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1. Introduction and Background 
 
In cluster-randomized trials, it is not necessary to 
control on either group- or subject-level covariates 
for valid inference, but controlling on such covariates 
can increase statistical power (Donner and Klar, 
2000). The price for achieving such power is that one 
must use more sophisticated software that usually 
entails making parametric assumptions. We had a 
specific trial from which we believed the data 
structure would violate a number of common 
parametric assumptions but where we felt that 
subject-level controls offered substantial power 
improvement. We therefore undertook a simulation 
study to study the robustness of some standard 
options for covariate control. We also developed and 
tested a new semi-parametric method. There does not 
appear to be much relevant prior research in this area. 
One exception is Cheong, Fotui and Raudenbush 
(2001). They have simulated a different range of 
population structures and analysis procedures. Also, 
Jenkins, et al, (2006) undertook a simulation study of 
other forms of robustness in hierarchical linear 
modeling at about the same time.  
 
The application of interest was a randomized 
experiment with alternate preschool instructional 
paradigms, loosely referred to as curricula. There 
were four alternate curricula and one control 
curriculum. All five arms were assigned to a recruited 
sample of 120 Even Start schools. The schools were 
deeply stratified into 24 blocks, each containing five 
schools. Within a block, the five schools were then 
randomly assigned to the five arms. The curricula 
involved instructional materials, instructional 
strategies, teacher training, teacher observation, and 
teacher consultation. Within the schools, parents of 
age-eligible children were recruited into the study. 
Measurements were conducted in the spring of 2004, 
prior to the introduction of the new curricula, and 
repeated at one-year intervals in 2005 and 2006. 
Measurements involved formal assessments of pre-
literacy, social competency (teacher observation), 
parent interviews, and video-taping and behavior-
coding of staged parent-child interactive reading and 
toy-play sessions to gauge parenting skills. There was  

considerable turnover in the student-body each year, 
but there is some overlap of sample across years, and 
of course, there is considerable organizational and 
staffing stability. So one set of important covariates 
involved school-level past performance and child-
teacher ratios. Another important set of covariates 
involved parent socio-economic status, native 
language, and child demographics (age, race, sex, and 
disability status). Native language, in particular, has a 
huge effect on English pre-literacy.  
 
For analysis, we wanted something more powerful 
than either the very robust Fisher’s exact test or the 
slightly less robust standard two-way ANOVA. 
However, we wanted something that was robust to 
unequal student sample sizes per school, school-level 
nonresponse, deep stratification, heteroscedasticity, 
non-Gaussian errors and interactions. We therefore 
developed superpopulations that had the features of 
interest, generated samples from them, and tested 
several alternative analysis procedures on them, using 
type I error rates and statistical power as evaluation 
criteria.  
 
In section 2, we discuss the superpopulations that we 
simulated. In section 3, we provide more detail on the 
analysis methods studied. In section 4, we present 
results. In section 5, we give some concluding 
thoughts and ideas for further research.  
 

2. Simulated Superpopulations 
 
Given the application, we built a series of 
superpopulations with an increasing number of 
violations of standard models. All shared a common 
form of having two child-level covariates, one 
school-level covariate, a random effect at the school 
level, and student level random error. The project-
level covariate was built with a structure similar to 
the outcome of interest because the way it will be 
generated in the application is to take the average of 
students at the school the prior year. All of the 
superpopulations share a common model structure:  
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where:  
 
The indices stands respectively for block (i), 
treatment (j), child (k);  

ijky  is the outcome variable; 
μ  is the overall mean; 

iβ  is the (fixed) block effect; 

iα  is the treatment effect; 

ijkX  is a vector of two child level covariates 
(X1=FamilyIncome, X2=MothersEducation); 

ijZ is the baseline school-level average of the 
outcome variable measured on a different set of 
students prior to the intervention; 

iju  is the school level-random effect;  

ijke  is a child level random error;  

ijX ⋅  is a vector of school-level averages of child level 
covariates;  

ijV  is a normally distributed random error term 
reflecting the error caused by basing the project-level 
fixed covariate on a small sample from the prior year 
rather than a long-run average; 

iju , , and  are mutually independent. ijke ijV
 
Because the theory is better developed for balanced 
designs, we introduced imbalance both at the school 
and the child level. Note that standard multi-level 
software assumes that all the random errors are 
normal and homoscedastic. So we developed 
superpopulations that violated those assumptions. 
Finally, we allowed interactions. We simulated a 
series of superpopulations that violated various 
combinations of these standard assumptions to 
various degrees while generally keeping the 
violations within the range that we think might 
reasonably occur in our application.  
 
Seven different superpopulations with no treatment 
effect ( 0=iα ) were generated to test robustness of 
type 1 error rates. Superpopulation 1 satisfies most of 
the standard assumptions. The numbering of 
superpopulations 2 through 7 generally reflects 
increasing severe violations of standard assumptions: 
 
Superpopulation 1: There are 24 blocks with five 
schools per block and each school contains exactly 
12 children. There is no school-level nonresponse 
and the school- and child-level random errors are 
normally distributed. Residual variances are constant 
with =12.81 and va =55.26. The 

block effect is very large with 

var( )ijku r( )ijke

2i iβ = . 

Superpopulation 2: Same as superpopulation 1 except 
that the number of children per school is allowed to 
vary. The number of children per school follows a 
Poisson distribution with mean 12.  
 
Superpopulation 3: Same as Superpopulation 2 
except that there are two schools missing at random 
(for a total of 118 schools). The missing schools are 
from different blocks.  
 
Superpopulation 4: Same as Superpopulation 3 
except that the school- and child-level random errors 
have different variances in different blocks: 
 
Block 1 – 6 has  and  with variances 3 and 56,  iju ijke

Block 7 – 12 has  and  with variances 6 and 
42,  

iju ijke

Block 13 – 18 has  and  with variances 9 and 
28,  

iju ijke

Block 19 – 24 has  and  with variances 12 and 
14.  

iju ijke

 
Superpopulation 5: Same as Superpopulation 3 
except that the school- and child-level random errors 
have different variances in different treatment groups: 
 
Treatment 1 has  and  with variances 3 and 70,  iju ijke

Treatment 2 has  and  with variances 6 and 56,  iju ijke

Treatment 3 has  and  with variances 9 and 42,  iju ijke

Treatment 4 has  and  with variances 12 and 
28. 

iju ijke

Control has  and  with variances 15 and 14. iju ijke
 
Superpopulation 6: Same as Superpopulation 3 
except that school- and child-level random errors 
have Gamma distributions.  has shape parameter α 

=2 and scale parameter β=0.395. For , α =3 and 
β=0.233. Note that in this population, the school-
level errors are more seriously non-normal than the 
student-level errors. Both skew and kurtosis are 
stronger for the school-level errors.   

iju

ijke

 
Superpopulation 7: Same as Superpopulation 4 
except that there are treatment group effects for 
individual blocks but no effect on average. That is, 
within each single block there are significant 
differences between the treatment groups, but when 
schools are aggregated to the treatment level, these 
differences average out. 
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Another three superpopulations with treatment effect 
were generated to compare type II error rates. For 
each of these superpopulations, all four experimental 
arms are assumed to be equally effective with the 
magnitude of 1.5. This number was picked to give 
power in the range of 0.5 to 0.6, a range where we 
thought we might see the largest differences in power 
among the techniques. 
 
Superpopulation 8: Model is the same as 
Superpopulations 4 except that treatment effect is 
added.  
 
Superpopulation 9:  Same as Superpopulations 5 
except that treatment effect is added.  
 
Superpopulation 10: Same as Superpopulation 6 
except that treatment effect is added.  
 
The components of variance in the model for the 
superpopulations are shown in Table 1. Naturally, 
there positive variance between treatment arms only 
for superpopulations 8, 9 and 10. All other variance 
components are constant across superpopulations. 
Also note that the between-block variance is very 
large. This was done with the aim of making it large 
enough to matter.  
 
Table 1. Components of variances 
 

Component Magnitude 
Between block (fixed) 192 
Between arm (fixed) 0 or 0.36 
Child-level covariates (fixed) 3.4 
School-level covariates (fixed) 18 
School-level random effect (random) 13 
Child level error (random) 55 
 

3. Analysis Methods 
 
The analysis methods we studied included HLM 
(Raudenbush, et al, 2004), SAS PROC MIXED (SAS 
Institute Inc., 2006), SUDAAN (Research Triangle 
Institute, 2001), and a new variant of Koch’s 
nonparametric ANCOVA that we called semi-
parametric ANOVA. The applications of HLM and 
MIXED were straightforward and are thus only 
briefly described. We give more detail on SUDAAN 
and the semi-parametric ANOVA.  
 
For PROC MIXED, we used school as subject, block 
as fixed effects and the restricted maximum 
likelihood option. An example of the code used is 
shown below: 
 

proc mixed data=population  method=REML; 
class block schoolid treatment;  
model y=treatment block FamilyIncome 
MothersEducation Z/ solution ; 
random int/ type = un subject = schoolid; run; 

 
For HLM, we used a 2 level HLM model with 
student as the first level and school as the second 
level. Indicator variables for four of the five 
treatments and 23 of the 24 blocks were entered as 
fixed effects in addition to FamilyIncome, 
MothersEducation, and Z. The estimation method 
was also restricted maximum likelihood. More details 
on the HLM code are given in the appendix. 
 
For SUDAAN, the knowledge that SUDAAN gives 
badly biased variance estimates for domain means 
where there is only one variance unit selected per 
domain led us to experiment with several alternative 
SUDAAN setup options. The first option was to treat 
the sample as a simple random sample of schools but 
to include dummy variables for the blocks as fixed 
effects in a linear model. The second option was to 
treat the sample as a simple random sample of blocks, 
where each block contains five schools. The third 
option was to treat the sample as a stratified simple 
random sample of schools. This was, of course, the 
correct design, but given that SUDAAN generally 
requires two variance units from the same stratum 
and analysis domain in order to give sensible 
variance estimates for the analysis domain, we 
thought that the first two options might show some 
advantages. Also obviously, dummy effects for 
blocks were not required for the second and third 
options since blocks were specified on the NEST 
statements. Examples for the SUDAAN programs are 
shown below: 
 
SUDAAN Option 1. Simple Random Sample of 
Schools with Block as Fixed Effect: 
 

proc regress data=population1 design=wr 
R=exchange ;  
weight _ONE_;  
nest _ONE_  schoolid ;  
subgroup treatment block;  
levels 5  24;  
model y=treatment block FamilyIncome 

 MothersEducation Z; run; 
 
SUDAAN Option 2. Simple random sample of 
blocks: 
 

proc regress data= population1 design=wr 
R=exchange ;  
weight _ONE_;  
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nest _ONE_  block ;  
subgroup treatment;  
levels 5;  
model  y= treatment FamilyIncome 
MothersEducation Z; run; 

 
SUDAAN Option 3. Stratified simple random sample 
of schools: 

proc regress data=population1 design=wr 
R=exchange ;  
weight _ONE_; 
nest block  schoolid ;  
subgroup treatment ;  
levels 5; 
model y= treatment FamilyIncome 
MothersEducation Z; run; 

 
The new semi-parametric ANOVA was inspired by 
Rosenbaum (2002) but has much in common with a 
line of papers mostly by Gary Koch and coauthors 
(Koch, et al, 1982 and 1998; Stokes, Davis, and Koch, 
2000; Lavange, Durham, and Koch, 2005) that was 
launched by Quade (1967). 
 
The procedure involves three steps. In the first, a 
parametric model for the outcome is developed. 
(Linear in our case, but other parametric models 
could be used.) It is important that the putative causal 
agent (in this case treatment arm) be omitted from the 
model. Theoretically, it seemed to us that we should 
include block in this model, but we seemed to get 
worse results that way and so left block out of the 
model. Instead, other school-level and subject-level 
covariates were allowed into the model. In the second 
step, the residuals from the parametric model are 
averaged to the school level. In the third step, a 
randomization based permutation test is run on the 
average school-level residuals. Theoretically, we 
should have used a stratified permutation test, but we 
used a simple unstratified permutation test. Using 
WILCOXON option in PROC NPAR1WAY, we did 
Wilcoxon rank-sum test for constrasts and Kruskal-
Wallis test for the overall F-test. Example of program 
is given below: 
 
proc glm data=population1;  
model y= FamilyIncome MothersEducation  Z; 
output out=R residual=residual; run; 
 
proc summary data= R (keep=schoolid  
        treatment residual );  
var residual ;  
output  out=Raver mean=mresid; 
class schoolid  treatment; run; 
 
data Raver; set Raver;  

if treatment=1 then contrast11=1; 
else if treatment=2 then contrast11=2;  
else contrast11=.; 
if treatment in (1,2) then contrast22=1;  
else if treatment in (3,4) then contrast22=2;  
else contrast22=.;  
if treatment in (1,2) then contrast21=1;  
else if treatment in (3) then contrast21=2;  
else contrast21=.;  
if treatment in (1,2,3,4) then contrast41=1;  
else if treatment in (5) then contrast41=2;  
else contrast41=.; run;  
 
proc npar1way data=Raver (where=(_type_=3)) 
wilcoxon; class treatment; var mresid; 
 
proc npar1way data=Raver (where=(_type_=3)) 
wilcoxon; class contrast11; var mresid; 
 
proc npar1way data=Raver (where=(_type_=3)) 
wilcoxon; class contrast21; var mresid; 
  
proc npar1way data=Raver (where=(_type_=3)) 
wilcoxon; class contrast22; var mresid; 
 
proc npar1way data=Raver (where=(_type_=3)) 
wilcoxon; class contrast41; var mresid; run; 
 
In each analysis method, five tests were conducted. 
One is the overall F-test for any differences among 
the five arms. The other four tests are contrasts 
between treatment groups based on research 
questions in our application: 
 
 Treatment 1 vs. control 
 Treatment 1 plus 2 vs. control 
 Treatment 1 plus 2 vs. Treatment 3 plus 4 
 Sum of treatment 1, 2, 3, 4 vs. control 
 
In the simulation, 1000 populations were generated in 
each superpopulations and the six analysis methods 
were used to do the five tests above. For type-1 error 
simulation, the null hypothesis rejection rate is at 
nominal size of 0.05. The percentage of the 
significant tests among the 1000 tests is treated as the 
simulated type-1 error. For power analysis, the 
percentage of the significant tests is treated as the 
simulated power of the test.  
 

4. Simulation Results 
 
The simulation results are shown in Figures 1 
through 4. In each of these, the horizontal axis 
reflects the various superpopulations. Type 1 error 
rates for the overall treatment effect is shown in 
Figure 1 (for the seven populations with no treatment 

ASA Section on Survey Research Methods

2991



effect). There is a separate curve for each of the six 
analysis methods. The horizontal dotted line stands 
for the significance threshold for a test of 1000 
independent p-values to be significantly larger than 
0.05. Figure 2 shows the type-1 error simulation 
results for contrasts. Since the four contrasts do not 
differ much, the four tests were pooled together to be 
represented by a single line for each analysis method. 
Power for detecting overall treatment effect is shown 
in Figure 3 for the three populations with treatment 
effects. Similarly, power levels for the contrasts are 
shown in Figure 4, which shows only the average of 
the four contracts for each method.  
 
Note that the results for SAS PROC MIXED and 
HLM are nearly identical, so results for them will be 
referred to as simple MIXED/HLM results. Only the 
semi-parametric procedure preserved type I error 
rates for every superpopulation (i.e., had a rejection 
rate under the null hypothesis of no treatment effect 
within sampling error of the nominal rate). However, 
MIXED/HLM was surprisingly robust. It only clearly 
exceeded the nominal type I error rate for one 
superpopulation. The SUDAAN variants all 

performed poorly for type I error rates on the overall 
F-test. The second option performed well for 
contrasts, but this was not good enough to redeem it 
in our eyes. The third option (which is the standard 
SUDAAN setup) did not perform well even for 
contrasts.  
 
Some would argue that because only the semi-
parametric procedure consistently preserved type I 
error rates, it is the only principled choice, and that 
any consideration of power levels is irrelevant. 
However, the single MIXED/HLM violation seemed 
mild enough to allow us to consider statistical power. 
With regard to power, MIXED/HLM is a clear 
winner over the semi-parametric procedure.  
 
Based on these calculations and the fact that semi-
parametric procedure is new while the others are 
well-known, we decided to use either MIXED or 
HLM. The final decision between them came down 
to convenience. Although HLM is very difficult to 
fully integrate into the batch-driven analytic 
processes of an SAS shop, it does have some nice 
graphics and so we decided to use it.  

 

 
Figure 1. Type I error simulation for the test for overall treatment effect 

 

 
Figure 2. Type I error simulation: Test for contrasts 
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Figure 3. Power simulation: Test for overall treatment effect 

 

 
Figure 4. Power simulation: Test for contrast 

 
5. Conclusions and Further Study 

 
We fully expected one of the SUDAAN options to be 
more robust than MIXED/HLM. The fact that this 
expectation was not born out is perhaps due to the 
superpopulation structure. The between-block 
component is extremely large. It could be that with a 
more reasonable value for this component, SUDAAN 
would perform better.  
 
We also did not expect the semi-parametric 
procedure to surrender as much power as it did. This 
may also be caused by the very large between-block 
variance component since we did not find a way to 
reflect block in the semi-parametric procedure. We 
tried using block indicators in the parametric model 
and met with poor results. After the meetings, a 
reviewer suggested that if we had used a stratified 
randomization test on the school-averaged residuals, 
we would have preserved more of the power. That 
would be an interesting possibility to explore in 
further research. 
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Appendix. HLM Program Code 
 
 
#WHLM CMD FILE FOR population1 
nonlin:n 
numit:100,y 
stopval:0.0000010000 
level1:Y=INTRCPT1+INCOME+MGRADE+BASE
LINE+TREAT1+TREAT2+TREAT3+TREAT4+BL
KID1+BLKID2+BLKID3+BLKID4+BLKID5+BLK
ID6+BLKID7+BLKID8+BLKID9+BLKID10+BLKI
D11+BLKID12+BLKID13+BLKID14+BLKID15+B
LKID16+BLKID17+BLKID18+BLKID19+BLKID2
0+BLKID21+BLKID22+BLKID23+ +RANDOM 
level2:INTRCPT1=INTRCPT2+random/ 
level2:INCOME=INTRCPT2/ 
level2:MGRADE=INTRCPT2/ 
level2:BASELINE=INTRCPT2/ 
level2:TREAT1=INTRCPT2/ 
level2:TREAT2=INTRCPT2/ 
level2:TREAT3=INTRCPT2/ 
level2:TREAT4=INTRCPT2/ 
level2:BLKID2=INTRCPT2/ 
level2:BLKID3=INTRCPT2/ 
level2:BLKID4=INTRCPT2/ 
level2:BLKID5=INTRCPT2/ 
level2:BLKID6=INTRCPT2/ 
level2:BLKID7=INTRCPT2/ 
level2:BLKID8=INTRCPT2/ 
level2:BLKID9=INTRCPT2/ 
level2:BLKID10=INTRCPT2/ 
level2:BLKID11=INTRCPT2/ 

level2:BLKID12=INTRCPT2/ 
level2:BLKID13=INTRCPT2/ 
level2:BLKID14=INTRCPT2/ 
level2:BLKID15=INTRCPT2/ 
level2:BLKID16=INTRCPT2/ 
level2:BLKID17=INTRCPT2/ 
level2:BLKID18=INTRCPT2/ 
level2:BLKID19=INTRCPT2/ 
level2:BLKID20=INTRCPT2/ 
level2:BLKID21=INTRCPT2/ 
level2:BLKID22=INTRCPT2/ 
level2:BLKID23=INTRCPT2/ 
level2:BLKID24=INTRCPT2/ 
fixtau:3 
lev1ols:10 
accel:5 
level1weight:none 
level2weight:none 
varianceknown:none 
hypoth:n 
resfil1:n 
resfil2:n 
homvar:n 
constrain:N 
heterol1var:n 
graphgammas:grapheq.geq 
lvr:n 
title:no title 
output:population1.t
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