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Abstract 

 
In modelling spatial data, when measurements at one 
location are influenced by the measurements at 
neighbouring or nearby locations, we say that spatial 
autocorrelation is present. This violates the assumption 
of statistically independent observations commonly 
applied in standard regression analysis. We first 
examine the basic theory and methods used to analyse 
spatial lattice data (i.e., data aggregated to regions as 
opposed to observations at discrete points). Next, we 
focus on the two basic forms of simultaneous 
autoregressive models, termed the spatial lag and 
spatial error models. Emphasis is placed on how the 
spatial effects are incorporated into the model. Finally, 
we implement the spatial models in a study of urban 
neighbourhood crime rates in the Canadian city of 
Montreal. We examine the differences in the models 
obtained with and without modelling the spatial 
effects. 
Keywords: Spatial autocorrelation, Simultaneous 
autoregressive, Spatial lag model, Spatial error model, 
Crime data 
 

1. Introduction 
 
When examining cross-sectional data there is often  
reason to suspect that observations from nearby 
locations will be more similar (spatial attraction) or 
less similar (spatial repulsion) than observations that 
are further apart.  This may occur because observations 
are related to the characteristics of the location and 
nearby observations are affected by the same factors or 
because the variable of interest may have a direct 
impact on its value at nearby locations. 
 
For example, the distribution of crime in city 
neighbourhoods can be affected by the properties of 
the location and by social interactions.  The crime rate 
tends to be higher in regions with a higher rate of 
unemployment and a lower median household income 
(Morenoff et al. 2001; Fitzgerald et al. 2004).  These 
socio-economic conditions are usually spatially 
clustered within cities, which may cause a spatial 
dependence in the crime rate. Social interactions, 
which are not confined to neighbourhood boundaries, 
may also cause the crime rate in adjacent regions to be 
related.  This may take the form of spatial diffusion 
with the spreading of crime or copy-cat behaviour 

(Puech 2004).  Copy-cat behaviour occurs when a 
person decides to commit a crime because their 
perceived probability of punishment is reduced by the 
high volume of crime in surrounding locations and the 
limitation on the possible number of arrests by the 
police.  
 
If the spatial dependence in the data is not completely 
accounted for in the regression model it will lead to 
spatial autocorrelation in the residuals.  Spatial 
autocorrelation, identified by the non-zero covariance 
between a pair of observations that are related in space, 
can cause inefficient estimation of the standard 
regression model parameters, and inaccuracy of the 
sample variance and significance tests.  It may be 
caused by spatial dependence that is not adequately 
explained by the explanatory variables, systematic 
measurement errors or a mismatch between the spatial 
scale used to measure the variable and the scale at 
which it actually occurs (Anselin and Bera 1998). 
 
There are a variety of spatial analysis techniques for 
the different forms of spatial data and the desired type 
of analysis.  This paper focuses on the spatial models 
used to analyse data that has been aggregated to 
regions, commonly referred to as lattice or regional 
data.  We first present a brief overview of the types of 
spatial models for lattice data, with attention on the 
spatial lag and spatial error models.  The use of these 
two types of models is then illustrated by comparing 
the results of a standard linear regression and a spatial 
regression that accounts for autocorrelation of the 
neighbourhood crime rates on the Island of Montreal. 
 

2. Spatial Analysis Models for Lattice Data 
 
Lattice data consists of observations that are 
aggregated to regions or geographic areas as opposed 
to representing individual data points. The observed 
data in a given region is considered representative of 
that entire geographic area.  The regions span the 
entire study area such that there is no possibility of 
interpolation between two adjacent regions; rather the 
analysis focuses on modelling data from the observed 
regions as they are defined. 
 
The two principal approaches for modelling lattice data 
are referred to as simultaneous autoregressive (SAR) 
and conditional autoregressive (CAR) models.   Both 
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approaches relate the data at a given location to a 
linear combination of neighbouring values, which 
represents the autoregressive structure.  In the 
simultaneous approach the autoregressive terms are 
based on the average value from all neighbouring 
locations. The value at a given location is specified in 
conjunction with the values at all other locations, thus 
indicating the autoregression occurs simultaneously for 
each region.  In the conditional approach the value at a 
given location is specified conditionally on the values 
from neighbouring regions. Thus the values from 
neighbouring locations are assumed to be known and 
the conditional distribution of the variable is modelled 
(Anselin 2002). This paper addresses only the 
simultaneous approach, which is the method preferred 
in the literature for analysing crime data (Anselin et al. 
2000, Baller et al. 2001, Anselin 2002). 
 
2.1 Taxonomy of Simultaneous Autoregressive 
Models  
 
The autoregressive structure of SAR models requires a 
definition of what constitutes neighbouring locations 
for lattice data.  There are three main ways of defining 
neighbouring regions: contiguity structure, which is 
based on the configuration of the neighbourhoods; 
distance band, which includes all neighbourhoods 
within a specified distance; or k-nearest neighbours 
which include the number of specified regions which 
are the closest (Dubin 1992).  Figure 1 illustrates some 
of the different possible neighbourhood structures. 

 
Figure 1: Different methods for defining neighbouring 
regions for the selected region in yellow. A) Rook 
contiguity – includes locations with a common border, 
B) Queen contiguity – includes regions with a common 
border or vertex, and C) Distance – includes all regions 
whose centroid is within the specified distance band. 
 
The neighbourhood structure is represented 
mathematically by a spatial weights matrix, W. This is 
a binary N × N matrix, where the off-diagonal 
elements, Wij for i ≠ j, equal one if location j is a 
neighbour of location i and zero otherwise. The spatial 
weights matrix thus reflects the potential interaction of 
neighbouring locations and rules out spatial 
dependence for non-neighbouring locations.  By 
convention, zeros are placed on the diagonal elements 
of the matrix, Wii, indicating that a location cannot be a 
neighbour of itself.  In the final weights matrix that is 
used in the model the elements in each row are 
standardized so that they sum to one. 
 

The general form of the simultaneous autoregressive 
model is: 

uW
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++=

ελε
ερβ
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where y is the N × 1 vector of the dependent variable, 
X is the N × k matrix of independent variables, β is the 
k × 1 vector of regression coefficients, ρ and λ are 
scalar spatial autoregressive parameters, W1 and W2 are 
spatial weights matrices and ε and u are the N × 1 
vectors of error terms (Anselin 1988).  For this paper 
the residuals, u, are assumed to be normal with a 
homoskedastic variance, although it is possible to 
introduce heterogeneity in the model by relaxing this 
assumption. 
 
There are two spatial terms in the general SAR model: 
an autoregressive term ρW1y and the spatial 
dependence in the error terms, λW2ε.  The two spatial 
weights matrices, W1 and W2, allow for a different 
spatial structure in these two processes (Anselin 1988).  
With the appropriate row standardization of the spatial 
weights matrices, the terms W1y and W2ε represent the 
average value of the dependent variable and the 
residuals from neighbouring locations, respectively. 
 
From this general equation the four forms of SAR 
models can be obtained by setting either or both of the 
parameters ρ and λ equal to zero.  In the simplest case 
both ρ=0 and λ=0 the SAR model reduces to the 
standard regression model    

εβ += Xy  
(Anselin 1998). Setting λ=0 yields a model with a 
spatial autoregressive term, ρW1y, called the spatial 
lag: 

ερβ ++= yWXy 1  
By setting ρ=0 the spatial dependence is contained in 
the model residuals, giving the spatial error model: 

uWXy +=+= ελεεβ 2, . 
Finally if neither ρ nor λ are zero, the model contains 
both a spatial lag term and spatial disturbance in the 
error terms.  This higher order spatial model is rarely 
used in practice and is not considered further in this 
paper. 
 
 2.2 Spatial Lag Model 
 
The spatial lag model, as shown in Section 2.1, 
introduces spatial dependence by directly adding the 
spatial lag of the dependent variable as a covariate in 
the model.  The spatial lag model derives from a 
theoretical application where there is a reason to 
suspect that the dependent variable has a direct effect 
from neighbouring locations.   This may be caused by 
spatial diffusion, copy-cat behaviour or other social 
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interactions.  The spatial autoregressive parameter, ρ, 
is then a measure of the magnitude of this interaction. 
 
The interpretation of the model coefficients for the 
explanatory variables is the same as that of a standard 
regression model.  However, the interpretation of the 
spatial lag coefficient depends on the context of the 
data.  If there is a direct match between the spatial 
units used to measure the phenomenon and the scale of 
the underlying process that controls it, the spatial lag 
coefficient illustrates the direct effect of neighbouring 
locations. In this case the variable of interest is 
distributed homogeneously in each neighbourhood, as 
shown in Figure 2A.  Alternatively, if the spatial unit 
used to measure the phenomenon does not conform to 
the spatial scale at which it occurs, as shown in Figure 
2B, then the spatial lag coefficient represents the 
mismatch between the spatial scales and thus has no 
direct interpretation in the model.  This pattern is 
typical for crime data, if the crime rate is measured on 
predefined administrative units such as census tracts. 
 

 
Figure 2: Interpretation of the spatial lag coefficient: 
A) illustrates the spatial units matching and B) 
illustrates a different spatial scale of measurement and 
occurrence. 
  
An alternate form of the spatial lag model: 

ερβρ 1
1

1
1 )()( −− −+−= WIXWIy , 

illustrates that the dependent variable at a given 
location is determined not only by the independent 
variables at that location  but also by the independent 
variables at all other locations by means of the spatial 

multiplier ( ) 1
1

−− WΙ ρ  (Baller et al. 2001).  Similarly, 
the dependent variable at a given location is correlated 
with the error terms at all other locations.  Due to these 
correlations the model cannot be efficiently estimated 
by a least squares technique.  
 
Instead, a two-stage approach is preferred for 
estimation of the spatial lag model.  First an estimate 
of ρ is obtained by the non-linear optimization of a 
log-likelihood equation.  The resulting value of ρ̂  is 
used to estimate the regression coefficients and the 
standard deviation by maximum likelihood.  The 
estimate ρ̂  is obtained by maximizing the concentrated 
log-likelihood: 
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where the variables wi represent the eigenvalues of the 
spatial weights matrix, eo represents the residuals from 
a regression of y on X, and eL represents the residuals 
from the regression of W1y on X (Anselin and Bera 
1998).  The concentrated log-likelihood equation is 
obtained by substituting the maximum likelihood 
estimators of β and σ2 into the likelihood equation of 
the spatial model and rearranging to express the 
likelihood as a function of only one parameter, ρ.  This 
likelihood equation makes use of the simplification of 
the Jacobian term,

1WI ρ− , which can be computed as 

( )∏
=

−=−
N

i
iwIWI

1
1 ρρ  

(Ord 1975).   
 
The resulting estimates have the usual asymptotic 
properties of consistency, normality and asymptotic 
efficiency (Anselin and Bera 1998).  For hypothesis 
testing the asymptotic variance is estimated as  
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where 1
11 )( −−= WIWWA ρ . From this matrix it can 

be shown that the covariance between the error term 
and the regression coefficients is zero, as it is in the 
standard regression model, but this is not true for the 
covariance between the spatial coefficient and the 
error, or between the spatial and regression 
coefficients. 
 
There are two types of observed error terms that can be 
defined for the spatial lag model, prediction errors and 
residual terms (Anselin 2005). Prediction errors are 
defined as the difference between the observed and 
fitted values, yyep ˆ.. −= , where 

βρ ˆ)ˆ(ˆ 1
1 XWIy −−= .  The prediction errors are 

expected to be spatially correlated according to the 
model. The residuals, defined as βρ ˆ)ˆ( 1 XyWIe −−= , 
will be uncorrelated if the model adequately accounts 
for spatial autocorrelation.  Therefore, the residuals 
and not the prediction errors are used to test for any 
remaining spatial autocorrelation in the model.   
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2.3 Spatial Error Model 
 
In the spatial error model the spatial disturbance is in 
the model residuals, as shown by the following 
alternate form of the model: 

uWIXy 1
2 )( −−+= λβ . 

The model derives from a practical application where 
spatial autocorrelation is detected in the residuals of a 
typical linear regression model and the effect is 
modelled to obtain unbiased and efficient estimates of 
the regression parameters.  The spatial autocorrelation 
may result from unmeasured variables or measurement 
errors that have a systematic spatial pattern.  The 
spatial coefficient, λ, is therefore treated as a nuisance 
parameter in the model and has no direct interpretation. 
 
An alternate way to express the spatial error model is 
by spatially filtering the dependent and independent 
variables by the spatial multiplier ( )2Wλ−Ι .  This gives 
the following model 

( ) ( ) uXWIyWI +−=− βλλ 22  
where, as previously noted, the error terms, u, are 
normally distributed with a homoskedastic variance.  
This form of the model provides an alternate 
interpretation of how the spatial effects are modelled in 
the spatial error model with an autoregressive error 
structure. 
 
Since the spatial structure of this model is in the 
residuals the parameters for this model can be 
estimated using generalised least squares techniques 
that are conditional on the value of λ.  As in the case of 
the spatial lag model, the value of λ is estimated first 
using maximum likelihood and this value is used in the 
step that estimates β and σ2 by generalized least 
squares. 
 
The concentrated log-likelihood equation used to 
estimate λ is obtained by substituting the generalised 
least squares estimators of β and σ2 as functions of λ 
into the likelihood equation of the spatial error model. 
The likelihood equation also uses the Ord 
simplification for the Jacobian term, 

2WI λ−  as 

shown for the spatial lag model (1975). The 
concentrated log-likelihood equation is then: 
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where [ ] LLLLLLLL yXXXXyyyuu ′′′−′=′ −1 , and yL and 

XL are spatially filtered variables: yWyyL 2λ−= and 

XWXX L 2λ−= , and the variables wi represent the 
eigenvalues from the spatial weights matrix. 
 

The asymptotic variance matrix of the parameter 

estimates is block diagonal between β̂  and the other 

two parameters, 2σ̂ and λ̂ . It is estimated by  
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22 )ˆ( −−= WIWWB λ  (Anselin and Bera 1998). 

 
Alternate forms of the spatial error model can be 
obtained by specifying a different structure of the error 
process, contrary to the autoregressive process 
illustrated here.  For example, a spatial moving 
average process is also possible where the error term is 
dependent on a random uncorrelated error term and the 
average neighbouring value of the uncorrelated errors 
(Anselin and Bera 1998). 
 

3. Analysis of Crime in the Neighbourhoods of 
Montreal 

 
3.1 Description of the Study Area 
 
The census metropolitan area (CMA) of Montreal is 
located in the province of Quebec in eastern Canada. It 
is the second largest CMA in Canada, with a 
population of over 3.4 million people in 2001.  The 
Island of Montreal, which falls within the larger CMA 
boundary, is the focus of this study (Figure 3). The 
residential population of the Island of Montreal is 1.8 
million and spans an area of approximately 500 square 
kilometres.  
 
The neighbourhood boundaries used in this study are 
defined by the 521 census tracts on the island. Fifteen 
of the neighbourhoods were removed from the analysis 
because the resident population was less than 250 
inhabitants and Statistics Canada suppresses 
information on such regions due to issues of 
confidentiality and data quality.  Neighbouring 
locations were defined by the queen contiguity 
structure, which includes regions that have either a 
border or vertex in common. 
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Figure 3: The Island of Montreal, with neighbourhoods 
defined by census tracts. 

 
3.2 Description of Variables 
 
3.2.1 Crime Data 
 
The crime data for Montreal in 2001 was obtained 
from the incident-based Uniform Crime Reporting 
survey (UCR), which collects detailed information on 
criminal incidents.  The UCR is a census of 
administrative data from all police services across 
Canada.  Thus the crime data reflect only the incidents 
known to the police, giving a specific picture of the 
nature and extent of crime (Savoie et al. 2006).  In the 
UCR survey, individual offences of the criminal 
incident are classified by their level of seriousness, 
which is based on the maximum possible sentence 
under the Criminal Code.  
 
The criminal incidents were grouped into the two 
broad categories of violent and property crime for the 
analysis.  Violent offences are defined as crimes 
against the person and include: homicide, attempted 
murder, sexual assault, assault, robbery and extortion.   
Property offences, i.e. crimes against property, include: 
arson, breaking and entering, theft, possession of 
stolen goods, fraud and mischief.  The number of 
incidents recorded in each category is based on only 
the most serious offence reported in each criminal 
incident.  Thus the less serious offences may be 
undercounted if they occur in conjunction with more 
serious crimes. 
 
For the analysis the crime categories were represented 
by the rate within each neighbourhood, which was 
computed as the number of incidents per population at 
risk.  A count of the number of incidents that occurred 
in each neighbourhood was obtained by geocoding the 
street address of each criminal incident reported to the 
UCR survey.  The population at risk was defined as the 
combined resident population and the population who 
work in the area.  It is used to more accurately 
represent the risk of crime in each neighbourhood, 

which would otherwise be inflated for downtown areas 
where there is a relatively small residential population 
but a high concentration of people either working or 
engaged in other activities (Savoie et al.  2006). 

 
3.2.2 Explanatory Variables 
 
The neighbourhood characteristics included variables 
describing the demographics and socio-economic 
status of the resident population, the condition of 
dwellings and zoning for city land use. The population 
and dwelling characteristics were obtained from the 
Census of Population conducted on May 15, 2001 by 
Statistics Canada. Demographic characteristics of the 
resident population included the percentage of males in 
the neighbourhood aged 15 to 24, the percentage of the 
population aged 15 and over who are single and have 
never been married and the percentage of visible 
minority residents in the neighbourhood.  Socio-
economic status and dwelling characteristics included 
variables such the percentage of the population in 
private households with a low income in 2000, the 
percentage of the residents over 20 years of age who 
have obtained a bachelor’s degree, the median 
household income, the percentage of dwellings in need 
of major repair and the percentage of owner occupied 
dwellings in the neighbourhood. 
 
The variables on city land use, including the proportion 
of the area in the neighbourhood that was zoned for 
commercial land use and for residential single and 
multiple family dwellings, were obtained from land 
use data in the 2005 geomatics department database at 
the Communauté métropolitaine de Montréal, and 
zoning data was obtained from the Montreal planning 
department.  Finally, the Business Register Division of 
Statistics Canada provided the address of all drinking 
places, including bars, taverns and other drinking 
establishments on the Island of Montreal in 2001.  This 
was used to create a variable on the bar density, 
representing the number of drinking places over the 
geographic area of each neighbourhood. 
 
For further information on the variables used in this 
analysis and information on their potential influence on 
the crime rate refer to Savoie et al. (2006). 
 
3.3 Analysis 
 
Prior to fitting the model, a log transform was applied 
to the crime rate to obtain an approximately normal 
distribution for the dependent variable.  The original 
explanatory variables were standardised to have a 
mean of zero and unit variance.  At this point some of 
the variables with a high pairwise correlation were 
removed from the analysis to avoid a potential problem 
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with multicollinearity.  A standard linear regression 
model, estimated by the least squares technique was 
then fit to the transformed data. The standard 
regression model was selected from the initial set of 
explanatory variables using a stepwise analysis in the 
SAS PROC REG procedure.  Variance Inflation 
Factors (VIFs) were used to confirm that there was no 
problem of multicollinearity, as the VIFs for all 
variables in the models were less than 3.  VIFs 
measure the linear association between each variable 
and all of the other variables in the model by means of 
a coefficient of determination (Montgomery, Peck and 
Vining 2002).  Inference for the standard regression 
model is based on the assumptions of normality and 
independence of the model error terms. 

 
The residuals of the standard regression were then 
tested for the presence of spatial autocorrelation using 
Moran’s I statistic. This is a global measure of the 
linear association between residuals and their average 
value from neighbouring locations (Anselin and Bera 
1998).  Moran’s I statistic was 0.23 for property crime 
(p<0.001) and 0.15 for violent crime (p<0.001), 
indicating significant spatial autocorrelation in each 
model. 
 
The standard and robust Lagrange Multiplier (LM) 
tests described by Anselin et al. (1996) were used to 
determine the form of the spatial dependence in the 
data.  For both models the standard LM tests, which 
are powerful but not robust to local misspecification of 
the model, did not distinguish which spatial model was 
more appropriate for the data (Table 1).  The robust 
LM tests indicated that the spatial lag model was more 
appropriate for the property crime data. For violent 
crime the spatial error model is slightly more 
appropriate; however the distinction between the two 
spatial models is not as clear as the results for property 
crime.   

 
Table 1: Lagrange multiplier tests to determine the 
form of spatial dependence in the data.   

Statistic p-value Statistic p-value
Standard LM-lag 105.90 <0.001 27.37 <0.001
Standard LM-error 74.88 <0.001 29.52 <0.001

Robust LM-lag 32.47 <0.001 3.13 0.07
Robust LM-error 1.36 0.243 5.29 0.02

Property Crime Violent Crime

 
A spatial lag model was then fit to the property crime 
data and a spatial error model was fit to the violent 
crime data set using programs written in the PROC 
IML procedure of SAS.  The residuals from the spatial 
lag model on property crime were tested for any 
remaining spatial autocorrelation in the error terms 

using a specific LM test defined by Anselin et al. 
(1996).  The value of this statistic was 1.72 (p=0.190), 
indicating that there was no remaining spatial 
autocorrelation in the spatial lag residuals. Similarly, 
the residuals from the spatial error model were tested 
for model misspecification in the form of an omitted 
spatial lag variable using an analogous LM test.  The 
value of this statistic was 1.77 (p=0.183) indicating 
that the spatial structure of the data was adequately 
specified by the spatial error model.  
 
Model diagnostics from the standard regression and the 
spatial models were used to confirm that the spatial 
model was more appropriate for the data and that the 
addition of the spatial term did not result in any 
reduction in the goodness-of-fit.  The Akaike 
Information Criterion (AIC) was significantly lower 
for the spatial model than the standard regression 
model in both the property and violent crime 
regressions (Table 2).  The squared correlation 
between the observed and predicted values was slightly 
higher for the spatial lag model than the standard 
regression of property crime, indicating a slight 
improvement of the fit.  For violent crime, the squared 
correlation was the same for the two models, indicating 
there was no loss of model fit with the spatial error 
model. 
 
Table 2: Comparison of the model diagnostics for the 
standard regression and spatial models of property and 
violent crime. 

Stand 
Reg

Spatial 
Lag

Stand 
Reg

Spatial 
Error

AIC 304.1 220.5 581.3 558.6
Sq-Corr (obs, pred) 0.59 0.62 0.60 0.60

Violent CrimeProperty Crime

 
3.4 Results  
 
Table 3 compares the results of a standard regression 
and a spatial lag model for the property crime data.  
There are minor differences in the estimated regression 
coefficients from the standard regression and spatial 
models.  However, of greater interest is the difference 
in the significance level of certain variables between 
the standard and spatial models.  The variable 
representing the percentage of dwellings in need of 
major repair appears to be significant in the standard 
model but is clearly not significant in the spatial 
model.  There is also a minor change in the p-value for 
the variables representing the percentage of visible 
minority residents and the bar density.  These 
differences in the significance level can be attributed to 
the positive spatial autocorrelation present in the 
standard regression residuals, as indicated by Moran’s 

ASA Section on Survey Research Methods

2869



I statistic.  Positive autocorrelation causes an 
underestimation of the sample variance which makes 
factors appear more significant then they actually are 
(Legendre 1993). The large difference in the 
significance of the major repairs variable may also be 
caused by the proportionately large difference in the 
estimated coefficient of the standard and spatial 
models (-0.039 to -0.013, respectively).  Thus the final 
model for the property crime data should eliminate the 
major repairs variable.  
 
Table 3: Comparison of a standard regression and a 
spatial lag model for the rate of property crime. 

Variable Coeff p-value Coeff p-value
Intercept 3.47 <.0001 1.98 <.0001

Low Inc. Private 0.17 <.0001 0.11 <.0001
Visible Minority -0.08 <.0001 -0.05 0.0040
Single 0.19 <.0001 0.11 <.0001
Commercial Area 0.14 <.0001 0.12 <.0001
Bar Density 0.07 <.0001 0.05 0.0011
Major Repairs -0.04 0.0107 -0.01 0.3405

Spatial Lag 0.43 <.0001

Spatial LagStandard Reg

 
 

Comparing the results of a standard regression and 
spatial error model for the violent crime rate we see 
very small differences in the regression coefficients 
and the p-values (Table 4).  The similarity of the 
regression coefficients reflects that the standard 
regression estimates are unbiased although inefficient, 
due to the non-spherical structure of the error 
covariance in the data (Anselin and Bera 1998).  The 
spatial model, however, allows for more efficient 
estimation of the parameters by modelling the spatial 
process in the error terms.   The significance of the 
spatial autoregressive coefficient confirms that the 
spatial error model is more appropriate for this data 
than a standard regression model.  Similar regression 
coefficients are also obtained from a spatial lag model 
fit to the violent crime data.  The only noticeable 
difference in the model parameters from a spatial lag 
and spatial error model is the p-value for the bar 
density variable, which is 0.1287 for the spatial lag 
model and 0.0577 for the spatial error model.  This 
difference reflects the importance of examining 
alternative forms of spatial models for a given dataset.  

 
 
 
 
 
 
 

Table 4: Comparison of a standard least squares and a 
spatial error model for the rate of violent crime.  

Variable Coeff p-value Coeff p-value
Intercept 2.09 <.0001 2.08 <.0001
Low Inc. Private 0.22 <.0001 0.20 <.0001

Bachelor’s Degree -0.27 <.0001 -0.26 <.0001
Single 0.21 <.0001 0.20 <.0001
Commercial Area 0.07 0.0006 0.07 0.0008
Single Family Zone 0.11 <.0001 0.09 0.0005
Multi Family Zone 0.11 <.0001 0.12 <.0001
Bar Density 0.04 0.0689 0.04 0.0577
Spatial Error 0.32 <.0001

Standard Reg Spatial Error

 
 

4. Conclusions 
 

The comparison of the standard regression and spatial 
models for the crime rate on the Island of Montreal 
illustrate the importance of considering the spatial 
nature of the data.  The spatial models not only provide 
a better fit to the data, but they allow for more accurate 
inference on the model parameters, in turn yielding a 
more accurate final model.  This may have an 
implication for crime reduction programs in cases 
where the decisions on how to allocate funds for 
reducing crime are based on results from analyses such 
as the one performed here.  In the case of property 
crime in Montreal, the use of a standard regression 
model may have erroneously resulted in the 
recommendation of a policy to repair housing in at-risk 
neighbourhoods as a possible means of reducing crime. 
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