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Abstract

Quantitative variables in surveys often have a markedly skew
distribution and, in addition, contain outliers. Robust estima-
tors, which may be used in this situation, generally are bi-
ased. In addition linearized variance estimators tend to un-
derestimate the true variance considerably. Alternatives are
Bootstrap variance estimators or estimators based on multi-
ple imputation. A simulation study with data from the Swiss
Household Budget Survey shows the effects of outliers on esti-
mators and their variance estimators. Three poverty measures
and proposals for the estimation of their variance are included
in the simulation study.

Keywords: Sampling, Robust estimator, Gini-coefficient,
Quintile Share Ratio, Simulation.

1 Introduction

Outliers are a frequent concern in surveys with quantitative
variables like household budget surveys or business surveys on
production or turnover. A relatively small fraction of the data
has extreme values in one or several variables. Often these
extreme values occur when the bulk of the data has already a
markedly skew distribution. Figure 1 shows the expenditures
and incomes of a sample of the Swiss Household Budget Sur-
vey.
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Figure 1: Sample of data on expenditures versus income

The traditional approach is to detect these extreme values on
the basis of fixed univariate or bivariate limits, to review these
observations manually and either “correct” the outliers, dis-

miss them from analysis or to leave them unchanged. Today
the outlier detection or nomination methods use robust estima-
tors, imputations based on robust models are used to replace
outliers and, finally, traditional non-robust estimators may be
used on the data treated beforehand. The alternative to this
editing and imputation approach is to use robust estimators
directly on the raw data.

Univariate robust estimators which are adapted to survey
sampling have been introduced e.g. by Searls, Fuller, Cham-
bers, Rivest and Hulliger [Hulliger 1995]. Variance estima-
tors for these robust estimators are based on approximations.
However, there is a basic problem when estimating the vari-
ance of robust estimators which are applied to skew data. Car-
rol [Carrol 1979] showed that the effect of the scale estimator
in the defining equation for M-estimators is neglected in the
usual variance estimators and this may lead to a large bias.
The scale estimator is needed to make the M-estimator scale
equivariant. Jackknife and Bootstrap variance estimators may
be able to account at least partially for the variance of the scale
estimator [Gwet and Lee 2000].

The asymptotic variance of an M-estimator with the MAD
as a preliminary scale estimator involves the influence of the
M-estimator, the influence of the MAD and a covariance term
(see Appendix). Neglecting the two latter terms may result in
a large bias. These results are valid for infinite populations but
should hold also for finite populations. One purpose of this ar-
ticle is to show this with the help of Monte-Carlo simulations.
We use the simple robust estimators from [Hulliger 1999], me-
dians and winsorised means.

Multivariate outliers often are handled by first detecting
them, then replace the values of the outliers by imputation,
and subsequently apply standard linear estimators. Multi-
variate outlier detection needs sophisticated algorithms which
usually do not allow for direct variance estimators. Multi-
ple imputation is a possible solution. We investigate outlier
detection with the Transformed Rank Correlation Algorithm
[Béguin and Hulliger 2004] combined with regression impu-
tation and multiple imputation. To observe differences be-
tween univariate and multivariate situations, also estimators
of ratios of two variables are investigated.

Income is an important example of a positive, skew
variable with outliers. Inequality measures like the Gini-
coefficient and the recently defined set of Laeken indicators
([Dennis and Guio 2004]) usually are very non-robust. It is
difficult to define alternatives because the characteristic of in-
terest to estimate is highly non-robust. Nevertheless the influ-
ence of the outliers on the estimator and its variance estimator
are of high interest and some simulations are shown in Section
3.4.

ASA Section on Survey Research Methods
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The following example shows that influential units may
have a high impact on the shape of the point and variance es-
timation distribution even if the outliers are representative and
moderate. In a simulation study a rare sub-population, here
unemployed women of age 65 and higher, was estimated for
Saarland within the German Microcensus, a 1% stratified clus-
ter sample. Alltogether 128 cases from approximately 1 mio.
people were observed. Even for samples of more than 10’000
individuals the fact that some of these rare observations are
collected within small clusters may spoil the approximation
to normality which could be expected from the central limit
theorem.

Point estimator Variance estimator

Figure 2: Distributions of point and variance estimator for Un-
employed Women with Age ≥ 65 in Saarland

Figure 2 shows that approximately 35% of the distribution
is close to the true value 128 in the universe but the mode is
zero and some estimates are close to 600. The variance esti-
mation distribution gives a similar picture. On the other hand,
the application of the law of large numbers seems appropriate.
The expected value of the point estimator is rather close to the
true value. Analogously, the expected value of the variance
estimator is close to the variance of the point estimator. How-
ever, the fact that averages of estimates behave appropriately
does not mean that particular estimates behave well.

2 Estimation methods

2.1 Characteristics to estimate

The population characteristics we want to estimate always in-
clude the representative outliers and do not consider missing
values. Thus we calculate them with the complete and un-
contaminated universe. We consider the population mean, the
Gini-coefficient and the Quintile Share Ratio for income and
the ratio ψ of mean expenditure and income.

The Gini-coefficient for a variable of interest y can be ex-
pressed as

G =
1
τY

·
N∑

i=1

(
2F (yi)− 1) · yi .

The population quantile α of a variable y is qy(α) =
min{t :

∑
i∈U 1{yi ≤ t}/N ≥ α}. Thus the Quintile Share

Ratio is

Q(y) =
∑

i∈U yi1{yi > q0.8(y)}∑
i∈U yi1{yi ≤ q0.2(y)}

2.2 Point estimators for the parameters of interest

The estimators assume a sampling weight wi per observa-
tion which could simply be the inverse of the inclusion prob-
abilities πi. The estimators are applied to the whole sam-
ples. For linear estimators they may be applied to a domain
B by the usual replacement of a variable yi by yi1{i ∈
B}. In the case of item-non-response the response indica-
tor 1{i ∈ R(y)} is used in the same way as a domain in-
dicator. The robust estimators are expressed with robust-
ness weights ui per observation. Estimators then take the
form θ(y) =

∑
i∈S wiuiyi/

∑
i∈S wiui. The definition of

the robustness weights involves the weighted empirical cu-
mulative distribution function FS,y(t) =

∑
i∈S wi1{yi ≤

t}/
∑

i∈S wi. We denote a quantile with respect to FS,y(t)
by qS,y(α). We define the quantile by weighted interpolation
if the set {t :

∑
i∈S wi1{yi ≤ t}/

∑
i∈S wi = α} contains

more than one value.
The main estimators are described in table 1.
Taking into consideration the weighted empirical distribu-

tion function FS,y(t), one can express the estimated Gini-
coefficient as

Ĝ =
1
τ̂Y

·
∑
i∈S

wi ·
(
2 · 1

N̂

∑
j∈S

wj · 1
{
yj ≤ yi

}
︸ ︷︷ ︸

FS,y(t)

−1
)
· yi

where τ̂y denotes the Horvitz-Thompson estimate for the
quantity y and N̂ =

∑
S wi the estimated number of indi-

viduals.
For the Quintile Share Ratio we will have to estimate the

ratio

Q̂ =
µ̂R

µ̂P
=
τ̂1
τ̂2

/ τ̂3
τ̂4

of the mean of the upper 20% µ̂R and the mean of the lowest
20% values µ̂P of the variable of interest.

µ̂R =
∑

i

wi ·
(
yi − yi · 1{yi ≤ ŷ0,8}

)/∑
i

wi · (1− 0,8)

µ̂P =
∑

i

wi · yi · 1{yi ≤ ŷ0,2}
/∑

i

wi · 0,2 .

The estimated Quintile Share Ratio then can be expressed as a
function of four totals which will have to be used for linearized
variance estimation.

2.3 Variance estimators

Variance estimators for the robust estimators are derived from
their estimating equation as in [Hulliger 1999]. The variance
can be approximated by

V (θ̂) ≈ V

(∑
i∈S

wiuiei

)
,
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Table 1: Estimators in the study
Name Formula Comments
Horvitz-Thompson θ̂HT (y) =

∑
i∈S wiyi/N

Winsorized HTE ui =

 qS,α(yi)/yi, yi ≤ qS,α(yi);
qS,1−α(yi)/yi, yi ≥ qS,1−α(yi);
1, otherwise.

α = 0.02

Hajek estimator Nθ̂HT (y)/
∑

i∈S wi

Median qS,y(0.5)

One-step Huber M ui =
{
cσ̂/|yi − qS,y(0.5)|, |yi − qS,y(0.5)| < cσ̂;
1, otherwise. c = 5, σ̂ = 1.4826

qS,|y−qS,y(0.5)|(0.5) is the weighted
median absolute deviation (mad)

Ratio ψ̂ = x̄U θ̂HT (y)/θ̂HT (x) x the auxiliary variable

One-step ratio ui =
{
cσ̂
√
xi/|yi − β0xi|, |yi − β0xi| < cσ̂

√
xi;

1, otherwise. β0 = qS,y(0.5)/qS,x(0.5), σ̂ is the
mad of |yi − β0xi|/

√
xi

Robust ratio ui =
{
cσ̂
√
xi/|yi − β̂Mxi|, |yi − β̂Mxi| < cσ̂

√
xi;

1, otherwise.
β0 = qS,y(0.5)/qS,x(0.5), σ̂ is the
mad of |yi − β0xi|/

√
xi

where ei is the residual yi− θ̂, considered fixed. In the case of
a ratio the variance can be approximated by

V (θ̂) ≈ V

(∑
i∈S

wiuiei

)
1

(
∑

i∈S wiuixi)2
,

where ei = yi − θ̂xi. To estimate V (
∑

i∈S wiuiei) we use
the same estimators as for a weighted total of a variable uiei,
taking into account the sample design. In our simulation study
we assume the weights wi given and only take into account
the stratification.

In addition to the above estimator which is based on lin-
earization, a Bootstrap variance estimator and a balanced
repeated replication variance estimator was applied for the
poverty measures (Section 3.4).

In the case of poverty measurement, we apply
the estimating equation approach as described in
[Binder and Kovačević 1995] or [Deville 1999]. Taking
the influence values

u∗i =
1
τ̂Y

·
(
2 · yi · F̂ (yi)− (Ĝ+ 1) · yi

)
.

for the Gini-coefficient, we obtain the variance estimate

V̂ (Ĝα,p) ≈ V̂ (τ̂u∗) =
H∑

h=1

N2
h ·

s2u∗(h)

nh
·
(
1− nh

Nh

)
.

s2u∗(h)
denotes sampling variance of the influence values in stra-

tum h.

The Quintile Share Ratio becomes slightly more compli-
cated due to the function of four totals. Applying Woodruff-

linearization (cf. [Andersson 1994]), one can derive the values

u1i = yi −
(
(yi − y0.8) · 1{yi ≤ ŷ0.8}+ 0.8 · y0.8

)
u2i = 0.2
u3i = (yi − y0.2) · 1{yi ≤ ŷ0.2}+ 0.2 · y0.2

u4i = 0.2

u5i = (u1i −
τ̂1
τ̂2
· u2i) ·

1

N̂ · 0.2
= µ̂R

u6i = (u3i −
τ̂3
τ̂4
· u4i) ·

1

N̂ · 0.2
= µ̂P

where τ̂2 = τ̂4 = N̂ · 0.2. Finally, we get

zi = (u5i − Q̂ · u6i) ·
τ̂4
τ̂3

.

The variance is estimated as before with zi instead of u∗i .
Instead of applying classical design weights one can also

use calibrated weights. The necessary corrections are de-
scribed in [Deville 1999] and tested with only little success
in the simulation study.

3 The simulation study

3.1 The simulation environment

The simulation universe of the Swiss Houshold Bud-
get Survey was created under the DACSEIS project
[Münnich et al. 2003]. The synthetic Swiss HBS universe
contains data on income and expenditure of N = 3′179′231
fictive households modeled according to data from the
Swiss HBS of 1998 (see Figure 3.1). From this universe,
R = 1′000 stratified samples of size n = 9′302 were
drawn consequently. The sample size within the strata
is n = (2093, 1734, 1645, 1258, 1337, 795, 440)>; apply-
ing proportional allocation with stratum sample sizes n =
(2107, 1472, 1708, 1298, 1193, 789, 735)> generally did not
influence the results considerably.
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Figure 3: Expenditure versus income in the Swiss Household and Budget Survey universe without (left) and with (right)
nonrepresentative outliers (logarithmic scale below)

The universe contains outliers which we consider represen-
tative. A random selection of the universe was contaminated.
Two proportions of contamination were considered: 5% for
scheme A1 and 10% for scheme A2. The contaminated part of
the population is referred to as the nonrepresentative outliers.
The contamination was created to simulate errors in units, e.g.
Cents instead of Franks. In order not to spoil the result too
much, a factor a of 10 and 1/10 instead of 100 and 1/100 was
applied to the expenditure variable according to the following
distributions:

Table 2: Distribution of factor a under contamination A1 and
A2

Factor a 0.1 1 10
Proportion for A1 0.0250 0.9502 0.0248
Proportion for A2 0.0502 0.8999 0.0499

The baseline were the estimates from the uncontaminated

population. The observable values of the quantities of interest
were drawn from the contaminated universes.

The main interest of the simulation below is to elaborate
differences between the two main procedures:

1. Application of robust estimates without any correction of
the samples with respect to outliers;

2. Identification and elimination of outliers and application
of multiple regression imputation.

In both cases, adequate settings had to be investigated, ei-
ther the correct tuning constants for robust estimators, or the
tuning constants for identification of outliers with TRC.

3.2 Estimation of means

Table 3 shows the results of the mean estimators for in-
come for the population without a contamination by non-
representative outliers. The median in the population is
6501.01. The Monte-Carlo expectation, denoted E µ̂ of the
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weighted medians of the replicates is 7427.65052 and thus
the weighted median is a good estimate of the population me-
dian. But of course its bias as an estimator of the population
mean is huge. The MC-standard deviation, denoted

√
V µ̂,

of the weighted median is only slightly larger than the MS-
standard deviation of the mean. This is due to the skewness
of the variable income. Under a normally distributed vari-
able the median has

√
π/2 times the standard deviation of the

mean. The variance estimator for the median and the mean
are calculated with the R-package survey from Lumley
[R Development Core Team 2006, Lumley 2006]. The root
MC-mean of the estimates for the variance are close to the
MC-standard deviation. Note that the some variability is left
in the MC-means due to the moderate number of replicates
(R = 1′000) that could be realised.

The set of one-step M-estimators shows a large bias for
small tuning constants (Mean.onestep1 has tuning constant
c = 1) while for c = 10 the bias is negligible. The vari-
ance estimator for c = 1 underestimates heavily (34% in stan-
dard deviation) while for c = 10 the bias is negligible. The
winsorized means behave very similar. For a winsorisation
of α = 0.005 the estimator is close to the mean, while for
α = 0.2 it is closer to the one-step estimator and the median.
The Boostrap variance estimator is better than the linearised
variance estimator of the winsorized mean.

Table 3: Mean Estimators: No Contamination

Mean µ (true value: 7425.627):

Estimator E bµ p
V bµ q

E bV �bµ�
MEDIAN.svy 6503.35639 47.28961 45.45671
MEAN.svy 7427.65052 46.03809 44.43854
MEAN.onestep1 6682.20488 42.38378 28.07277
MEAN.onestep3 7270.29677 44.21736 38.61414
MEAN.onestep5 7387.12481 44.90683 42.17518
MEAN.onestep10 7424.26159 45.72493 44.08277
MEAN.wins005 7412.34583 45.63254 43.40769
MEAN.wins01 7400.09689 45.39059 42.86870
MEAN.wins05 7320.99267 44.82976 40.42399
MEAN.wins1 7237.75097 44.25192 38.48452
MEAN.wins2 7092.63914 43.09582 35.57720
MEAN.wins1boot 7237.92980 44.26231 42.43745

Table 4 shows the effect of non-representative outliers in
the population. The contamination pushes up the observed
population mean to 8′913. The survey mean estimates the ob-
served population mean well but has a large bias for the true,
uncontaminated mean. The median stays close to its former
value while the mean is attracted to the contaminated pop-
ulation mean. The variance of the mean is inflated heavily.
A tuning constant between c = 3 and c = 5 would lead to
an unbiased estimator of the true uncontaminated population
mean. The variance of the onestep estimators is much smaller
than the one of the mean. However the variance is underes-
timated and again the underestimation increases with smaller
tuning constants. The winsorised means with α < 0.05 are
not robust enough. Note the strong bias of the variance es-

timate for α = 0.05. Under contamination scheme A1 the
proportion of non-representative outliers equals the winsoriz-
ing proportion. Due to sampling variability the proportion of
non-representative outliers in the sample may be above or be-
low the winsorizing proportion. This induces a large variance
which is not captured by the variance estimator. Only with
large enough α the variance drops. The underestimation still
seems to be somewhat heavier for these winsorised means than
for comparable one-step estimators. Again the Bootstrap vari-
ance estimator for the winsorized mean with tuning constant
α = 0.1 is much better than the closed form variance estimate.

Table 4: Mean Estimators: A1 Contamination

Mean µ, A1 (true value: 7425.627, obs. value: 8913.214):

Estimator E bµ p
V bµ q

E bV �bµ�
MEDIAN.svy 6503.15672 50.15796 47.83504
MEAN.svy 8918.75352 137.15254 135.90658
MEAN.onestep1 6701.84914 45.18774 30.34084
MEAN.onestep3 7391.04511 50.80556 43.70581
MEAN.onestep5 7664.16278 57.12105 51.66995
MEAN.onestep10 8080.75000 75.60090 70.22488
MEAN.wins005 8819.17023 135.03663 122.67243
MEAN.wins01 8727.79952 133.72136 114.27362
MEAN.wins05 7804.68491 112.42370 57.94730
MEAN.wins1 7445.96521 56.55716 45.07021
MEAN.wins2 7205.67767 49.42340 39.34871
MEAN.wins1boot 7446.75059 57.10231 56.20454

Table 5: Mean Estimators: A1 Contamination and MI

Mean µ, A1 (true value: 7425.627, obs. value: 8913.214):

Estimator E bµ p
V bµ q

E bV �bµ�
TRC+MEDIAN.svy 6501.55588 44.20731 46.79200
TRC+MEAN.svy 7426.12761 45.63716 45.60892
TRC+onestep1 6679.19898 39.83891 29.13693
TRC+onestep3 7266.48651 42.59433 39.66428
TRC+onestep5 7384.33334 44.02728 43.26460
TRC+onestep10 7422.73912 45.42544 45.24991
TRC+wins005 7410.75969 45.24826 44.59416
TRC+wins01 7398.34344 45.03672 44.02896
TRC+wins05 7318.32959 43.94134 41.48531
TRC+wins1 7235.29494 43.04974 39.52186
TRC+wins2 7090.27262 41.86248 36.59510
TRC+wins1boot 7235.43537 43.16541 43.66767

Table 5 shows the result, when outlier identification with
the TRC algorithm, elimination and multiple regression impu-
tation is applied. In practice one would prefer to use a simple
mean once the outliers are detected and replaced by imputa-
tions. Here we nevertheless apply robust estimators to see,
what effect a further robustification has. In this case the TRC
tuning constants were very close to the optimum which results
in a standard survey mean with negligible bias for the true
population mean. The variance estimator based on multiple
imputation performs very well. The behavior of the robust es-
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timators is very close to the case without contamination. How-
ever, it seems that the true variance is recovered much better
by multiple imputation in spite of the linearized variance esti-
mator that is used in the multiple imputation procedure. Again
the bootstrap variance estimator yields better estimates than
the linearized variance estimators.

Table 6: Mean Estimators: A2 Contamination

Mean µ, A2 (true value: 7425.627, obs. value: 10422.15):

Estimator E bµ p
V bµ q

E bV �bµ�
MEDIAN.svy 6501.42997 52.82870 50.45562
MEAN.svy 10429.74035 187.74815 186.40202
MEAN.onestep1 6723.91477 49.27236 32.92910
MEAN.onestep3 7549.73755 61.93205 49.33963
MEAN.onestep5 8006.54247 75.62242 61.74152
MEAN.onestep10 8842.52609 109.73591 92.86426
MEAN.wins005 10323.10320 185.77687 174.64751
MEAN.wins01 10229.84130 184.56436 167.46096
MEAN.wins05 9449.50262 184.92682 123.74193
MEAN.wins1 8081.58256 170.15373 65.93043
MEAN.wins2 7373.53165 63.43871 44.65481
MEAN.wins1boot 8093.65515 170.56634 169.09158

Table 6 shows some results for the mean with contamina-
tion scheme A2. The results are similar results as for con-
tamination A1. However, the optimal tuning constant would
be different, i.e. would lead to heavier robustification. Again
the variance estimator for the winsorized mean has a heavy
downward bias when the contamination proportion equals the
winsorizing proportion (α = 0.1).

3.3 Estimation of ratios

Table 7 gives an overview of the results from the ratio estima-
tors onerat and robrat with tuning constants 3, 5, and
10. The estimator robrat is a fully iterated M-estimator
with preliminary scale estimat MAD of the residuals while
onerat just is the result of one iteration from the median.
Thus onerat is the analogue to the one-step estimator for
univariate estimation. The estimator onerat with a tun-
ing constant c = 10 is close to the non-robust ratio esti-
mator, which is optimal when no contamination is present.
The estimator robrat has a bias even for tuning constant
c = 10. This shows that already the uncontaminated popula-
tion has outliers and is not distributed symmetrically. Thus for
robrat the tuning constant would have to be chosen much
larger to make the estimates approximate the true ratio. The
variance estimates for onerat are slightly biased while for
robrat the bias is moderate.

Table 8 shows the result under contamination A1. The
choice of the optimal tuning constant is again of major impor-
tance due to the sensitivity of the bias of the ratio estimates to
the tuning constant. Contrary to mean estimation, onerat ra-
tio estimation seems generally to underestimate the true vari-
ances but to a less extent than before. The optimal tuning con-
stants are now for both onerat and robrat in the range 3 to 10.
And the behavior of the two estimators is quite similar. The

Table 7: Ratio Estimators: No Contamination

Ratio ψ (true value: 0.8828425):

Estimator E bψ
q

V bψ q
E bV � bψ�

RATIO.svy 0.88273351 0.00381331 0.00370994
RATIO.onerat3 0.87712272 0.00356503 0.00336276
RATIO.onerat5 0.88121103 0.00371831 0.00358449
RATIO.onerat10 0.88261516 0.00379548 0.00369381
RATIO.robrat3 0.85265838 0.00369364 0.00329352
RATIO.robrat5 0.85244642 0.00390663 0.00351199
RATIO.robrat10 0.85204325 0.00419021 0.00362364

underestimation of the linearised variance estimators behaves
similar to the univariate case.

Table 8: Ratio Estimators: A1 Contamination

Ratio ψ, A1 (true value: 0.8828425, observable value: 1.059704):

Estimator E bψ
q

V bψ q
E bV � bψ�

RATIO.svy 1.05994435 0.01573079 0.01551722
RATIO.onerat3 0.88067212 0.00426282 0.00393057
RATIO.onerat5 0.89636871 0.00491184 0.00461583
RATIO.onerat10 0.93208672 0.00668066 0.00629847
RATIO.robrat3 0.85484357 0.00417392 0.00384607
RATIO.robrat5 0.86089502 0.00466531 0.00449412
RATIO.robrat10 0.88330402 0.00601805 0.00618228

Figure 4 gives an overview of the variance distributions of
the ratio estimators. One can observe a dependency of the
smoothness and normality on the tuning constant and a more
skewed distribution of the survey ratio linearized variance esti-
mator. This can be attributed to the fact that robust estimators
downweight the influence of some observations which may
yield skew variance estimation distributions with outliers.

Applying multiple imputation after outlier nomination and
removal yields similar results as for mean estimation. The
results are not reported here.

3.4 Estimation of poverty measures

Poverty measures, like the Gini coefficient (GINI or simply
G) or the Quintile Share Ratio (QSR or simply Q) in gen-
eral are highly sensitive to outliers in the income distribution.
One exception is the At-risk-of-poverty rate which only takes
the proportion of poor to all individuals into consideration and
hence not extreme income values. The sensitivity of poverty
measures certainly has an impact on the variance estimates.
In contrast to linear statistics applied to less skewed distribu-
tions, the linearization of highly non-linear statistics in very
skewed distributions such as the Quintile Share Ratio, may
yield biased point estimates and most notably biased variance
estimates. Hence, one has to pay considerably more attention
to the choice of the variance estimator. The delete-1-jackknife
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Figure 4: Ratio Estimators: Variance distributions under contamination scheme A1

estimator is omitted due to its insuffiency when applied to non-
smooth statistics.

Table 9: Poverty Measures without contamination

G (true value: 0.2972914):

Estimator E bG p
V bG q

E bV � bG�
G.linearized 0.29734148 0.00233619 0.00622152
G.cal.lin 0.29733250 0.00232330 0.00420530
G.brr 0.29740425 0.00254017 0.00149393
G.boot99 0.29730517 0.00234937 0.00233850

Q (true value: 4.664377):

Estimator E bQ
q

V bQ q
E bV � bQ�

Q.linearized 4.66684881 0.05649330 0.07395028
Q.cal.linearized 4.66666569 0.05629651 0.07396798
Q.brr 4.66870652 0.06273145 0.03684399
Q.boot99 4.66626426 0.05674634 0.05738790

Table 9 shows the possible impact of the selected vari-
ance estimator on the accuracy measurement for the Gini-
coefficient G and the Quintile Share Ratio Q. In general,
when the sample proportions are small in all strata, the boot-
strap variance estimator yields very good results without con-
tamination or with contamination (Tables 9 and 10). In
case of moderate sampling fractions, however, the bootstrap
may tend to underestimate the true variances. In this exam-
ple, Balanced Repeated Replications (BRR) suffers from the
small number of strata which results in unacceptable vari-
ance estimates. A synthetic enlargement of the number of
strata would easily improve the results. Similar simulations

on the German EU-SILC dataset show that under more ad-
equate settings the BRR may deliver good variance estimates
[Münnich 2006]. Slightly unexpectedly, the linearization vari-
ance estimators tend to overestimate the true variances in
the case of the QSR (Q.linearized) and especially the Gini-
coefficient (G.linearized). This phenomenon was also ob-
served in the above mentioned EU-SILC based simulation.
Applying calibration weights (G.cal.lin and Q.cal.lin) may
help to reduce this bias a little but not to the extent needed.

Table 10: Poverty Measures with contamination A1

G (true value: 0.2972914, observable value: 0.4245081):

Estimator E bG p
V bG q

E bV � bG�
G.linearized 0.42465619 0.00762868 0.00981564
G.cal.lin 0.42465005 0.00762768 0.00918457
G.brr 0.42474723 0.00821429 0.00468553
G.boot99 0.42452150 0.00764980 0.00747598

Q (true value: 4.664377, observable value: 8.20626):

Estimator E bQ
q

V bQ q
E bV � bQ�

Q.linearized 8.21900561 0.25791294 0.25611228
Q.cal.linearized 8.21894439 0.25789861 0.25619141
Q.brr 8.21632122 0.28483321 0.16084159
Q.boot99 8.21875738 0.25813909 0.25347326

The results in Table 10 show that the non-robustness of the
Gini-coefficient and the Quintile Share Ratio yield unaccept-
able point estimates. However, the variance estimates seem
better than in the case without contamination. A solution may
be to detect and remove outliers, e.g. via TRC, and then im-
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Figure 5: Distribution of QSR Variance Estimators

pute the missing values.
Figure 5 allows to compare the variance estimation distri-

butions of the Quintile Share Ratio. The blue line gives the
average estimate, whereas the red line the value to be esti-
mated. Very typical in this situation is the very good perfor-
mance of the Bootstrap variance estimator with respect to un-
biasedness. However, the slightly biased linearized variance
estimator generally have smaller variances of the variance es-
timation distributions.

4 Summary and outlook

The simulation study with a synthetic universe of households
showed the well known high impact of contamination on es-
timators of means, ratios and in particular poverty measures.
Robust estimators resist to outliers depending on the tuning
constant chosen. The choice of the tuning constant is diffi-
cult in practice. Several tuning constants should always be
tested. In particular median and non-robust classical estima-
tors should be calculated as extremes. The point and variance
estimates and the mean of the robustness weights, which indi-
cates the degree of robustification, may help in the choice of
an appropriate tuning constant.

Outlier detection and regression imputation followed by
either classical non-robust estimators or mild robustification
seems to perform well. The complicated procedure needs re-
sampling variance estimation. The multiple imputation vari-
ance estimators in the study and the Bootstrap variance esti-
mators performed well.

Nevertheless, instead of finding the right tuning constant

of a robust estimator one has to determine the right tuning
constant for outlier detection which is of analogue difficulty.

Linearized variance estimators of robust estimators under-
estimate the true variance in general. The underestimation de-
pends on the tuning constant. Usually the bias of the linearized
variance estimators grows with the degree of robustification.
Thus linearized variance estimators can only serve as a first
approximation when the robustification is mild. Bootstrap es-
timators perform well even for stronger robustification, except
when the sampling fraction is moderate or large.

For poverty measures the linearized variance estimators
moderately overestimated the true variance but had a remark-
ably low variance themselves. Resampling based variance es-
timators, especially the bootstrap, seem to outperform the lin-
earized variance estimators.

More situations should be investigated, in particular mul-
tivariate outliers and more skew distributions which occur in
business surveys. Bias corrections for linearized variance es-
timators seem promising but may be complicated.

Appendix: Variance of Huber M-estimator with MAD

The Huber M-estimator with the MAD as preliminary scale
estimate is the solution of

∑
i∈S

ψc

(
Xi − θ

δ

)
= 0.

where ψc(x) = max(−c,min(c, x)) for the tuning constant
c > 0 and δ the median absolute deviation MAD.
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Denote r = (x− θ)/δ and

A =
∫ ∞

0

ψ′(r) f(x; γ) dx =
∫ θ+cδ

θ−cδ

f(x; γ) dx

B =
∫ ∞

0

ψ′(r) r f(x; γ) dx =
∫ θ+cδ

θ−cδ

x− θ

δ
f(x; γ) dx

for the densitiy f(x; γ) of the variableX . If the distribution
of X is symmetric around θ then B = 0.

The asymptotic variance of the Huber M-estimator is

V (θ(F )) =
δ2

A2

∫ ∞

0

ψ(r)2 f(x; γ) dx

+
B2

A2

∫ ∞

0

IF (x;F, δ)2f(x; γ) dx

+
B δ

A2

∫ ∞

0

ψ(r) IF (x;F, δ) f(x; γ) dx,

where IF (x;F, δ) is the influence function of the MAD.
The usual variance estimator for M-estimators estimates only
the first summand of this asymptotic variance. For asymmetric
distributions the second and third summand may be large and
variance estimates which neglect them may be heavily biased.
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