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Abstract  

 
We develop a model based approach to estimate 

small area (county) prevalence using information from 
two surveys assumed to be an in person area survey and a 
telephone survey.  Here, we demonstrate the ability to 
estimate parameters generated from the assumed model 
using a Monte-Carlo EM algorithm.  

The proposed estimation method is investigated 
using simulated data. We assess the accuracy of the 
parameter estimates and also the accuracy of the county, 
state, and national estimates.  The estimation accuracy of 
slope and intercept parameters of the model is good 
while some of the elements of the covariance matrix 
estimates are biased.  The small area estimates are 
approximately unbiased. However, the coverage of the 
true values is less than the nominal value – most likely 
caused by the inaccurate covariance estimation. The 
model allows a test of whether non-response bias is 
present in the telephone survey estimates. 
 
Keywords: non-response, non-coverage, Metropolis 
algorithm, generalized linear mixed model 
 

1. Introduction 

 
While telephone surveys can obtain large samples 

at a small cost, the direct estimates could suffer from 
non-response and/or non-coverage bias. Groves and 
Couper (1998) and Goyder et al. (2002) showed that an 
individual’s socio-economic status (SES) is related to 
survey response propensity.  Van Goor and Rispen 
(2005) studied the impact of the “middle class bias” (too 
few low and high SES individuals in the survey) of 
Dutch telephone surveys. The results of an additional (in-
person survey) could be used to reduce or eliminate these 
potential telephone survey biases using a statistical 
model.  We provide a model-based approach to small 
area estimation (SAE), where the small areas are 
counties, using two surveys. For an excellent summary of 
SAE methodology using a single survey see Rao (2003). 

This work is closely related to Elliott and Davis 
(2005) and Raghunathan et al. (2007) which developed 
techniques for SAE of prevalence using two surveys. Our 
work is similar to Raghunathan’s, with the following 
major differences:  

• We use a binomial model for the sampling 
distributions of the individual sources. 

• We assume an additional data source; namely, 
an estimate of the telephone response rate at the 
small area level.  

• We use a sampling rather than a Bayesian 
estimation approach. 

Now we define in more detail the data sources 
obtained from the two surveys. We assume that the in-
person survey determines whether the respondent has a 
working telephone in the household.  Then, for the in-
person survey, for telephone owners in county i, we 
define , 1, 2,...,ix i a=  as the direct estimate (using the 
statistical weights and sample design) of the true 
population prevalence, iθ , where a is the number of 
sampled areas of the “A” total areas (counties). We let 

,x iv denote the sampling variance of ix based on the 

sample size, ,x in  and let the effective sample size be 
'
, ,(1 ) /x i i i x in x x ν= − . Similarly, we let iy , ,y in , 

and '
,y in denote the prevalence estimate, the sample 

size, and the effective sample size, respectively, based on 
the in-person survey for those who reported not owning a 
telephone in county i.  

For the telephone survey, we let iz , ,z in , and 
'

,z in denote the prevalence estimate, sample size, and 
effective sample size respectively.  Table 1 summarizes 
the notation developed for the SAE of prevalence giving 
the direct estimate, the sample size and the effective 
sample size for the three data sources obtained from the 
two surveys. 

 
Table 1. Notation for Survey Estimates in small area i 

 Direct 
Estimate 

Sample 
Size 

Effective  
sample size 

In-person: 
telephone ix  ,x in  '

,x in  

In-person: 
 non-telephone iy  ,y in  '

,y in  

Telephone 
survey iz  ,z in  '

,z in  
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 To include the telephone survey non-response, 
we assume that the number of completed calls, iw , and 
the estimated number of eligible reporting units in the 
sample, '

,w in , are available for all small areas.  
In section 2 we provide a statistical model based 

on the sources from the two surveys. In section 3 we 
describe the model-based estimation methodology while 
in section 4 we show the estimation results for the 
parameters and geographic areas of interest.  

 
2. Statistical Model 

2.1 Telephone response assumptions 
 

We assume that within each small area the adult 
telephone owners can be stratified into those who will 
respond and those who will not respond to the telephone 
survey (e.g., Cochran, 1977, Chapter 13). The true 
proportion of those who will respond in area i is labelled 

iρ . For the binary outcome, the true proportions may 
differ within the two strata; the proportions in the 
responding and non-responding strata are labelled as 

,i rθ and ,i nθ respectively. Then, summing over the two 
strata, the true proportion, for the binary outcome is   
     , ,(1 )i i i r i i nθ ρ θ ρ θ= + −                       (1)  
The difference between the proportions in the responding 
strata from the entire population can be written  
     ( ), , ,(1 )i i r i i n i rθ θ ρ θ θ− = − −           (2) 

Equation (2) exhibits the well-known fact that 
the non-response estimation bias is proportional to the 
proportion of non-responders and also to the difference in 
proportions on the binary outcome between the non-
responding and responding strata.  Table 2 provides a 
summary of the notation (showing the population 
proportion and outcome population proportion for the 
two strata and the entire population) for the households 
with telephones using estimates from the two surveys 
where iθ  satisfies (1).  
 
Table 2. Notation for telephone households in county i 
Strata Pop. Prop. Outcome 

Pop. Prop. 
Responders 

iρ  ,i rθ  

Non-responders 1 iρ−  ,i nθ  

All  1 
iθ  

 
2.2 Sampling distribution assumptions 

The observed data is labelled { }iv v= , 

where ( ), , ,i i i i iv w x y z= . We assume that the 

distributions of the components of iv  are binomial (bin) 
with the following parameters (defined in tables 1 and 2): 
         '

,~ ( , )i w i iw b in n ρ                               (3a) 

        ' '
, ,~ ( , )x i i x i in x b in n θ                           (3b) 

         ' '
, ,~ ( , )y i i y i in y b in n φ                         (3c) 

         ' '
, , ,~ ( , )z i i z i i rn z b in n θ                       (3d) 

where iφ  is the proportion of the binary outcome for 

those not owning telephones.  We define iP  as the 
proportion of individuals owning a telephone in area i. In 
small area i, the main parameter of interest – the 
proportion having the binary characteristic, iλ , is  

           (1 )i i i i iP Pλ θ φ= + −                                    (4) 
     We assume logistic models for the 4 binomial 
parameters of (3a)-(3d) with random effects to account 
for correlation within small areas. We assume a model  

i ii
Zψ α β= +                                         (5) 

where ( )1 2 3 4, , ,T
i i i i iα α α α α= , ( ), ,

, , ,T

r nρ θ φ θ
β β β β β= ,  

( )L , L , , T
i ir i ini

L Lψ ρ θ φ θ= , where “L” is the logit operator 

defined by L logit( ) ln( /(1 ))i i i iρ ρ ρ ρ= = −  with similar 

definitions for  L , , and ir i inL Lθ φ θ , and where T denotes 

transpose . Also we define 4
TT
iiZ U I= ⊗ ,   where ⊗ 

denotes the Kronecker product, and iU  is a q-
dimensional vector of county covariates. We assume that 

{ }iα α= are  independently distributed Gaussian 

random vectors, ~ ( , )i Nα µ Σ  with mean  vector 

( )1 2 3 4, , ,Tµ µ µ µ µ=  and covariance matrix ( )ijσΣ= .  

 
2.3 Likelihood  

 
With ( ), ,β µΘ= Σ the density ( , | )p v α Θ , of the 

data, v , and the random effects, ,α is given by  

        ( )( , | ) ( | , ) | ,p v p v pα α β α µΘ = Σ  

           ( )| ( | , )i i i
i

p v pα α µ= Σ∏ %                              (6) 
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where ( ),i iα α β=% and p(.|.) denotes a generic 

probability density that is defined by its arguments. By 
the independence assumption,  
     ( ) ( ) ( ) ( ) ( )| | | | |i i i i i ii i i ip v p w p y p z p xα α α α α=% % % % %         (7) 

In (7), the density of wi, yi, and zi are obtained from the 
standard logistic regression model; for example,  

   ( ) ( ) ( )1'
1ln ( | ) ln 1

T
iiUT

i ii i i wip w c w U n e ρβ α

ρ
α α β

+
= + + − +%  

while the density of xi is obtained from 

      ( ) ( )'
,| exp{ logit( ) ln(1 ) }ii x i i i ip x n xα θ θ∝ + −%         (8)   

where iθ can be expressed in terms of iα% through (1) 
and (5).  The model specified in equations (6)-(8) is not a 
generalized linear mixed model (GLMM) - due to the 
nonlinear dependence of iθ  on the parameters of (1). 
 

3. Estimation 
 
 We apply an extension of the EM algorithm 
(Dempster et al., 1977), the Monte-Carlo Newton 
Raphson algorithm (McCullogh, 1997; Booth and 
Hobert, 1999).  The general idea is to treat the random 
effects as missing data; the advantage of this approach is 
that the components of v  are independent given the 
random effects.   

We use a Metropolis algorithm to produce 
random draws from the conditional distribution of 

v|α  and use the Monte Carlo approximation to the 
required expectations of the EM algorithm. We choose 
the candidate distribution as ( | , )p α µ Σ so the 
acceptance function has a simple form (McCullogh, 
1997). If ( )1 , ..., Aα α α=  denotes an ordering of 

previous draw from the distribution of v|α , we 

generate a new value for *
iα  using the candidate 

distribution, * ~ ( , )i Nα µ Σ . If we denote 

( )* *
1 1 1,.., , , ,...,R i R Aα α α α α α− += , then we accept 

*α  as the new value with probability  

          ( ) ( )
( )

*
*

| ,
, min{1, }

| ,i

p v
A

p v

α β
α α

α β
=                   (9) 

otherwise, we retain the previous value α . Equation (9) 
involves only the general linear model portion of the 
model; in fact, 

          ( ) ( )
( )

*
*

| ,
, min{1, }

| ,
i i

i
i i

p v
A

p v

α β
α α

α β
=               (10)  

where the ratio of the densities in (10) can be computed 
using (6)-(8). 

Adding the Metropolis step into the EM algorithm 
gives a Monte Carlo EM algorithm as follows: 

1. Set m=0 and choose starting values for the 
parameters  ( )( 0 ) ( 0 ) ( 0 ) ( 0 ), ,β µΘ = Σ  

2. Generate N values, )()( ,..., N1 αα  from 

( )( )| , mp vα Θ  using the Metropolis 

algorithm. Then choose 

( )( )( 1) ( )1

1

a.  as max ln | ,
N

m k

k

N pβ ν α β+ −

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

b. ( 1) ( )1

1 1
( )

A N
m k

i
i k

ANµ α α+ −

= =

= = ∑ ∑  

( ) ( )( )1 ( ) ( )( 1)

1 1
c. 

A N Tk km
i i

i k
AN α α α α−+

= =

Σ = − −∑ ∑
d.  Set m=m+1. 

 
3. If convergence is achieved, declare 

( 1)ˆ m +Θ = Θ  as the maximum likelihood 
estimate (mle); otherwise return to step 2. 

 
3.1 Slope estimation 
 

To carry out the maximization with respect to 
β  in 2(a) above, we use the Taylor expansion   

      
( ) ( )

0

1

)(

1

)( ),|(ln),|(ln
ββ

βα
β

βα
β

=
==
∑

∂
∂

≅∑
∂
∂ N

k

kN

k

k vpvp
 

         
( ) ( )01

)(
2

0

),|(ln βββα
ββ

ββ

−∑
∂∂
∂

+
=

=

N

k

k
T vp

            (11) 

Equation (11) leads to the Newton Raphson recursion 
           )()()()( j

1
jj1j

cH −
+

+= ββ                  (12) 

where        

       ( )
2

( )
( )

1

1 ln ( | , )

j

N
k

j T
k

H p v
N

β β

α β
β β = =

∂
= −

∂ ∂ ∑  (13) 

         ( )( )
( )

1

1 ln ( | , )
j

N
k

j
k

c p v
N

β β

α β
β = =

∂
=

∂ ∑          (14) 

The algorithm to determine )( 1m +β  for step 2(a) above 
can be stated as follows: 
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A1. Set j=0 and )(
)(

m
0

ββ =  

A2.  Calculate )( jH , )( jc , and 
)( 1j +

β  from (12)-

(14). 
A3.  If convergence is obtained, declare the limiting 

value as )( 1m +β and continue to step 2(ii) 
above. Otherwise set j=j+1 and return to step 
A2.  

Now, we provide expressions for )( jc  and )( jH , 

where the parameter  ( )( ) ( ) ( ) ( )
, ,, , ,k k k k

i i r i i nρ θ φ θ  is 

computed from (5) with ( ) ( ), ( , )k

j
α β α β= .  Now, 

( ) ( )1
( )

1
( , )

N
k k

j i ii j
i k

c N W w Uα β−

=

⎛ ⎞
= ⊗⎜ ⎟

⎝ ⎠
∑ ∑ %        (15) 

where 
         ( ) ( )( , )k k

i iW K Lα β = +                                   (16) 

with (1,1,1,0)K Diag= , ( )( )( )
4 30

kk
ii xL h= %  where 4 30 x  is a 4x3 

matrix with all entries equal to zero, 

( ) 1( ) ( )( ) ( )(1 )
k kk k

i ii ih hθ θ
−

= −%  with  

        ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
, , , ,[ 1 , 1 ,

Tk k k k k k k k
i i i i r i n i i r i rh ρ ρ θ θ ρ θ θ= − − −  

             ( ) ( )( ) ( ) ( )
, ,0, 1 1 ]k k k

i i n i nρ θ θ− −             
and the residual vector is defined by 

         ( )( ) ( ) ( ) ( ) ( ), , ,
Tk k k k k

i i i i iw z y xω = =% % % %%        (17) 

( ) ( ) ( )( )' ( ) ' ( ) ' ( ) ' ( )
, , , , ,, , ,k k k k

i w i i z i i i r y i i i x i i iw n n z n y n xρ θ φ θ− − − −

Also, we have 
     1 ( )

( )
T

i ij i
i

H A U U− += Γ ⊗∑                                      (18) 

where 

      ( ) ( )

1

N
k

i i
k

+

=

Γ = Γ∑                                                  

where the 4x4 matrices, ( )k
iΓ , are defined by 

       ( ) ( ) ( ) ( )k k k k
i i i iD F GΓ = + − %                                (19) 

where 

( ) ( ) ( )( )( ) ' ( ) ( ) ' ( ) ( ) ' ( ) ( )
, , , , ,1 , 1 , 1 ,0k k k k k k k

i wi i i z i i r i r y i i iD Diag n n nρ ρ θ θ φ φ= − − −

( ) ( ) ( ) ( )( ) ' ( ) ( ) ( ) ( )
, 1 1 2

k k Tk k k k k
i ii x i i i i iF n x h hθ θ θ⎡ ⎤= − + −⎣ ⎦
% %%

, 
        ( )( ) 1( ) ( ) ( ) ( ) ( )1k k k k k

i i i i iG x Gθ θ
−

= −% %  

where ( )( )( ) ( ) ,k k
i iG g l m=  is a 4x4 symmetric matrix with 

the following non-zero elements 
      ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( ) ( )1,1 1 1 2k k k k k k

i ir in i i ig θ θ ρ ρ ρ= − − −     

      ( ) ( ) ( )( ) ( ) ( ) ( ) ( )1,2 1 1k k k k k
i ir ir i ig θ θ ρ ρ= − −  

      ( ) ( ) ( )( ) ( ) ( ) ( ) ( )1,4 1 1k k k k k
i in in i ig θ θ ρ ρ= − − −   

      ( ) ( ) ( )( ) ( ) ( ) ( ) ( )2,2 1 1 2k k k k k
i ir ir i irg θ θ ρ θ= − −  

     ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( )4,4 1 1 1 2k k k k k
i i in in ing ρ θ θ θ= − − −  

In equation (17), H(j) depends on  j because the quantities 

are computed with ( ) ( ), ( , )k

j
α β α β= . 

 The second partial derivation matrix defined in 
(13) is the sample information matrix and its expectation 
is used in the Fisher scoring algorithm, which differs 
from the Newton-Raphson algorithm by the using the 
expected rather than the sample information matrix in 
(12).  Since the residuals defined in (17) satisfy  

( )( ) 0k
iE x =% , the Fisher scoring algorithm replaces (19) 

with  ( ) ( ) ( )k k k
i i iD FΓ = +  where  

( ) ( ) ( )( ) ' ( ) ( )
, 1

k k Tk k k
i ii x i i iF n h hθ θ= − % % . Under suitable 

regularity conditions, the variance covariance of the 
mle 1ˆ( )Var Hβ −≅ -- the inverse of the Hessian matrix.  

 
3.2 Small area estimation (SAE) 
 

We use the estimates of the final step of the 
algorithm to estimate the county prevalence rate, iλ , for 

the ith county. We estimate iΨ  by  

           ˆˆ ˆ ii i Zα βΨ = +                                                      (20) 

where β̂  is the m.l.e. of β  and ( )1

1

ˆ
N

k
i i

k

Nα α−

=

= ∑ is 

obtained from the final step of the algorithm. Then, 

( )ˆ ˆ ˆ ˆˆ , , ,i ir i ini
ξ ρ θ φ θ=  is obtained from  ˆ

iΨ  using 

the 1-1 transformation between i
ξ  and iΨ . Finally, 

using (4) we estimate iλ  through  

       ˆ ˆ ˆ(1 )i i i i iP Pλ θ φ= + −                                      (21) 
where  
           , ,

ˆ ˆ ˆˆ ˆ(1 )i i i r i i nθ ρ θ ρ θ= + −                       (22). 

Using a first order Taylor expansion we approximate the 
variance of the estimate as 
           ( ) ( )ˆ ˆT

i i iiVar Varλ κ κ≅ Ψ                              (23) 

with 

        ( )
ˆ

[ ( ) (1 ),
i

i i

TT
i i ir in i ii Pκ λ θ θ ρ ρ

Ψ=Ψ
= ∂ ∂Ψ = − −  
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       ˆ(1 ),(1 ) (1 ), (1 )]
i i

i i in in i i i i in inP P P ξ ξρθ θ φ φ θ θ
=

− − − −       (24) 

and 
     ( ) ( ) 1 1ˆˆ ˆˆ T

i i i i iVar Var Z N Z H Zα β − −Ψ = + ≅= Σ+         (25) 

where N random effects are generated for each county, 

iZ  is defined in (5) and H is the Hessian defined in (13). 
 
 3.3 State and National estimation 
 

We are also interested in prevalence estimates 
for areas larger than counties (i.e., states and the nation) 
by age and gender categories: for example, male current 
smoking for those 18 years and older.  We denote the 
number of people in the ith county in the age gender 
category as Wi and the normalized population as 

' /i i i
i

W W W= ∑ .   Then, the prevalence estimate ˆ
Rλ for 

an area R composed of counties can be obtained as the 
average of the county estimates 
              'ˆ ˆ

R i i
i R

Wλ λ
∈

=∑                                              (26) 

and its variance can be approximated by  
          ( ) ( ) ( )2'ˆ ˆ

R i i
i R

Var W Varλ λ
∈

= ∑                             (27) 

where ( )îVar λ  is obtained from (23).  

 
3.4 Non-response bias estimation 
 

A goal is to determine if there is significant non-
response bias; for example, the “middle class bias” 
described by Goyder et al.  (2002). From (5) we have 

    ( ) ( ), , ,2 ,4 , ,
logit( ) logit( ) T

ii r i n i i r n
U

θ θ
θ θ α α β β− = − + −     

where 2 4 2 4 22 44 24~ ( , 2 )i i Nα α µ µ σ σ σ− − + − . It 
follows that there is significant non-response bias if 
either 2 4 0µ µ− ≠ or if  

, ,
0

r nθ θ
β β− ≠ . Standard 

normal theory statistical tests for these hypotheses can be 
carried out using estimates of  Σ  and  ˆ( )V a r β  
respectively. To assess the impact of the individual 
covariates, it is also useful to carry out statistical tests of 
the components of  ( ), ,r nθ θ

β β− .  

 
3.5 Initial values for the estimates 
 

We choose initial values for the algorithm using 
the marginal distributions of (5). For example, we 
estimated ( )11,

ρ
β σ using the GLMM model for wi, 

which satisfies (3a) with 

      ,1  ( ) T
i i ilogit U

ρ
ρ α β= +   where ( )1 1 11~ ,i Nα µ σ    

We used the estimate of 1iα  as an initial estimate of 1µ.  
We obtain estimates of these parameters using SAS Proc 
NLMIXED (SAS Institute Inc., 2004). Similarly, we 
obtain initial estimates for ( )2 22,

, ,
rθ

µ β σ  using zi with 

(3d) and for ( )3 33, ,
φ

µ β σ  using yi with (3c). Ignoring 

non-response bias, we equated the initial values of 

( )4 44,
, ,

nθ
µ β σ to those of ( )2 22,

, ,
rθ

µ β σ . 

 
4. Results 

 
4.1 Simulation methodology 
 

Twenty data sets were simulated from the model 
with the same value of Θ . The effective sample sizes 
were chosen to resemble a yearly telephone survey with a 
national sample size of 200,000, with equal state sample 
sizes, and county sample sizes proportional to population 
within each state. The overall telephone survey response 
rate was assumed to be 50% with state response rates 
ranging between 30% and 70%.  The in-person survey 
was assumed to be of size 40,000 and to be concentrated 
in 800 counties.  

The parameters (defined in Tables 3 and 4 
below) were chosen so that the nationally weighted 
estimate would be approximately 20% - close to the 
national level of male current smoking. Also, we used the 
smoking rates for telephone and non-telephone 
households specified as in Raghunathan et al. (2007). We 
used the populations, Wi, corresponding to males 18 and 
older from Census 2000 in equations (26) and (27) to 
evaluate the state and national estimates.   

We used the following five county-level 
covariates: u5, Per capita property taxes; u8, Percent of 
persons below poverty; u10, Civilian labor force 
unemployment rate; u15, Buying power index; and u18, 
population. These were selected from the 18 covariates 
used by Raghunathan et. al. (2007) and were selected to 
be related to county SES; thus, q = 5 so that Ui is a 5-
dimensional vector. 

The 20 datasets were generated as follows:  
• Generate ~ ( , )i Nα µ Σ  for i=1,…,A 

• Calculate i
ψ from (5),   

• Calculate  ( ), , ,i ir i inρ θ φ θ  and  iθ  from (1) 

• Generate iv  using 3a-3d 

The county estimates, îλ , were obtained from (21) and 
(22) while the true county values are obtained from (1) 
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and  (4). Although Θ  is fixed, the random effects cause 
the true small area values to vary over the simulations.   

The estimation algorithm was coded in S-Plus 
(1999).  The run time of the algorithm was approximately 
16 hours per simulated data set on a personal computer. 
Important determinants of the run time are the MAX 
number of iterations (500 used here) and the number of 
α vectors generated for each county (5 used here).   

 
4.2 Estimation accuracy 
 

Table 3 summarizes the estimation accuracy for 
the model parameters, µ  and β .  The first two 
columns specify the parameter; while the remaining 
columns specify the true value, the standard error of the 
mean (Std. error), the Student  t-statistic (T stat.), and the 
root mean square error (RMSE).   

 
Table 3. Estimation accuracy for µ  and β  

Parameter True 
value 

Std. 
error 

T   
stat. 

RMSE 

µ1 -0.1 0.0022 -2.88 0.012 
µ2 -1.1 0.0037 1.93 0.018 
µ3 -0.1 0.0339 -1.32 0.158 

µ  

µ4 -0.9 0.0136 0.29 0.061 
u5 -0.01 0.003 0.17 0.015 
u8 -0.4 0.005 2.79 0.025 
u10 0.5 0.004 -2.47 0.019 
u15 0.1 0.003 3.61 0.017 

 
 

ρ
β

 
u18 -0.3 0.003 2.40 0.015 
u5 0.3 0.003 -3.01 0.019 
u8 0.2 0.007 1.38 0.033 
u10 -0.1 0.005 -1.44 0.023 
u15 -0.1 0.007 1.98 0.032 

 
 

, rθ
β

 
u18 -0.05 0.003 0.34 0.015 
u5 -0.25 0.028 1.01 0.130 
u8 0.07 0.035 1.22 0.161 
u10 0.1 0.025 -2.13 0.121 
u15 0.1 0.041 0.63 0.186 

 
 

φ
β

 
u18 -0.2 0.028 0.51 0.128 
u5 0.15 0.014 0.72 0.064 
u8 -0.2 0.022 -2.22 0.110 
u10 -0.2 0.011 2.96 0.061 
u15 -0.1 0.027 -1.88 0.129 

 
 

, nθ
β

 
u18 -0.4 0.016 1.75 0.075 

 

The largest effective sample sizes are obtained 
from the telephone survey, ,w in , and '

,z in ; in general, 

the estimates obtained from these sources ( ( )1 2,µ µ , 

ρ
β , and 

,rθ
β )  have smaller standard errors and 

RMSEs than the estimates of ( ( )3 4,µ µ , 
φ

β , and  
,nθ

β ).   

Although the estimation accuracy is relatively 
good in table 3, there are more large T-statistics (in 
absolute value) than would be expected from the T-
distribution with 20 degrees of freedom (d.o.f.). For 
example, 17% (=4/24) of the observed t-statistics are 
larger in absolute value than 2.85, which is the 1% 
percentage point of the Student distribution with 19 d.o.f.   

Table 4 shows the estimation accuracy for 
results for the covariance matrix, Σ . The columns 
specify the parameter, the true value, the mean estimate 
over the simulations (Mean Estim.), the standard error of 
the mean (Std. error), the Student  t-statistic (T stat.), and 
the root mean square error (RMSE).  In general, the 
estimation accuracy of the covariance matrix was not as 
good as for the parameters of table 3. The estimates of 
the diagonal elements of Σ were biased as shown by the 
large t-statistics for each.  However, the estimation 
results for the off-diagonal elements were good.  

 
Table 4. Estimation accuracy for Σ  

 True 
value 

Mean 
Estim. 

Std. 
error  

T 
stat. 

RMSE 

1 1σ  0.1 0.083 0.001 -18.9 0.017 

1 2σ  0.0 0.002 0.001 1.7 0.005 

1 3σ  0.0 0.019 0.012 1.6 0.055 

1 4σ  0.0 0.000 0.006 0.0 0.026 

2 2σ  0.1 0.048 0.002 -30.1 0.053 

2 3σ  0.0 0.000 0.011 0.0 0.050 

2 4σ  0.0 -0.023 0.004 -5.3 0.030 

3 3σ  0.8 0.849 0.068 0.7 0.307 

3 4σ  0.0 0.007 0.015 0.5 0.067 

4 4σ  0.1 0.139 0.008 5.1 0.051 
 
Figure 1a shows the scatter plot of the small 

area estimate iλ̂  vs. the true value iλ  obtained from all 
20 simulations for all counties, where the values are 
expressed as percentages (with the line that shows 
equality superposed).  Figure 1b shows a similar 
scatterplot with values averaged (for true and estimated 
values) over the 20 simulations for each county.  
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Figure 1a. True and estimated values for all counties  
and all 20 simulated datasets 

 
Figure 1b. True and estimated values for all 
counties averaged over all 20 simulated datasets 
 

Figures 2a and 2b show scatterplots that are 
similar to figures 1a and 1b but at the state -- rather than 
the county level. Figure 2a shows the values for all states 
(including D.C.) and all simulations while figure 2b 
shows the average values for all states.   

 
Figure 2a. True and estimated values for all states  
and all 20 simulated datasets 

 
Figure 2b. True and estimated values for all states 
averaged over all 20 simulated datasets 
 

Figure 3 shows the histogram of the national-
level differences (estimated-true). All differences are less 
than 1 percent and they appear to be approximately 
uniformly distributed over this interval.   

 

      
Figure 3. National level error histogram 
 

In summary, none of the figures (1 through 3) 
indicate substantial estimation bias in the county, state or 
national estimates –even though Table 3 suggests that 
there may be a small estimation bias in some of the 
components of µ  and β .  The small parameter 
estimation biases may cancel out in the geographic 
estimates. 

Table 5 provides statistics on the difference 
(estimated value - true value) for the county, state and 
nation. The RMSE difference is decomposed into mean 
difference and the standard deviation of the differences. 
In all cases, the mean difference is a negligible portion of 
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the RMSE. This supports the previous claim based upon 
graphics (Figure 1-3) that the small bias in the parameter 
estimates (Table 3) does not translate into appreciable 
bias of the geographic estimates.   
 
Table 5. Difference between estimated and true values 
(in percent) for counties, states, and the nation  
 RMSE Mean 

difference 
Std. dev. of 
differences 

County  all 4.96 -0.38 4.94 
County avg. 1.58 -0.38 1.53 
State all 1.77 -0.06 1.77 
State avg. 0.76 -0.06 0.76 
Nation all 0.51 0.07 0.51 
 

The variance of county, state, and national 
estimates were calculated using equations (23) and (27).  
Then, the coverage of the 95% confidence intervals was 
estimated by determining the fraction of the true values 
that were contained in the interval ( )ˆ ˆ1.96*i iVarλ λ± .   

Table 6 shows that the coverage probabilities 
for counties, states, and the nation.  The estimated 
coverage probabilities are below the nominal value in all 
three cases. Since table 3 indicates that there is little if 
any bias in these estimates, the under-coverage probably 
arises from an under-estimate of the true variance.  
 
Table 6. Coverage statistics for 95% CIs 
 Number of estimates Coverage percentage 
County   62,280 84.1% 
State  1,020 80.8% 
National 20 85.0% 
 

Table 7 shows coverage statistics for the non-
response bias parameters. The table shows the true values 
with five of the six values non-zero. For each replication 
and each of the six parameters, a 95% confidence interval 
was calculated using the method sketched in section 3.4, 
and the number of intervals covering the true value was 
calculated.   
 
Table 7. Coverage statistics for 95% confidence intervals 
for non-response bias parameters 

Parameter 
vector 

Parameter True 
value 

Coverage 
percentage 

µ  µ2 - µ4 -0.2 100% 
u5 0.15 40% 
u8 0.4 0% 
u10 0.1 95% 
u15 0.0 100% 

 
 

, ,r nθ θ
β β−  

u18 0.35 0% 
 

The complement of the coverage percentage is 
an estimate of the power of the test.  Although this is a 
small simulation, Table 7 suggests that there is very high 
power for detecting differences of the order of 0.35 or 
more in the (absolute value of the) components of  

, ,r nθ θ
β β−  (100% in both cases) and moderate power for 

detecting differences of the order of 0.15.   
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