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1. Introduction 
 

The National Health and Nutrition Examination 
Survey (NHANES) is one of a series of health related 
programs conducted by the National Center for Health 
Statistics (NCHS). A unique feature of NHANES is 
the collection of health data by means of medical 
examinations carried out for a nationally representative 
sample of the U.S. population. Beginning in 1999, 
NHANES has been implemented as a continuous, 
annual survey. Each single year and any combination 
of consecutive years comprise a nationally 
representative sample of the U.S. population. A four-
stage sample is selected for NHANES. The first stage 
of selection is the primary sampling unit (PSU). 
Within each of the selected PSUs, an average of 24 
secondary sampling units (SSUs), or “segments,” 
consisting of census blocks or groups of census blocks 
are selected. Within each sampled segment, a 
subsample of the households is selected and screened. 
Within the screened households, members of particular 
race/ethnicity-income-sex-age subdomains are selected 
with pre-specified probabilities. 

 
The practical constraints surrounding the collection of 
medical data in mobile examination units have limited 
the NHANES survey to about 15 PSUs in each annual 
sample. The small number of PSUs in the sample 
poses a risk for data disclosure. To improve the 
precision of the published results and to reduce data 
disclosure risks, NCHS currently prepares public-use 
files (PUFs) for two-year samples rather than annual 
samples. The original PSU identifiers are not included 
on these files. 

 
The first data release of the continuous NHANES 
survey included the combined 1999-2000 annual 
samples. The PSU identification in light of the 
minimal geographic data, other characteristics of the 
area on the data files, and local publicity campaigns 

led to concerns about disclosure risks in the release of 
the NHANES 1999-2000 data file. As a result, NCHS 
initiated research to examine the disclosure risks of 
NHANES before the release of these data. The 
alternative approaches considered for creating variance 
estimation replicates or pseudo-PSU identifiers that 
would mask the original PSUs were presented in 
Dohrmann et al. (2002). The decision was to split each 
of the original PSUs into two pseudo-PSUs in the 
release of the NHANES 1999-2000 data (Section 2.1). 

 
After the NHANES 1999-2000 data release, there was 
a need to change the basic methodology used for 
variance estimation. Beginning in 2002, NHANES is a 
stratified design, with two-PSUs per stratum for the 
two-year samples. Given this, and the great number of 
replicates needed for continual two-year releases, 
NCHS decided that in future data releases only PSU 
and stratum identifiers will be released for variance 
estimation. As a result, a new approach to variance 
estimation aimed at limiting disclosure risk had to be 
developed for use with the publicly released data. 
Investigation of this issue was continued toward 
improving the methodology for the 2001-2002 data 
release and the results were presented in Dohrmann et 
al. (2004). Under the adopted method, the pseudo-
PSUs are constructed by swapping segments that are 
similar in a number of characteristics between the 
original PSUs. 

 
These techniques can reduce the chance of an intruder 
being able to match PSUs in the sample to PSUs in the 
population (census or external source files) by blurring 
the actual composition of the PSUs in the PUF. Let U  
denote the population and let S  and S ′  denote the 
sample index sets with the unmasked PSUs and 
masked PSUs, respectively. For a given characteristic 
y, the difference between the masked PSU sample 
mean in the PUF and the PSU mean in the population 
can be written as 

 
( ) ( )
( ) ( )

| | | || |

,masking error sampling error
hi S hi S hi S hiUhi S hiU y y y yy y ′′ − −− = +

= +
 (1)

ASA Section on Physical and Engineering Sciences

1761



where Shiy ′| and Shiy |  denote the masked and 
unmasked PSU means of the i th PSU within stratum 

 in the sample, and h Uhiy |  denotes the PSU mean for 
the corresponding PSU in the population (or 
census/auxiliary files available to the intruder). Such 
masking techniques would change PSU means in the 
sample (that is, ShiShi yy || ≠′ ) for PSUs involved in 
masking. In addition, the masked PSUs no longer are 
completely associated with a single real PSU, thus 
limiting the chance of correctly matching a given 
individual with the PSU. We should note that the point 
estimate of the population mean will not change under 
the PSU masking (that is, S Sy y ′= ). 
 
However, one of the challenges with these techniques 
is that the two associated variance estimates are not 
equal in general. That is, ( ) ( )|v vy S y S| ′≠ , and 
depending on the masking approach used, we have 
observed some patterns in the resulting biases when 
plotting against the (original or unmasked) design 
effects, where ( )|v y S  and ( )|v y S ′  denote, 
respectively, the variance estimates with the unmasked 
and masked PSUs. 

 
This paper discusses an improved PSU masking 
strategy adopted for the recent release of NHANES 
2003-2004 data that helps to limit such biases. Section 
2 presents a brief overview of the PSU-splitting and 
recombining methods used for the 1999-2000 and 
2001-2002 NHANES data releases, respectively, as 
well as some challenges of those methods related to 
the variance estimation. Section 3 describes the new 
masking strategy and some matching procedures 
considered for creating alternative sets of PSU and 
stratum identifiers for variance estimation. A 
comparison of the variance estimates from each of the 
strategies considered, and a discussion of how the new 
method is an improvement over the previous ones 
adopted for NHANES is presented in Section 4. 
Section 5 gives concluding remarks. 
 

2. PSU Masking and Bias Issues in Variance 
Estimation in Previous NHANES Data Releases 

 
2.1 PSU-Splitting in 1999-2000 (Method 1) 

 
As a result of an integrated survey plan adopted by 
NCHS, the NHANES 1999-2001 design was linked at 
the PSU level with the National Health Interview 
Survey (Hunter and Arnett, 1996). Because the 

sampling frame for 1999-2001 became the already 
selected NHIS areas, no explicit stratification was used 
to select the NHANES PSUs. With the first stage 
design structure, and due to the small number of PSUs 
in the sample, the initial decision was to use the true 
PSUs along with a delete-1 jackknife method to create 
replicates for variance estimation for the analysis of 
the NHANES 1999-2000 data. 

 
For the purpose of disclosure limitation discussed in 
Section 1, various PSU splitting methods were 
considered to split each PSU into two dissimilar 
pseudo-PSUs, creating a total of 52 pseudo-PSUs. The 
associated impact on the performance of the resulting 
jackknife variance estimates and on the disclosure of 
original PSU indicators was examined (see Dohrmann 
et al., (2002) for more detail). The final chosen method 
for the 1999-2000 NHANES release (termed the 
“cluster-split PSU” alternative in Dohrmann et al., 
2002) entailed ordering the segments on minority 
density and then assigning the first half within a PSU 
to one pseudo-PSU and the second half to another 
pseudo-PSU. Due to the ordering on minority density 
one expects that the resulting pseudo-PSUs formed 
from this method will not have the same characteristics 
as the full PSU. In addition, the order of the replicates 
was then scrambled to further protect confidentiality. 

 
As reported in Dohrmann et al. (2002, 2004, 2005), the 
protection of confidentiality seemed to be adequate but 
there were concerns about the performance of the 
resulting variance estimator. For the 70 characteristics 
investigated, this method resulted in a pattern of bias in 
the masked jackknife variance estimates when plotted 
against the design effects. Figure 1(a) gives the side-
by-side boxplots of the ratios of the estimated standard 
errors using the PSU-splitting alternative (method 1) to 
the estimated standard errors using the unmasked 
PSUs for four different ranges of the (original) design 
effects on the x-axis. 

 
Further research revealed the reasons behind the 
underestimation and its pattern exhibited in 
Figure 1(a). Dohrmann et al. (2004, 2005) showed that 
the masked variance estimate is approximately equal to 
half of the unmasked variance estimate plus a non-
negative term that is dependent on the between 
segment variability within the split PSUs. Also, using 
Kish’s design effect formula, Dohrmann et al. (2005) 
explains how the curvature pattern over the design 
effect may arise. 
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Figure 1. Comparison of standard error ratios against the original design effect for method 1 and method 2 
 

2.2 PSU-Recombining in 2001-2002 (Method 2a) 
 

After the release of the NHANES 1999-2000 data, 
with the cluster-split jackknife weights, there was a 
need to change the basic methodology used for 
variance estimation. Beginning in 2002, NHANES is a 
stratified design, with two-PSUs per stratum for the 
two-year samples. Given this, and the great number of 
replicates needed for continual two-year releases, 
NCHS decided that in future data releases only PSU 
and strata indicators will be released for variance 
estimation. As a result, a new method of variance 
estimation had to be developed for use with the 
publicly released data. 

 
One could stay with a PSU-splitting approach in a way 
to minimize the impact on the variance (Dohrmann et 
al., 2005, Section 2). However, it still may give a false 
sense of the number of actual PSU’s and therefore an 
inappropriate view of how many (nominal) degrees of 
freedom the resulting variance estimator might have 
(see Lu, Brick and Sitter, 2006 for related discussion). 
Another obvious alternative is to recombine the splits 
with splits from other PSUs. This strategy of PSU-
splitting and recombining is merely one method of 
changing the SSU assignment, or swapping segments 
between PSUs. 

 
Many surveys swap data values between cases for 
disclosure limitation (e.g., Dalenius and Peiss, 1982). 
Recall, however, our work is focused on the possibility 
of revealing PSU identity through the variance 

estimation method and thus increasing the chance of 
identifying an individual. Rather than swapping 
individual values, we decided to swap segments 
(SSUs). That is, for two similar segments in different 
PSUs, swapping the PSU and variance stratum 
identifiers for all sampled cases. 

 
The chosen PSU masking strategy was to apply record 
linkage techniques (Fellegi and Sunter, 1969) to 
identify swapping partners similar in a number of 
demographic, and controls the swapping rate through 
sampling. This method involves three basic steps: 
matching, sampling, and bias evaluation. These steps 
were repeated to adjust the sampling (swapping) rate 
and the matching method. The process was stopped 
when we were satisfied that, on average, swapping has 
negligible effects on key variance estimates. See 
Dohrmann et al. (2004, 2005) for detail. 

 
Figure 1(b) presents a side-by-side boxplot of the 
estimated standard error ratios drawn for four ranges of 
the corresponding design effects of the point estimates 
based on the unmasked PSUs. As compared to 
Figure 1(a), the curvature underestimation pattern in 
variance estimates is less severe for the newly adopted 
PSU-recombining method (Method 2a) although it 
involves relatively larger variation in the standard error 
ratio (i.e., larger change in variance estimates) over the 
entire range of the (original) design effect. 
 
Recall that the PSU-recombining method for the 
NHANES 2001-2002 adopts a segment matching 
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strategy for swapping that selects swapping partners 
(segments) nearly identical in the matching 
characteristics. However, such a matching approach 
may not be the optimal choice in minimizing the bias 
of variance estimates. In the next section, we will 
discuss how we can improve segment matching 
strategy so as to limit the impact on the variance 
estimates. 
 
3. Bias Limitation Strategy in Variance Estimation 

 
3.1 Segments in Variance Estimation 

 
Consider that a multi-stage probability sample is 
chosen from a two-PSU-per-stratum design. Assume 
that the first stage sampling selects  PSUs 
within each stratum independently across strata and the 
second stage and subsequent stage sampling select, in 
turn,  segments within each sampled PSU 

2=hn

hin ( )hi  
and  ultimate units within each sampled segment. 

Let   

denote the corresponding sample index 
set. Associated with the sampled ultimate unit 

hijn

( ){ : 1,.., , 1,2S h H ihijk= = = , 1,..., ,hij n=

}1,..., hijk n=

( ) Shijk ∈  are the observed value  of 

characteristic  and the sampling weight .  Then 
the Taylor series variance estimator of the weighted 
sample mean 

hijky

y hijkw

∑∑= S hijkS hijkhijk wywy /  is given as 

 

 ( )
2

1 2

1
|

2

H h h

h

z z
v y S

=

−⎛
= ∑ ⎜

⎝ ⎠

⎞
⎟ , (2) 

 
where  are the estimated 

stratum totals of 

∑ ∑= = =
hi hijn

j
n
k hijkhijkhi zwz 1 12

(1ˆ hijkhijk )y yz M − −=  for PSU  

and  is the estimated population size. 

)(hi

∑= S hijkwM̂

 
Writing  in (2) in the units of the segments, we can 
easily see the segments’ contribution to the variance 
estimate, thus helping to find better segment swapping 
strategies to limit biases in the variance estimates. If 

 and  denote the segment sampling weights 
and the conditional ultimate sampling unit weights, 
respectively, then . Let 

 and 

hiz

hijw hijkw |

hijkhijhijk www |×=

∑= =
hijn

k hijkhij wN 1 |
ˆ ∑= =

− hijn
k hijkhijkhijhij ywNy 1 |

1ˆ  
denote, respectively, the estimated size and sample 
mean of segments . The quantities  in (2) can 
be written as 

)(hij hiz

 
( )1

1

1

ˆ ˆ2

    2

hi

hi

n
hijhi hij hijj

n
hij hijj

y yz w M N

w z

−
=

=

−= ∑

= ∑
 (3) 

 
where ( )1

|
ˆ ˆ .hijhij hij k k hijk hijky yz M N w z− −= = ∑  It is 

clear from (2) and (3) that the contribution of the 
sampled segments to the variance estimate is through 
three components { }ˆ, ,hij hij hijw N y . 

 
Now, to see the effect of segment swapping on the 
variance estimate, assume that two segments ( )a a ah i j  

and ( )b b bh i j  are to be swapped between two PSUs 

( )( )) (a a b bh i h i≠ . Let ai′  and  denote the other 

PSUs in strata  and , respectively, and define 
bi′

ah bh

( ) 2 2hi hij hij l j hil hilhi jz z w z w z≠= − = ∑ . The masked 

variance estimate can be written from (2) as 
 
( ) ( ) ),()(|| 00

* yryeSyvSyv ×+=  (4) 
 

where 
 

bbbbbbaaaaaa jihjihjihjih zwzwye 22)(0 −=  

 
is the difference in the quantity 2 hij hijw z =  

( )ˆ2 hijhij hij y yw N M− ˆ/  of the two segments to be 

swapped and 
 

[ ]
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( )

⎪
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⎩
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⎨

⎧
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⎬
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jihih
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2
1

,
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is a function of  of the segments to be 
retained in the original PSUs. It shows that the effect 
of segment swapping on the variance estimate will be 
negligible if the two segments for swapping are paired 
in such a way that the product of  and  is 
close to zero. In other words, the change in the 
variance estimate under segment swapping can be 
controlled when a segment pair is formed taking into 
account all three components 

hijhij zw2

)(0 ye )(0 yr

{ }ˆ, ,hij hij hijw N y  so as to 

minimize )()( 00 yrye × . See Park (2006) for the proof 
of (4). 
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3.2 Sequential Segment Swapping with Multiple 
Matching Characteristics (Method 2b) 
 

Suppose that a total of R  segments are chosen to form 
their pairs for swapping. Let  denote their 
labels listed in the sequential order for the segment 
matching process. Let  denote the sample index 
set after the  segments in the list, where 

 and . The change in the variance 
estimate caused by swapping the 

Rjj ,...,1

1−rS
)1( −r

Rr ,...,1= SS ≡0

r th segment ( ) 
and any other segment that were not involved in the 
previous match(es) can be written as 

rj

 

 
( ) ( )

),()(

||)(

11

11
),(

yrye

SyvSyvy

rr

rr
jjr r

−−

−−

×=

−=δ
 (5) 

 
where  and  are defined similarly as in 

(4) but are based on the sample index set  and 
 denotes the sample index set with segments  

and  being swapped. Clearly, the choice of the best 
match for the 

)(1 yer− )(1 yrr−
1−rS

1
),(

−r
jjr

S rj

j
r th segment depends on the previous 

match(es) and thus the matching process should be 
viewed as a sequential process. Note that those 
segments that were matched and swapped in the 
previous matches should be excluded in the current 
search. 

 
In addition, more than one characteristic can be 
considered for segment matching, with the hope that 
they will be related to many other survey variables so 
as to minimize the bias in the associated variance 
estimate. Suppose that q  matching characteristics are 

chosen with care, say ( 1,..., 'q )x xx =  (see Dohrmann 
et al., 2005, for some related discussion). To measure 
the distance between the two segments  and , any 
distance measure of the forms 

rj j

 

    ( ) ( ) SxvSxvcxjD r
l

r
jjl

q

l
lrb r

11
),(

1
,2 ||)|( −−

=
−∑=  (6a) 

or 

       ( ) ( )∑ −=Δ
=

−q

l
l

r
jjllrb  SxvSxvcxj

r1

1
),(,2 ||)|(  (6b) 

 
can be considered with any reasonable choice of 
positive coefficients . For example,  simply 
considers the absolute difference in variance estimates 
and 

lc 1≡lc

( ) 1|ll x Sc v −=  the absolute difference in variance 
estimates relative to the original variance estimates. 
The first distance measure (6a) considers the change in 

the variance estimate due to swapping segments of the 
r th pair. The second distance measure (6b) takes into 
account the cumulative swapping effects of all the r  
segment pairs. 
 
Matching constraints can be set, for example, to 
prohibit the pairing of segments from the same PSU 
and to apply a threshold of the proportion of segments 
from each PSU to be swapped (Lu, 2004). More 
sophisticated choices of { }: 1,...,lc l q=  may help to 
further minimize variation in the change of the 
variance estimates. Also, if one uses multivariate 
techniques such as a principal component analysis to 
develop scores (e.g., one or more principal component 
axes) from a larger number of continuous 
characteristics, variation in the change of the variance 
estimates may be further reduced. 

 
4. Application and Evaluation on NHANES 

2003-2004 
 

Two segment matching strategies were investigated 
using NHANES 2003-2004 data. Each method 
swapped segments between PSUs. Once segments 
were swapped, SUDAAN was used to calculate 
variance estimates via Taylor series using the resulting 
pseudo-PSUs. 
 
The new method, referred to as Method 2b, formed 
segment pairs for swapping based on the following 
distance measure: 

 
( ) ( )

( )∑
=

−− −
=

q

l l

r
l

r
jjl

rb Sxv

SxvSxv
xjD r

1

11
),(*

,2 |

||
)|( , 

 
which results in a search for the segment pair that 
minimizes the relative change in the variance estimates 
for  matching characteristics. q
 
In its application, we took the following steps: 

 
Step 1. For each segment, find the (initial) 

partner from a different PSU with the 
smallest ; )|(*

1,2 xjD b

Step 2. Sort the segments in ascending order of 
 within each PSU, and pick a 

number of segments from the top for 
swapping; 

)|(*
1,2 xjD b

Step 3. Sort those chosen segments in ascending 
order of  across PSUs; )|(*

1,2 xjD b
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Step 4. Find (or update) each segment’s 
swapping partner sequentially so as to 
minimize . )|(*

,2 xjD rb

 
The previous method, referred to as Method 2a, 
formed segment pairs for swapping using the 
following distance measure: 

 

∑
=

−=
q

l
jljlra xxjD

r
1

,,
*

,2 )( . 

 
It is equivalent to the one used for NHANES 2001-
2002 data since the above distance measure basically 
searches for the segment pair that are the most similar 
in matching characteristics. Its application steps are the 
same as those for Method 2b with using the above 
distance measure. 

Table 1 shows some descriptive statistics for the 
matching methods examined for the NHANES 2003-
2004 data. The results of two methods are also 
presented in Figure 2 using side-by-side boxplots of 
the standard error ratios for four distinct ranges of the 
(original) design effects. As expected from the 
matching criteria, Method 2b reduced a decreasing 
curvature trend over the design effects. The standard 
error ratio distributions in most of the design effect 
ranges (i.e., 0 to 5) are more balanced around the point 
of one for Method 2b. For the extreme design effects 
(larger than 5), Method 2b produced less variation in 
the standard error ratios with their center being closer 
to the reference value of one. Based on the results of 
the above analyses, the pseudo-PSU and stratum 
indicators resulting from Method 2b were released for 
the 2003-2004 sample. 

 
Table 1. Comparisons of distribution of standard error ratios by original design effects 
 

Standard error ratio Baseline design effect 
Statistics (.1,1.0] (1.0,2.0] (2.0,5.0] (5.0,25.0] Overall 

Matching method  
Number of 

characteristics 143 282 232 44 701 
  mean 1.030 1.005 0.964 0.890 0.989 
Method 2a 100% 1.796 1.423 1.353 1.028 1.796 
  90% 1.174 1.131 1.094 0.997 1.128 
 75% 1.051 1.054 1.018 0.953 1.034 
 50% 1.000 1.003 0.982 0.907 0.998 
  25% 0.987 0.966 0.886 0.823 0.931 
  10% 0.909 0.874 0.826 0.750 0.847 
  0% 0.647 0.604 0.631 0.668 0.604 
  IQR 0.064 0.088 0.132 0.130 0.103 
  Range 1.149 0.819 0.722 0.360 1.192 
 mean 1.038 0.996 0.977 0.923 0.994 
Method 2b  100% 1.524 1.291 1.237 1.032 1.524 
  90% 1.170 1.095 1.065 0.999 1.096 
 75% 1.071 1.055 1.029 0.968 1.036 
 50% 1.007 1.000 0.987 0.928 0.997 
  25% 0.983 0.948 0.936 0.880 0.938 
  10% 0.906 0.889 0.874 0.825 0.878 
  0% 0.763 0.672 0.761 0.806 0.672 
  IQR 0.088 0.107 0.093 0.088 0.098 
  Range 0.761 0.619 0.476 0.226 0.852 
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Figure 2. Comparisons of ratios of standard errors against original design effects 
 

5. Concluding Remarks 
 

This research was conducted as part of our ongoing 
effort to improve data utility while keeping the 
NHANES PSUs confidential. In general, PSU masking 
can distort the clustering structure in the original 
sample design, possibly yielding systematic biases in 
the variance estimation (Section 2). However, the 
proposed PSU masking strategy (Section 3) can help 
reduce such biases to a larger extent as seen in our 
application to NHANES 2003-2004 data (Section 4). 
Research on the effects of PSU masking would be 
interesting for other types of complex data analysis 
such as regression and multivariate analyses. 
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