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Abstract on the heterosexual transmission of HIV/AIDS among com-
mercial sex workers and injection drug users (IDUs).

In social networks subjects are linked to one another form-Depending on the manner in which new subjects are in-
ing components and structures that are usually of interedtided into the sample, different terms have been used for
The subjects may have a variable of interest which, in gdimk-tracing designs. Such terms include snowball sampling
eral, can only be observed after the subjects have been inferank, 1979), adaptive sampling (Thompson, 1990, 1992;
viewed. Unfortunately, it is sometimes difficult to obtain thi¥hompson and Seber, 1996), respondent-driven sampling
information, especially when subjects are rare, hidden or hafideckathorn, 1997), random walk sampling (Klovdhal, 1989),
to-reach. Link-tracing sampling designs are commonly useltiin sampling (Erickson, 1979) and crawling (Burner, 1997).
to draw samples from these special populations. Link-tracifige term web-crawling is used when internet search engines
designs enrich the sample by following relations from subjeetse URL links to sample webpages from the World Wide Web
already in the sample to include new subjects. Besides befddVW). One common characteristic of all link-tracing de-
convenient, these sampling designs produce biased samgilgss is that new subjects are included into the sample by trac-
that make the estimation of quantities of interest difficult. ng relations or links from subjects already in the sample.
this paper we discuss estimation procedures when samples akénk-tracing sampling designs conveniently increase the
obtained after following only a fraction of relations. Usingample size. Link-tracing is sometimes the only easiest and
simulated and real study data, we demonstrate how estimafieectical way to identify members of rare and hard-to-reach
for population quantities can be done. populations (Spreen, 1992; Thompson and Collins, 2002).
) . . . . However, samples obtained using link-tracing designs are bi-
Ezmgrdlséy(f;g:]vbalgri?)?(p:l;]na?ﬁ Q((j)?][t):\garslsmplmg, I‘mk'ased. This is because subjects with many relationships tend

' ' ' to be over-represented (Spreen, 1992, Kalton and Anderson,
1986; Erickson, 1979, Thompson and Frank 2000). Thus
estimation using such samples tend to give biased estimates
and getting unbiased estimators is almost impossible without

. . . . knowledge of subjects’ inclusion probabilities.
In conventional sampling designs such as simple random sa . . . )
epending on the population quantity of interest, samples

pling, researchers make decisions about the sample size beffrcT)he work lati b dt timat ’
the sampling procedure begins. In these designs the samplﬁﬂ?line ork popufations can be used to estimate guanti-

frame is usually available or can easily be obtained. Obta‘ ke population size (Frank and Snijders; 1394), network

ing data on the units of interest when conventional samplié%nsny (Granovetter, 1976), mean degree (Capobianco and

: : e ank, 1982; Frank, 1977b, 1978) or population proportion
designs are us_ed is usually not difficult. . (Chow and Thompson, 2003; Salganik and Heckathorn, 2004;
When studying rare, hard-to-reach or evasive human s

. d i i ompson and Frank, 2000; Spreen and Coumans, 2000,
jects conventional sampling designs do not produce us b3)
data for analysis. For instance, when estimating sensitive hu-_"”". L .

. I ; In this paper we focus on estimation of a population propor-
man behavioral characteristics such as the use of intravenous . L

: . . ion when the population size is known.
(IV) drugs, involvement in commercial sex and any such il- . : .

section 2 we discuss how samples are obtained from net-

legal activities, numerous sampling problems are encountereH] ) LT
@)rk populations and the estimation methods commonly used.

1 Introduction

(Thompson and Collins, 2002). Because of the relative rar-

ity and elusive nature of these populations, conventional sa e also introduce the stochastic block model which is the fo-

pling designs such as simple random sampling are ineffici&HP of the rest Of_ the_paper In section 2. Section 3 dlscus_ses
for producing data on the individuals of interest, model-based estimation methods when samples are obtained

. . fter tracing only a fraction of relations. Section 4 show ex-
Human populations however tend to form social networs g ony

in which individuals are linked to one another by sociometrarnples and application results using the proposed estimation

. . . . . . : fHethod. Section 5 concludes the paper with a discussion.

relations. In link-tracing sampling designs investigators use
these relations or links between subjects to find new subjects
toinclude into the study (Thompson and Frank, 2000; Thomp- 2 Sampling and estimation methods
son, 2003; Chow and Thompson, 2003). Any sociometric re-
lation of interest can define a link between two subjects in the link-tracing designs subjects are asked sociometric-type
population. guestions and relations with other subjects in the population

Potterat et. al. (1993) used link-tracing designs in a studyark obtained. These relations are then traced to include addi-
a "high-risk” population in Colorado Springs. The study wa#onal subjects into the study. In practice, a small sample of
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subjects is initially selected at random. These subject are tkample from any available source like police stations, jails,
asked with whom they share special relationship. Newly mdrespitals and the like.
tioned subjects, which form the first wave, are then added tofwo estimation approaches namely design-based and
the sample. Subjects in the first wave are in turn asked thedel-based method are generally. Each of these approaches
same question. Also, newly mentioned subjects that are reis its advantages and disadvantages.
ther in the initial sample nor the first wave are also added to
the samp!e. These subjects form the_ second wave. The 9 Design-based estimation
cess continues and stops after a certain number of waves, when
there are no more newly mentioned subjects or when sanmiple design-based estimation approach attempts are made to
size reaches a predefined size. calculate inclusion probabilities of subjects in the sample
Obtaining samples by following all relations is not alway#ithout making any assumption made about the population.
practical. For instance large social networks often have probDesign-based methods have advantages in that they do not
lems of high sampling costs and non-responses (Coleman &$spme any model for the population and estimators do not
1958). This paper will focus on sampling and estimation whéepend on any assumed population model for unbiasedness
some relations are not followed. and consistency. However, the unbiasedness and consistency
of such estimators depends on the sampling design carried out.
Design-unbiased estimators have been developed for some
link-tracing designs. Design-unbiased estimators are estima-

Social networks are conveniently modelled when viewed s with unbiasedness bgsed on the way the sam_ple Is selected
graphs. Consider a population of sixesubjects having rela- but ni;;(?- ‘:"rr;ly assumptlodnss aSOUtlg‘gerO%UIat'on (Tgomp—
tions or links between them. Each subject can be viewed ' » 'hompson and Seber, ). However, design-

node and relations between subjects as edges or links. In i ased esﬂmate; can be used with snowbal_l Samp'!’?g a_nd
cases each of th¥ subjects has a value of interdst other graph sampling procedures under certain specific cir-

In a study of injection drug users (IDUs) we can defifie cumstances (Thompson and Collins, 2002). This includes the

T i » requirement that all links be followed from individuals in the
as an indicator variable that takes value 1 when subjéctin : Lo . .
; ) . sample until no new individuals are identified and that there
IDU and 0 otherwise. In gener&l can either be a continuou o s .
e an initial explicit probability sample.

or discrete random variable. A relation between two subject . .
ecause design-based estimators depend on how the sam-

n be represent n arc, if it is directional or simpl ) i . Lo
ca bE.E eprese .Ed by an arc, s d ectional or simp’y o e is obtained, design-based estimation methods cannot be
a link if nondirectional. Thus the population and its relations

can be viewed as a graph with node et {1,..., N} and generalized to a wide range of link-tracing designs.
link setE = {(u,v)|u,v € V}.

An adjacency matrixX is an N by N matrix of node re- 2.2.2 Model-based estimation and the ignorability assump-
lations with elements:,,, = 1 if (u,v) € F or 0 otherwise. tion
For undirected graphs matriX is a symmetric matrix of 1's
and 0’s. If the graph is directional,, is one if there is an arc

2.1 Modelling networks using graphs

Model-based estimation methods assumes that the population
. . of interest follows a certain model. Estimation is then done
fr_om nodeu to nodew. For convenience we may define th sing the sample data to get population parameter estimates
dr:agonal elemel?Tg I?X tza:j.'sx““’ Itolbe equalftoho. ;_.husunder the model. This is usually achieved by obtaining the
t €re are no sel finks and diagonal € ements of the & 1ac€8k¥erved data likelinood (Thompson and Frank, 2000; Chow
matrix _are 2€10. _ ) ) and Thompson, 2002).
In this paper we only consider undirected relations. The main advantage of model-based estimation is that the
same method can be applied to a wide range of link-tracing
2.2 Estimation methods sampling designs (Thompson and Frank, 2000; Thompson and
Collins, 2002). Parameter estimation using models has the
In order to make proper inference, the procedure by which #dvantage of making use of well-studied estimation methods
sample is selected must be considered (Thompson and Colkugh as maximum likelihood and Bayesian methods.
2002). Thus, when link-tracing designs are used, computaEstimation based on graph sampling is generally difficult to
tional procedures taking into account the probability of a subut on a sound statistical basis without assuming a stochastic
ject being sampled must be used. process giving the original sample or knowledge of the link-
When link-tracing sampling designs are used estimatioraige structure for the entire population (Thompson and Collins,
complicated because selection or inclusion probabilities c&®02; van Meter, 1990).
not be calculated from the sample data for every subject irAn assumption commonly used in model-based methods is
the sample. This is because for some subjects (or nodesthat ofignorability. A link-tracing design is an ignorable one
the sample investigators do not know how many other subthe probability of obtaining the sample does not depend on
jects would potentially have directed them to the same subjtftet manner in which the initial sample was obtained (Thomp-
(Frank, 1977). Also, in practice, a well defined probabilityon and Frank, 2000).
sampling procedure is usually not used to obtain the initialConsider a population graph witt' nodes labelled
sample. In a study of IDUs investigators may get the initial 2, ..., N and node value¥ = (Y3,Y,,...,Yy) , adja-
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cency matrixX and a joint probabilityf (Y, X; 6, \) where# wave. Chow and Thompson (2003) obtain maximum likeli-
and \ are parameters of interest. The ddt&rom a sample hood and Bayesian estimators for the undirected graph when
s, can be expressed ds= (s,ys, xs) wherey andx are the all links are traced except for the last wave.
realizedY andX values. The likelihood can be expressed as The observed data likelihood is complex and difficult to
compute when the sample is obtained by tracing only a frac-
LO.Xd) = Y p(sly,x:0,)E(y,x:0,A) (1) tion of relations. In this paper we consider a model-based es-

) . . . timation approach assuming the stochastic block model dis-
wherep(sly, x;6,\) is the the sampling probability for theCussed in this section and ignorability.

samples and the summation is over &Y, x) consistent with

the datad. If the sample selection depends only on thgse

andx, in the sample, then design probabilitys|y,x;#,\) 3 Estimation when only a fraction of relations is traced

can be factored out of equation (1). When this is the case

then design and model parameters are distinct and not relaieghis section we consider the estimation problem when sam-

(Thompson and Frank, 2000). In such cases the samplinggle-data was obtained after only tracing only a fraction of re-

sign is said to be ignorable and the likelihood in (1) becomestions. Three different scenarios arise when samples are ob-
tained in this manner. Firstly it might be possible to uniquely

L(p,0,%d) = p(sly,x; p) Z f(y, %0, 2) identify the identity of those subjects or nodes at endpoints
¥s:Xs of the untraced links. For instance, a subject in the sample

o Z fly,x;0,)\) (2) may know the identity of all his contacts but the investigator,
Vs, Xs for some reason, traces only a few of relations from the sub-

t. The second case is when nodes at endpoints of untraced

\ljv:ggz’é r'j;giéﬂﬁgf;fzi?m?g Ia:i:gslzggga;?qrzseZéilﬁ'ms cannot be uniquely identified but, however, known not
x 9 9 be outside the observed sample. The third case is when no

pling probability for the sample, i.e. p(s !y’x’ “? d_epends information at all is known about the identity of endpoints of
only on (y,x). Thus from (2), the maximum likelihood or , .
. . the untraced links - whether they are in the observed sample
Bayes estimators are not affected by the degigty, x; 1). or not
In the following subsections we consider these three cases
and assume the model defined in the previous section, together
with the ignorability assumption to illustrate how estimation

Thompson and Frank (2000) proposed a stochastic gr&gh Pe done. In this paper we focus only on estimating the
model that assume a population with link probabilities relat®@pulation proportior.

to node values. For instance, in an HIV/AIDS population we

may assume that the probability of a relationship between afly  yntraced links lead to nodes that can be identified

two individuals depends on the HIV-status of both individuals.

Consider an undirected graph in which the population silrethis subsection we assume that after tracing only a fraction
N is known. Let each node in the graph have a binary vari-of links from subjects, untraced links lead to nodes that can be
able of interest,, such thatP(Y,, = 1) = 6. For each pair uniquely identified and are outside the observed sample
of nodesu andv define);; = P(xy, = 1|Y, =14,Y, = j) LetU = (1,2,..., N) be labels for the nodes in the popula-
as the conditional probability of a link between nodesndv  tion, s, denote the set of nodes for which the value of interest
giveny values and, j = 0,1. Note that\;;; = A;j1;. Also y is observedx s, ;) denote the set of link indicators within
assume that the link indicators (or dyads), are condition- and leading out of nodes i ands; denote the set of nodes
ally independent given the node values. This undirected graphhe last wave and obtained by following some of the links
model has four parameters of interg8t Ao, A1, A2 }. from so. They values of nodes in the last waye are mea-

In a study of IDUs,# might estimate the probability thatsured but no information about links from is obtained. It
a randomly chosen individual from the population is an IDhay be that not every link leading out frosy is traced. If a
while )\ is the probability of a non-IDU to non-IDU relation. link (u, v) is traced fromu € sq, then nodev is added to the

If Mj, is the total number of relations of tydewherek = sample and ity value of interesy, is observed. If no infor-
0,1,2andN; = I (Y, =), then the likelihood for the mation is obtained about links out from thenw € s,. If the

2.3 A stochastic block model with link probabilities re-
lated to node values

full graph is link (u,v) is not traced then the value gf, is not observed,
though the identity of) can be determined. Note that with
L0, Xy, x H QN H )\Mk — Ag)Cr M 3) information is obtained on node values in it and links leading

out from it. Only node values are obtained fgrand no links

=0 k=0
N leading out are traced .
wherek = 0,1,2andCy = (), Ci = NoNy andC> = When all links are traced except for nodes in last waye
(ng) Note thatV = Ny + V3. the link indicator matrix ,, 5) between nodes iy and nodes

Thompson and Frank (2000) gave an expression of the abt in the sample is a zero matrix. When not all links are
served data likelihood when the sample is obtained by sndvaced from the sample= s, U 51 thenx,, 5 is a matrix of
ball sampling in which all links are traced, except for the lageros and ones.
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If the identity of endpoints of the untraced links fromsy nodesa andb from s at random and without replacement.
is known then the elements,, of x(,, 5) are 1 when link Lety,, y, andy, be they values for nodes, a andb. The
(u,v) is not traced where. € sy andv € 5. Even when link indicators between node and a and between node
links from s, to 5 are known to exist, the values,ys for andb arer,, andxz,; respectively. Ifz%¢ = (z,,,x,;) and
nodes ins are unobserved and unknown. The sample datg" = (x4, z,,) then conditional ory; define acceptance
when untraced links lead to nodes that can be identifiddds probability . asmin{R,., 1} where

{(Svysax(so,U)>}' ( new'd )

If 5 is the set of nodes that are not in the sample then the R, = —2r _1%Ys) @)
unobserved data from the population graph arejthalues in Papd, ys)
ys and links from and to nodes in the sgtu s which is the Whenz,,, = z,;, ory, = y, thenR, = 1. If a, is greater than
sub-matrixx s, us,s,us) Of the adjacency matrix. a randomly drawn value frori (0, 1), then we accept that the

Using data augmentation we can impute the unknown gragdttor of link indicators between nodeanda and node- and
quantitiesys andx s, us,s, us) and obtain parameter estimates, js ;v otherwise it isz2/?. Repeating this draw-switch-
(Tanner and Wong, 1987; Gilks, 1996; Schafer, 1997).  accept/reject procedure many times and for all nodess¥

The conditional distribution of the unobserved node a@i{/e realizations Of((s 5) which can be used in estimation as
link-indicator values is described in the previous subsection.

P90 X = PO ) (@) o PEDEE B8 10 s k. o 5 ety anc e

The conditional distribution of,,, for v € 5, depends on the _ _
y values of nodes in the sample and the link-indicators in tBe8 Untraced links lead to any possible set of nodes
sample that potentially connecttdrom u € sq. Therefore

P(y§|d) = H P(yv|ysn>x(so,U)) (5)
VES

In this subsection we consider the case when there is no
knowledge as to whether the untraced links would lead to
nodes already in the sampieor outside the sample This
may be the case in an HIV/AIDS study where interviewed sub-
Using (5) we can impute the unobseryed Since the links jects may refuse to give any information that might potentially

are unconditionally independent help to identify their partners.
Let sg be the set of nodes in the sample excluding the last
P(x(s,us.09)95 @) = [ P@unlyu vo) (6) waves,, s}, be the set of nodes i, with all links traced and
(u,v) sy be the set of nodes isy with at least one link untraced.

Thussy = sf U si. We assume that endpoints of the untraced

(fmks from sy lead to nodes either in or 5. Let xu+ be the

vector of the number of untraced linkse sj andx (s2.5) P&

the known links fromsg to s. The observed sample data is
{(5 Vs, X (st s8,U)» (sor,s)7xu+)}

Define § as the set of nodes that can potentially be end
Let us consider the case when untraced links lead to nodes gmats of the untraced links frog}. Note thats include nodes
cannot be identified but are known to be outside the obsenbath ins ands. The unobserved datgs, x5, us,s, us)) can be
sample. The difference with the case discussed previouslgiawn from the conditional distribution of the unobserved data
that identities of nodes to which untraced links lead are ugiven sample datd.
known. For each node € s{ traced links have known end points

Let 5 be the set of nodes not in the sample afthe the set while untraced links may lead t&, the set of any possible
of nodes insy with all their links traced. Thus all endpoints oendpoints in the population. Note thais a subset of U s.
y-values of links from nodes i, are known. Let{ bethe set ~ As described in the the previous subsection, we wish to
of nodes insy with at least one untraced link. Thus the endlraw realizations ofc(sg)g) conditional onx,,. and node val-
points of the untraced links fronf; are potentially any set ofuesy = (ys,ys). For every node < s;, we draw two nodes
nodes irs. The setsy can therefore be partitioned into two dise andb at random and without replacement fréginthe set of
joint setss{ andsy wheres, = s Usy. Letx,, be the vector nodes that can possibly be endpoints of the untraced links from
of the number of untraced links from nodessiito nodes in noder. Definingz2'¢ = (2,4, 7,) AN = (2,4, Trq)

5. Then the sample data= {(s, ys, X(st 1), X(s2,5): Xut)}.  Wherez,, andz,, are link indicators between nodeanda

Although we know the number of untraced linkg, from and between node andb respectively, the acceptance prob-
sy to 5, link indicatorSX(su s) between nodes igg ands are ability «,. can be calculated using (7). Alsg. is compared
unknown. Knowingx s 5) implies knowledge of all entriesto a value randomly drawn frorfy(0,1) in order to accept
of x(,,,rr) @and, as a result the estimation procedure can useejectz"" instead ofr?2'<. Repeatlng this process a large
(5) and (6). number of times for all the € sy yields random draws of

A Metropolis-Hastings (MH) algorithm can be used to drathe unobserved link values: s) given x4 andy. Consid-
realizations ofx ;. 5) conditional onx,; and node values eringx,: 5) as known, the estimation process will proceed as
(Hastings, 1970). For every nodec s;, we draw two end discussed in previous sections.

Equation (6) can be used to impute unobserved link indica
tors conditional on thg values.

3.2 Untraced links lead to nodes that cannot be |dent|f|ed
but outside the sample
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4 Results Table 1 shows estimates éfwhen, on average, only a cer-
tain percentage of links are traced. For comparison, we com-
In this section we present model-based estimation results pered these results to Bayesian estimates (BE) and Bayesian
ing the undirected graph model and approach discussed inghedictor (BP) values using methods in Chow and Thompson
previous sections. Also, we assume that the design is (B8003). The estimates férwere comparable with results from
norable. We obtained results using data augmentation (Tmk-tracing only a fraction of relations giving smaller mean
ner and Wong, 1987; Schafer, 1997) and assuming nequare errors. These results were obtained after 5000 itera-
informative priors for the parameter estimateand \’'s. In tions.
this paper we only present result of estimatesédout the  Although these results are encouraging, they do depend on a
methods discussed here can also be used to obtain estimaiesber of factors such as model fitness, ignorability assump-
for the \'s. tion, population size and the quantity being estimated.
Data augmentation (DA) is an MCMC algorithm that can

be used when the complete datatis= (Yous, Yinis) Where 4.2 Example 2: A hypothetical population
Y,ps IS the observed data ang,;, is the missing part of the
data (Tanner and Wong; 1987). The DA algorithm is mainl{ this example we consider a hypothetical population of size
used to get Bayesian estimates in cases where the compléte 100 and an average degree of 7.5. The proportion of 1's
data posterior(6|Yos, Ymis) is in a simpler form than the in the population is 0.29.
observed data posterior (Schafer; 1997). DA has two mainfable 2 shows estimates éfwhen 90%, 80% and 60% of

Steps: name|y the imputa‘[ion (|-) Step and the prediction (iFﬂkS are traced. We consider the case when untraced links
) step. In the I-step we consider a current gu&és of the lead to endpoints that are known and when untraced links lead

parameter and then draw the missing data from the conditiotfa¥inknown endpoints.

predictive distribution of,,;s, For both the two cases, estimates foare comparable to
Bayesian estimates (BE) and Bayesian predictors (BP). Mean
y+D P(Ypis|Yops, 00). (8) square error values are smaller when untraced links lead to

nodes that can be identified. As seen on Table 2, the naive
estimator overestimatgsand gives the largest mean square

Aft ing Y from P(Y;,54[Yiss, 8®)) th t st . mea
er drawingy,,,;, © from P(Ymis|Yop.s, 6'7)) the next step error. These results were obtained after 5000 iterations.

is the P-step. In the P-step, we draw the valué@ éfom its
complete data Posterior
5 Discussion
0D ~ P(O]Y,p, YY) ©)
Link-tracing designs are useful in gathering information on
Repeating steps (8) and (9) after starting with an initial gued!g use, sexual behavior or such similar activities from hard-
9(0) yields a sequence{YTEfi)s,e(t)} with stationary distri- to-reach and elusive populatlo.ns. Several link-tracing designs
bution P(6, Yipis|Yaps). The series{Yn(fi)s,G(t)} defines a have been developed and their use,depe.nds mpstly on the fo-
o ) ) PlalY apy® cus of the study and the researcher’s choice. It is usually hard
Markov chainin whichP(6") — P(6[Yops) andP(Y,,,;) —  for the researcher to decide the best stopping criteria once
P(Yiis|Yops). Schafer (1997) recommends considering e jink-tracing has started. For instance, in snowball sam-

large "burn in” period befqre using the results for ?S,t!matio'bling the researcher might choose to stop sampling new sub-
because’(Yinis|Yors, ) is normally unstable for initial €S- jects when all subjects with known relations are in the sample

timates off. (Frank and Snijders, 1994) or after sampling a certain number
of waves. The stopping criteria may also depend on sample
4.1 Example 1: A "high-risk” population size especially if there are resource limitations to trace more

links.
Let us consider the Colorado Springs (CS) data from a studyEstimation based on data gathered by a link-tracing design
on the heterosexual transmission of HIV/AIDS in a "highis an area of active ongoing research. Depending on the esti-
risk” population in Colorado Springs (Potterat et. al. 1993hation procedure used, it is sometimes very hard to obtain un-
The empirical population haty = 595. They values were 1 biased estimators especially when many waves are considered
for subjects (nodes) who exchanged sex for money and 0ded not all links are traced. This problem is compounded when
nodes that did not exchange sex for money. The link-indicatodesign-based estimation approach is used because comput-
x4, took value 1 if subject and subject had a sexual and/oring inclusion probabilities gets harder as more waves are con-
a drug injection relation. This empirical population was alssidered.
used by Chow and Thompson (2003) as an example in a snowvodel-based estimation has the advantage of being gener-
ball sampling design in which all links were traced, with thalizable and that it can be done with the aid of well developed
exception of the last wave. MCMC methods.

The population quantity of interestfés= 0.223529. Other ~ Design-based estimation rely on being able to compute in-
guantities that might be of interest for this population, atiusion probabilities. The inclusion probability for subjéct
though not considered in this paper, atg = 0.000855, is the probabilityr; that subject is included into the sample.

A1 = 0.004768, A2 = 0.002620 or average degree=3681.  Inclusion probability is hard to compute without knowledge
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Table 1: Estimates of population proportion using the Colorado Springs "high-risk” data. The total population size is N=595
and true population proportioth = 0.2235. An initial sample of 40 was link-traced until a sample of size 85 was observed.
These results are for the case where endpoints of the untraced links are known. These results were obtained after 5000 iteration

All links traced Not all links traced
BE BP 90% traced 80% traced 70% traced
Avg waves 1 1 1.63 1.74 1.82
Estimate 0.2130 0.2093 0.2074 0.2073 0.2008
MSE 0.0029 0.0031 0.0027 0.0027 0.0025

Table 2: Estimates of the proportion of 1's in a hypothetical population of size 100 and average degree 7.5. The true proportion
wasf = 0.29. An initial sample of 5 was link-traced until a sample size of 35 was sampled. These results were obtained after
5000 iterations.

Endpoints known Endpoints unknown
All links traced % of links traced % of links traced
Naive BE BP 90% 80% 60% 90% 80% 60%
Avg waves 1 1 1 1.00 1.01 1.14 1.00 1.03 1.28

Estimate 0.4329 0.3008 0.2968 0.2997 0.3000 0.2895 0.3106 0.3012 0.3022
MSE 0.0350 0.0024 0.0025 0.0013 0.0013 0.0012 0.0035 0.0036 0.0028

of the entire population network. Sometimes approximatiotiss paper and Susan Hinkins for her constructive comments
are used to estimate;. Heckathorn (2001) used the arguand support during the course of writing this paper.
ment that in one-wave designs the inclusion probability for a
nodei is proportional to its degre# to derive estimators for a
respondent-driven sampling study. In most practical cases one
_nee_ds to know th_e pOpUIatlon size, which is usua”y unI(nOWEapobianco, M. and Frank, O. (1982), “Comparison of statistical graph-size
in hidden populations. estimators,Journal of Satistical Planning and Inferend 87-97.

Mathe_mat'cal models fOI’. humar_‘ populations -a.re Comple}&nderson, C.J., Wasserman, S., and Crouch, B. (1999), “A P* Primer: Logit
and solving them to get estimates is generally difficult (New-  models for social networksSocial Networks21, 37-66.
man et. al, ZQOZ; Thompson and Frank' 2000)' Also, Som%'urner, M. (1997), “Crawling towards eternity: Building an archive of world
times assumptions used in population models, although math- wide web,”Web Techniques Magazir5), May 1997
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