seber, 1996). However, design-
unbiased estimates can be used with snowball sampling and
other graph sampling procedures under certain specific cir-
cumstances (Thompson and Collins, 2002). This includes the
requirement that all links be followed from individuals in the
sample until no new individuals are identified and that there
be an initial explicit probability sample.

Because design-based estimators depend on how the sam-
ple is obtained, design-based estimation methods cannot be
generalized to a wide range of link-tracing designs.

2.2.2 Model-based estimation and the ignorability assump-
tion

Model-based estimation methods assumes that the population
of interest follows a certain model. Estimation is then done
using the sample data to get population parameter estimates
under the model. This is usually achieved by obtaining the
observed data likelihood (Thompson and Frank, 2000; Chow
and Thompson, 2002).

The main advantage of model-based estimation is that the
same method can be applied to a wide range of link-tracing
sampling designs (Thompson and Frank, 2000; Thompson and
Collins, 2002). Parameter estimation using models has the
advantage of making use of well-studied estimation methods
such as maximum likelihood and Bayesian methods.

Estimation based on graph sampling is generally difficult to
put on a sound statistical basis without assuming a stochastic
process giving the original sample or knowledge of the link-
age structure for the entire population (Thompson and Collins,
2002; van Meter, 1990).

An assumption commonly used in model-based methods is
that of ignorability. A link-tracing design is an ignorable one
if the probability of obtaining the sample does not depend on
the manner in which the initial sample was obtained (Thomp-
son and Frank, 2000).

Consider a population graph withN nodes labelled
1, 2, . . . , N and node valuesY = (Y1, Y2, . . . , YN ) , adja-
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cency matrixX and a joint probabilityf(Y,X; θ, λ) whereθ
andλ are parameters of interest. The datad from a sample
s, can be expressed asd = (s,ys,xs) wherey andx are the
realizedY andX values. The likelihood can be expressed as

L(θ, λ; d) =
∑

p(s|y,x; θ, λ)f(y,x; θ, λ) (1)

wherep(s|y,x; θ, λ) is the the sampling probability for the
samples and the summation is over all(y,x) consistent with
the datad. If the sample selection depends only on thoseys

andxs in the sample, then design probabilityp(s|y,x; θ, λ)
can be factored out of equation (1). When this is the case
then design and model parameters are distinct and not related
(Thompson and Frank, 2000). In such cases the sampling de-
sign is said to be ignorable and the likelihood in (1) becomes

L(µ, θ, λ; d) = p(s|y,x; µ)
∑
ys̄,xs̄

f(y,x; θ, λ)

∝
∑
ys̄,xs̄

f(y,x; θ, λ) (2)

whereµ is the design parameter and the summation is over all
unobserved values ofy andx. For ignorable designs, the sam-
pling probability for the samples, i.e. p(s|y,x;µ), depends
only on (y,x). Thus from (2), the maximum likelihood or
Bayes estimators are not affected by the designp(s|y,x; µ).

2.3 A stochastic block model with link probabilities re-
lated to node values

Thompson and Frank (2000) proposed a stochastic graph
model that assume a population with link probabilities related
to node values. For instance, in an HIV/AIDS population we
may assume that the probability of a relationship between any
two individuals depends on the HIV-status of both individuals.

Consider an undirected graph in which the population size
N is known. Let each nodeu in the graph have a binary vari-
able of interestYu such thatP (Yu = 1) = θ. For each pair
of nodesu andv defineλi+j = P (xuv = 1|Yu = i, Yv = j)
as the conditional probability of a link between nodesu andv
giveny values andi, j = 0, 1. Note thatλi+j = λj+i. Also
assume that the link indicators (or dyads)xuv are condition-
ally independent given the node values. This undirected graph
model has four parameters of interest{θ, λ0, λ1, λ2}.

In a study of IDUs,θ might estimate the probability that
a randomly chosen individual from the population is an IDU
while λ0 is the probability of a non-IDU to non-IDU relation.

If Mk is the total number of relations of typek wherek =
0, 1, 2 andNi =

∑N
u=1(Yu = i), then the likelihood for the

full graph is

L(θ, λ;y,x) =
1∏

i=0

θNi
i

2∏

k=0

λMk

k (1− λk)Ck−Mk (3)

wherek = 0, 1, 2 andC0 =
(
N0
2

)
, C1 = N0N1 andC2 =(

N1
2

)
. Note thatN = N0 + N1.

Thompson and Frank (2000) gave an expression of the ob-
served data likelihood when the sample is obtained by snow-
ball sampling in which all links are traced, except for the last

wave. Chow and Thompson (2003) obtain maximum likeli-
hood and Bayesian estimators for the undirected graph when
all links are traced except for the last wave.

The observed data likelihood is complex and difficult to
compute when the sample is obtained by tracing only a frac-
tion of relations. In this paper we consider a model-based es-
timation approach assuming the stochastic block model dis-
cussed in this section and ignorability.

3 Estimation when only a fraction of relations is traced

In this section we consider the estimation problem when sam-
ple data was obtained after only tracing only a fraction of re-
lations. Three different scenarios arise when samples are ob-
tained in this manner. Firstly it might be possible to uniquely
identify the identity of those subjects or nodes at endpoints
of the untraced links. For instance, a subject in the sample
may know the identity of all his contacts but the investigator,
for some reason, traces only a few of relations from the sub-
ject. The second case is when nodes at endpoints of untraced
links cannot be uniquely identified but, however, known not
be outside the observed sample. The third case is when no
information at all is known about the identity of endpoints of
the untraced links - whether they are in the observed sample
or not.

In the following subsections we consider these three cases
and assume the model defined in the previous section, together
with the ignorability assumption to illustrate how estimation
can be done. In this paper we focus only on estimating the
population proportionθ.

3.1 Untraced links lead to nodes that can be identified

In this subsection we assume that after tracing only a fraction
of links from subjects, untraced links lead to nodes that can be
uniquely identified and are outside the observed samples.

LetU = (1, 2, . . . , N) be labels for the nodes in the popula-
tion, s0 denote the set of nodes for which the value of interest
y is observed,x(s0,U) denote the set of link indicators within
and leading out of nodes ins0 ands1 denote the set of nodes
in the last wave and obtained by following some of the links
from s0. They values of nodes in the last waves1 are mea-
sured but no information about links froms1 is obtained. It
may be that not every link leading out froms0 is traced. If a
link (u, v) is traced fromu ∈ s0, then nodev is added to the
sample and itsy value of interestyv is observed. If no infor-
mation is obtained about links out fromv, thenv ∈ s1. If the
link (u, v) is not traced then the value ofyv is not observed,
though the identity ofv can be determined. Note that withs0

information is obtained on node values in it and links leading
out from it. Only node values are obtained fors1 and no links
leading out are traced .

When all links are traced except for nodes in last waves1,
the link indicator matrixx(s0,s̄) between nodes ins0 and nodes
not in the samplēs is a zero matrix. When not all links are
traced from the samples = s0 ∪ s1 thenx(s0,s̄) is a matrix of
zeros and ones.
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If the identity of endpointsv of the untraced links froms0

is known then the elementsxuv of x(s0,s̄) are 1 when link
(u, v) is not traced whereu ∈ s0 and v ∈ s̄. Even when
links from s0 to s̄ are known to exist, they values,ys̄ for
nodes ins̄ are unobserved and unknown. The sample data
when untraced links lead to nodes that can be identified isd =
{(s,ys,x(s0,U))}.

If s̄ is the set of nodes that are not in the sample then the
unobserved data from the population graph are they-values in
ys̄ and links from and to nodes in the sets1 ∪ s̄ which is the
sub-matrixx(s1∪s̄,s1∪s̄) of the adjacency matrix.

Using data augmentation we can impute the unknown graph
quantitiesys̄ andx(s1∪s̄,s1∪s̄) and obtain parameter estimates.
(Tanner and Wong, 1987; Gilks, 1996; Schafer, 1997).

The conditional distribution of the unobserved node and
link-indicator values is

P (ys̄,x(s1∪s̄,s1∪s̄)|d) = P (ys̄|d)P (x(s1∪s̄,s1∪s̄)|ys̄, d) (4)

The conditional distribution ofyv, for v ∈ s̄, depends on the
y values of nodes in the sample and the link-indicators in the
sample that potentially connect tov from u ∈ s0. Therefore

P (ys̄|d) =
∏
v∈s̄

P (yv|ys0 ,x(s0,U)) (5)

Using (5) we can impute the unobservedys̄. Since the links
are unconditionally independent

P (x(s1∪s̄,s1∪s̄)|ys̄, d) =
∏

(u,v)

P (xuv|yu, yv) (6)

Equation (6) can be used to impute unobserved link indica-
tors conditional on they values.

3.2 Untraced links lead to nodes that cannot be identified
but outside the sample

Let us consider the case when untraced links lead to nodes that
cannot be identified but are known to be outside the observed
sample. The difference with the case discussed previously is
that identities of nodes to which untraced links lead are un-
known.

Let s̄ be the set of nodes not in the sample andst
0 be the set

of nodes ins0 with all their links traced. Thus all endpoints or
y-values of links from nodes inst

0 are known. Letsu
0 be the set

of nodes ins0 with at least one untraced link. Thus the end-
points of the untraced links fromsu

0 are potentially any set of
nodes in̄s. The sets0 can therefore be partitioned into two dis-
joint setsst

0 andsu
0 wheres0 = st

0∪su
0 . Letxu+ be the vector

of the number of untraced links from nodes insu
0 to nodes in

s̄. Then the sample datad = {(s,ys,x(st
0,U),x(su

0 ,s),xu+)}.
Although we know the number of untraced linksxu+ from

su
0 to s̄, link indicatorsx(su0 ,̄s) between nodes insu

0 ands̄ are
unknown. Knowingx(su0 ,̄s) implies knowledge of all entries
of x(s0,U) and, as a result, the estimation procedure can use
(5) and (6).

A Metropolis-Hastings (MH) algorithm can be used to draw
realizations ofx(su

0 ,s̄) conditional onxu+ and node values
(Hastings, 1970). For every noder ∈ su

0 , we draw two end

nodesa and b from s̄ at random and without replacement.
Let yr, ya andyb be they values for nodesr, a andb. The
link indicators between noder and a and between noder
andb arexra andxrb respectively. Ifxold

r = (xra, xrb) and
xnew

r = (xrb, xra) then conditional onys̄ define acceptance
probabilityαr asmin{Rr, 1} where

Rr =
P (xnew

r |d, ys̄)
P (xold

r |d, ys̄)
(7)

Whenxra = xrb or ya = yb thenRr = 1. If αr is greater than
a randomly drawn value fromU(0, 1), then we accept that the
vector of link indicators between noder anda and noder and
b is xnew

r otherwise it isxold
r . Repeating this draw-switch-

accept/reject procedure many times and for all nodesr ∈ su
0

give realizations ofx(su0 ,̄s) which can be used in estimation as
described in the previous subsection.

When there are no untraced linksxu+, su
0 is empty and the

observed data reduces tod = {(s,ys,x(s0,U))}.

3.3 Untraced links lead to any possible set of nodes

In this subsection we consider the case when there is no
knowledge as to whether the untraced links would lead to
nodes already in the samples or outside the samplēs. This
may be the case in an HIV/AIDS study where interviewed sub-
jects may refuse to give any information that might potentially
help to identify their partners.

Let s0 be the set of nodes in the sample excluding the last
waves1, st

0 be the set of nodes ins0 with all links traced and
su
0 be the set of nodes ins0 with at least one link untraced.

Thuss0 = st
0 ∪ su

0 . We assume that endpoints of the untraced
links from su

0 lead to nodes either ins or s̄. Let xu+ be the
vector of the number of untraced linksu ∈ su

0 andxk
(su

0 ,s) be
the known links fromsu

0 to s. The observed sample data is
d = {(s,ys,x(st

0,U),xk
(su

0 ,s),xu+)}.
Define s̃ as the set of nodes that can potentially be end

points of the untraced links fromsu
0 . Note that̃s include nodes

both ins ands̄. The unobserved data(ys̄,x(s1∪s̃,s1∪s̃)) can be
drawn from the conditional distribution of the unobserved data
given sample datad.

For each noder ∈ su
0 traced links have known end points

while untraced links may lead tõs, the set of any possible
endpoints in the population. Note thats̃ is a subset ofs ∪ s̄.

As described in the the previous subsection, we wish to
draw realizations ofx(su

0 ,s̄) conditional onxu+ and node val-
uesy = (ys,ys̄). For every noder ∈ su

0 , we draw two nodes
a andb at random and without replacement from̃s, the set of
nodes that can possibly be endpoints of the untraced links from
noder. Definingxold

r = (xra, xrb) andxnew
r = (xrb, xra)

wherexra andxrb are link indicators between noder anda
and between noder andb respectively, the acceptance prob-
ability αr can be calculated using (7). Alsoαr is compared
to a value randomly drawn fromU(0, 1) in order to accept
or rejectxnew

r instead ofxold
r . Repeating this process a large

number of times for all ther ∈ su
0 yields random draws of

the unobserved link valuesx(su
0 ,s̄) givenxu+ andy. Consid-

eringx(su
0 ,s̄) as known, the estimation process will proceed as

discussed in previous sections.
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4 Results

In this section we present model-based estimation results us-
ing the undirected graph model and approach discussed in the
previous sections. Also, we assume that the design is ig-
norable. We obtained results using data augmentation (Tan-
ner and Wong, 1987; Schafer, 1997) and assuming non-
informative priors for the parameter estimatesθ andλ’s. In
this paper we only present result of estimates forθ but the
methods discussed here can also be used to obtain estimates
for theλ’s.

Data augmentation (DA) is an MCMC algorithm that can
be used when the complete data isY = (Yobs, Ymis) where
Yobs is the observed data andYmis is the missing part of the
data (Tanner and Wong; 1987). The DA algorithm is mainly
used to get Bayesian estimates in cases where the complete
data posteriorP (θ|Yobs, Ymis) is in a simpler form than the
observed data posterior (Schafer; 1997). DA has two main
steps: namely the imputation (I-) step and the prediction (P-
) step. In the I-step we consider a current guessθ(t) of the
parameter and then draw the missing data from the conditional
predictive distribution ofymis,

Y
(t+1)
mis ∼ P (Ymis|Yobs, θ

(t)). (8)

After drawingY
(t+1)
mis from P (Ymis|Yobs, θ

(t)) the next step
is the P-step. In the P-step, we draw the value ofθ from its
complete data Posterior

θ(t+1) ∼ P (θ|Yobs, Y
(t+1)) (9)

Repeating steps (8) and (9) after starting with an initial guess
θ(0) yields a sequence{Y (t)

mis, θ
(t)} with stationary distri-

bution P (θ, Ymis|Yobs). The series{Y (t)
mis, θ

(t)} defines a

Markov chain in whichP (θ(t)) → P (θ|Yobs) andP (Y (t)
mis) →

P (Ymis|Yobs). Schafer (1997) recommends considering a
large ”burn in” periodt before using the results for estimation
becauseP (Ymis|Yobs, θ

(t)) is normally unstable for initial es-
timates ofθ.

4.1 Example 1: A ”high-risk” population

Let us consider the Colorado Springs (CS) data from a study
on the heterosexual transmission of HIV/AIDS in a ”high-
risk” population in Colorado Springs (Potterat et. al. 1993).
The empirical population hadN = 595. They values were 1
for subjects (nodes) who exchanged sex for money and 0 for
nodes that did not exchange sex for money. The link-indicator
xuv took value 1 if subjectu and subjectv had a sexual and/or
a drug injection relation. This empirical population was also
used by Chow and Thompson (2003) as an example in a snow-
ball sampling design in which all links were traced, with the
exception of the last wave.

The population quantity of interest isθ = 0.223529. Other
quantities that might be of interest for this population, al-
though not considered in this paper, areλ0 = 0.000855,
λ1 = 0.004768, λ2 = 0.002620 or average degree =1.3681.

Table 1 shows estimates ofθ when, on average, only a cer-
tain percentage of links are traced. For comparison, we com-
pared these results to Bayesian estimates (BE) and Bayesian
predictor (BP) values using methods in Chow and Thompson
(2003). The estimates forθ were comparable with results from
link-tracing only a fraction of relations giving smaller mean
square errors. These results were obtained after 5000 itera-
tions.

Although these results are encouraging, they do depend on a
number of factors such as model fitness, ignorability assump-
tion, population size and the quantity being estimated.

4.2 Example 2: A hypothetical population

In this example we consider a hypothetical population of size
N = 100 and an average degree of 7.5. The proportion of 1’s
in the population is 0.29.

Table 2 shows estimates ofθ when 90%, 80% and 60% of
links are traced. We consider the case when untraced links
lead to endpoints that are known and when untraced links lead
to unknown endpoints.

For both the two cases, estimates forθ are comparable to
Bayesian estimates (BE) and Bayesian predictors (BP). Mean
square error values are smaller when untraced links lead to
nodes that can be identified. As seen on Table 2, the naive
estimator overestimatesθ and gives the largest mean square
error. These results were obtained after 5000 iterations.

5 Discussion

Link-tracing designs are useful in gathering information on
drug use, sexual behavior or such similar activities from hard-
to-reach and elusive populations. Several link-tracing designs
have been developed and their use depends mostly on the fo-
cus of the study and the researcher’s choice. It is usually hard
for the researcher to decide the best stopping criteria once
the link-tracing has started. For instance, in snowball sam-
pling the researcher might choose to stop sampling new sub-
jects when all subjects with known relations are in the sample
(Frank and Snijders, 1994) or after sampling a certain number
of waves. The stopping criteria may also depend on sample
size especially if there are resource limitations to trace more
links.

Estimation based on data gathered by a link-tracing design
is an area of active ongoing research. Depending on the esti-
mation procedure used, it is sometimes very hard to obtain un-
biased estimators especially when many waves are considered
and not all links are traced. This problem is compounded when
a design-based estimation approach is used because comput-
ing inclusion probabilities gets harder as more waves are con-
sidered.

Model-based estimation has the advantage of being gener-
alizable and that it can be done with the aid of well developed
MCMC methods.

Design-based estimation rely on being able to compute in-
clusion probabilities. The inclusion probability for subjecti
is the probabilityπi that subjecti is included into the sample.
Inclusion probability is hard to compute without knowledge
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Table 1: Estimates of population proportion using the Colorado Springs ”high-risk” data. The total population size is N=595
and true population proportionθ = 0.2235. An initial sample of 40 was link-traced until a sample of size 85 was observed.
These results are for the case where endpoints of the untraced links are known. These results were obtained after 5000 iterations.

All links traced Not all links traced

BE BP 90% traced 80% traced 70% traced
Avg waves 1 1 1.63 1.74 1.82

Estimate 0.2130 0.2093 0.2074 0.2073 0.2008
MSE 0.0029 0.0031 0.0027 0.0027 0.0025

Table 2: Estimates of the proportion of 1’s in a hypothetical population of size 100 and average degree 7.5. The true proportion
wasθ = 0.29. An initial sample of 5 was link-traced until a sample size of 35 was sampled. These results were obtained after
5000 iterations.

Endpoints known Endpoints unknown

All links traced % of links traced % of links traced

Naive BE BP 90% 80% 60% 90% 80% 60%
Avg waves 1 1 1 1.00 1.01 1.14 1.00 1.03 1.28

Estimate 0.4329 0.3008 0.2968 0.2997 0.3000 0.2895 0.3106 0.3012 0.3022
MSE 0.0350 0.0024 0.0025 0.0013 0.0013 0.0012 0.0035 0.0036 0.0028

of the entire population network. Sometimes approximations
are used to estimateπi. Heckathorn (2001) used the argu-
ment that in one-wave designs the inclusion probability for a
nodei is proportional to its degreedi to derive estimators for a
respondent-driven sampling study. In most practical cases one
needs to know the population size, which is usually unknown
in hidden populations.

Mathematical models for human populations are complex
and solving them to get estimates is generally difficult (New-
man et. al., 2002; Thompson and Frank, 2000). Also, some-
times assumptions used in population models, although math-
ematically convenient, they tend to be unrealistic, especially
when human populations are involved. Assuming a model
especially for human populations is a topic of fierce debate
among researchers. Even when models are suggested, in most
cases they are complex and hard to implement. Holland and
Leinhardt (1981) discussed an exponential family of models,
now commonly known asp∗ models (Andersen et. al, 1999;
Wasserman and Pattison, 1996).

In this paper we discussed model-based estimation proce-
dures and applied a simple stochastic block model to data ob-
tained from tracing only a fraction of relations. Using the
model and an MCMC method, we illustrated how estimation
can be done and generalized. Although model-based estima-
tion is computationally appealing, it is hard to imagine a good
model for human populations because human behavior tends
to be complex.
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