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Abstract 
 

When more than one characteristics are under study it 
is not possible for one reason or the other to use the 
individual optimum allocation of first-stage and 
second-stage sampling units to each stage and to 
various strata while using two-stage and stratified two-
stage sampling designs. In such situations some 
criterion is needed to work out an acceptable allocation 
which is optimum for all characteristics in some sense. 
In this paper the problems of the optimum allocation in 
multivariate two-stage and multivariate stratified two-
stage sampling are formulated as Nonlinear 
Programming Problems (NLPP). The NLPPs are then 
solved using Lagrange multiplier technique and 
explicit formulas are obtained for the optimum 
allocation of the first-stage and second-stage sampling 
units. 
 
Keywords: Multivariate two-stage sampling, 
Multivariate stratified two-stage sampling, First-stage 
sampling units, Second-stage sampling units, Optimum 
allocation, Nonlinear programming problem. 
 

1. Introduction 
 
In many surveys the use of two-stage sampling designs 
often specifies two stages of selection: clusters or 
primary sampling units (PSUs) at the first stage, and 
subsamples from PSUs at second stage as a secondary 
sampling units (SSUs). For the large-scale surveys, 
stratification may precede selection of the sample at 
any stage. Analyses of two-stage designs are well 
documented when a single variable is measures and the 
methods to obtain the optimum allocations of sampling 
units to each stage are readily available (Cochran 
(1977), Chapter 10; Arnold (1986); Sadooghi-Alvandi 
(1986); Valliant and Gentle (1997); Clark and Steel 
(2000); Dever, et al. (2001)). However, when more 
than one characteristics are under study the procedures 
for determining optimum allocations are not well 
defined. The traditional approach is to estimate optimal 
sample size for each characteristic individually and 

then choose the final sampling design from among the 
individual solutions. In practice it is not possible to use 
this approach of individual optimum allocations 
because an allocation, which is optimum for one 
characteristic, may not be optimum for other 
characteristics. Moreover, in the absence of a strong 
positive correlation between the characteristics under 
study the individual optimum allocations may differ a 
lot and there may be no obvious compromise. In such 
situations some criterion is needed to work out an 
acceptable sampling design which is optimum, in some 
sense, for all characteristics. Waters and Chester 
(1987) proposed a graphical approach to identify the 
possible optimum solution for multivariate case. 
 
In this paper a method of optimum allocation for 
multivariate two-stage sampling designs and 
multivariate stratified two-stage sampling designs is 
developed. The problems of determining the optimum 
allocations are formulated as Nonlinear Programming 
Problems (NLPP), in which each NLPP has a convex 
objective function and a single linear cost constraint. 
Several techniques are available for solving these 
NLPPs, better known as Convex Programming 
Problems (CPP). We used Lagrange multiplier 
technique to solve the formulated NLPPs and explicit 
formulae for the optimum allocation of PSUs and the 
optimum size of SSUs or the subsamples to various 
strata are obtained. The Kuhn-Tucker (1951) necessary 
conditions, which are also sufficient, for this problem, 
are verified at the optimum solutions.  
 

2. The Formulation of the Problem in Two-stage 
Sampling 

 
In a multivariate two-stage sampling, where p 
characteristics are under study, n  units as PSU and 
m  subunits as SSU within each of n selected PSU are 

drawn randomly from N units in first stage and M  

units in the second stage, respectively. Let ijky , 

1

m ijk
ik j

y
y

m=
=∑  and 

1

n ik
k i

y
y

n=
=∑  denote the 
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value obtained from j th subunit in the i th primary 

unit, the sample mean per subunit in the i th primary 
unit,  and the overall sample mean per subunit for k th 

characteristic, respectively. It could be shown that ky  

is an unbiased estimate of the over all population mean  

kY  of k th characteristic with variance 

 

     
2 2
1 2( ) k k

k

S SN n M m
V y

N n M mn

− −⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

,        (2.1) 

 

where 2
1kS  is the variance among primary unit means 

and 2
2kS  is the variance among subunits within 

primary units for k th characteristic, respectively.  
 
The total cost function of a two-stage sampling 
procedure may be given as: 
 

1 2C c n c nm= + ,           (2.2) 

 

where C  denotes the total cost of the survey, 1c  

denotes the cost of approaching to a PSU for 

measurement and 2 21

p

kk
c c

=
=∑  denotes the cost of 

measurement all the p  characteristics per SSU. Also 

2kc  are the per unit costs of measuring the k th 

characteristic of a SSU. 
 
The optimum choice of n  and m  for an individual 
characteristic can thus be determined by minimizing 
the variance in (2.1) for the given cost in (2.2), or by 
minimizing the cost for fixed variance. 
 
In multivariate stratified sample surveys usually a 
compromise criterion is needed to work out an 
acceptable choice of the number of PSU’s and SSU’s 
which is optimum, in some sense, for all 
characteristics. However, if the total cost for the survey 
is predetermined, using the compromise criterion 
suggested by Khan, Khan and Ahsan (2003), an 
optimal choice may be one that minimizes the 
weighted sum of the sampling variances of the 
estimates of various characteristics within the available 
budget. It is, therefore, in a two-stage sampling, if the 
population means of p  characteristics are of interest, 
it may be a reasonable criterion for determining  the 
optimal choice of n  and m is to minimize a weighted 
sum of the variances of the two-stage sample means of 
all the p  characteristics, that is, 
 

1

( )
p

k k
k

a V y
=
∑ ,            (2.3) 

 

where ka  is the weights assigned to the k th 

characteristic in proportion to its importance as 

compared to other characteristics and  ( )kV y  as given 

in (2.1). Ignoring the term independent of n  and m  
minimizing (2.3) will be equivalent to minimize 
 

2 2 2
1 2 2A A A

n nm nM
+ − ,           (2.4) 

 

where  2 2
1 1

1

p

k k
k

A a S
=

=∑  and 2 2
2 2

1

p

k k
k

A a S
=

=∑ .       (2.5) 

 

For a fixed budget 0C  given by (2.2) the problem of 

finding the optimum values of n  and m  may be 
stated as the following NLPP – I: 
 

     

2 2 2
1 2 2

1 2 0

Minimize

subject to

and , 0

A A A
Z

n nm nM
c n c nm C

n m

⎫
= + − ⎪

⎪⎪+ ≤ ⎬
⎪≥
⎪
⎪⎭

          (2.6) 

 
The restrictions 0n ≥  and 0m ≥  are obvious 
because negative values of the number of PSU’s and 
SSU’s are of no practical use. 
 

3. The Formulation of the Problem in Stratified 
Two-stage Sampling 

 
The most common design in surveys is stratified two-
stage sampling. The population of PSUs is divided into 
strata, within each stratum a simple random sample 
without replacement of PSUs is selected and each of 
the PSUs is further sub-sampled. Let the population of 

N  PSUs be divided into L  strata, each with hN  

PSUs such that 
1

L

hh
N N

=
=∑ . Also let hiM be the 

number of SSUs in the i th PSU and 

0 1

hN

h hii
M M

=
=∑  be the total number of SSUs in the 

h th stratum. In a multivariate stratified two-stage 
sampling, where p  characteristics are under study, let 

hijky  denotes the value of k th characteristic on the 
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j th SSU of i th PSU of h th stratum. A random 

sample of hn  PSUs and him  SSUs from i th PSU are 

selected in h th stratum. Let  
 

 , ,
1

L

k st h k hs
h

y W y
=

=∑ , 

 
denotes the overall sample mean per SSU for k th 
characteristic in h th stratum, where 

, ,1

1 in hi
k hs k hii

h h

M
y y

n M=
= ∑ , , 1

1 him

k hi hijki
hi
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=
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L

h h hh
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=
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It could be shown that ,k sty  is an unbiased estimate of 

the over all population mean  kY  of k th characteristic 

with variance 
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1
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2
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∑

∑

,       (3.1)   

 

where 2
,k hbS  is the variance among primary unit means 

and 2
,k hiyS  is the variance among subunits within 

primary units for k th characteristic, respectively.  
 
Assume that the total cost of the survey consists of two 
components depending upon the numbers of PSUs and 

the number of SSUs in the sample. Let 1hc  and 

2 21

p

h hkk
c c

=
=∑  denote the cost per PSU and the cost 

of measurement all the p  characteristics per SSU in 

h th stratum, respectively. Where 2hkc  are the per unit 

costs of measuring the k th characteristic of a SSU. 
Thus the total cost of the survey may be expressed as a 

function of first and second-stage sample sizes, hn  and 

him , as: 

 

0 1 2
1 1

hnL

h h h hi
h i

c c n c m
= =

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠
∑ ∑ , 

 

where 0c  is the overhead cost of the survey. The 

second component in ( )  varies from sample to 

sample. It is, therefore, the expected cost function 
could be considered as: 
 

0 1 2
1 1

hNL
h

h h h hi
h ih

n
c c n c m

N= =

⎛ ⎞
+ + ⋅⎜ ⎟

⎝ ⎠
∑ ∑ .     (3.2) 

 
If the total amount available for a multivariate 
stratified two-stage survey is predetermined, a 

compromise allocation of hn  and him  may be one 

discussed in section 2 that minimizes the weighted sum 
of the sampling variances of the estimates of various 
characteristics, that is.   
 

( ),
1

p

k k st
k

a V y
=
∑ ,            (3.3) 

 

where ka  is the weights assigned to the k th 

characteristic in proportion to its importance as 

compared to other characteristics and  ( ),k stV y  as 

given in (3.1). For the purpose of minimization, the 

term independent of hn  and him  in (3.3) is ignored. 

Also letting  
 

2 2
, ,2

1 1

2 2
,

1

and

1 hNp
hi

h k k hb k hiy
k ih h

p

hiy k k hiy
k

M
A a S S

N M

B a S

= =

=

⎛ ⎞
= − ⋅⎜ ⎟

⎝ ⎠

=

∑ ∑

∑

         (3.4) 

 
the problem of finding the compromise allocation of 

hn  and him  for a fixed cost 0C  may be given as the 

following NLPP – II: 
 

22 2

2
1 1

1 2 0
1 1

1
Min 

s.t.

and , 0

( 1, 2,..., ; 1, 2,..., )

h

h

NL
hiyh hi

h
h ih h h hi

NL
h

h h h hi
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h

BW M
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n
c n c m C

N

n m

i N h L

= =

= =
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= + ⋅ ⎪⎜ ⎟⎜ ⎟

⎪⎝ ⎠
⎪
⎪⎛ ⎞
⎬+ ⋅ ≤⎜ ⎟
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∑ ∑

∑ ∑
,    (3.5) 

 

where 0 0C C c= − . 
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4. The Solution 

 
4.1 NLPP – I 
 
The objective function Z  of the NLPP – I given in 
(2.6) will be minimum when the values of n  and m  
are as large as permitted by the cost constraint. This 
suggests that at the optimum point the cost constraint 
will be active, that is, it is satisfied as an equation. 
Then, ignoring the restrictions 0n ≥  and 0m ≥ ,  we 
can use Lagrange multipliers technique to determine 

the optimum values of *n  and *m . If these values *n  

and *m ,  satisfy the ignored restrictions, the NLPP 
(2.6) is solved completely. 
 
The Lagrangian function ϕ  is defined as 
 

( ) ( )
2 2 2

1 2 2
1 2 0, ,

A A A
n m c n c nm C

n nm nM
ϕ λ λ= + − + + − ,

                 (4.1) 
 
where λ  is a Lagrange multiplier. 
 
The necessary conditions for the solution of the 
problem are 
 

( )
2 2 2

1 2 2
1 22 2 2

0
A A A

c c m
n n n m n M

δϕ λ
δ

= − − + + + = ,    (4.2) 

 
2
2

22
0

A
c n

m nm

δϕ λ
δ

= − + = ,                     (4.3) 

 
and  
 

1 2 0 0c n c nm C
δϕ
δλ

= + − = .                   (4.4) 

 
(4.2) and (4.3) give 
 

2
* 1 2

2
2 2

2 1

c A
m

A
c A

M

=
⎛ ⎞

−⎜ ⎟
⎝ ⎠

, provided 
2

2 2
1

A
A

M
>      (4.5) 

 
(4.4) and (4.5) give 
 

* 0
*

1 2

C
n

c c m
=

+
               (4.6) 

 
It can be verified that the objective function Z  in (2.6) 

is convex for 
2

2 2
1

A
A

M
>  or  2 2

1 2
1 1

p p

k k k k
k k

a S a S M
= =

>∑ ∑  

and the constraint is linear. Therefore, the (K-T) 
necessary conditions for the NLPP (2.6) are sufficient 
also. These conditions are 
 

( )

( )
2 2 2

1 2 2
1 22 2 2

, 2
2

22

0n m

A A A
c c m

n n m n M

A
c n

nm

λ
ϕ

λ

⎛ ⎞
− − + + +⎜ ⎟

⎜ ⎟∇ = ≥
⎜ ⎟

− +⎜ ⎟
⎝ ⎠

, 

 
 

( )
2 2 2

1 2 2
1 22 2 2

2
2

22
0,

A A A
n c c m

n n m n M

A
m c n

nm

λ

λ

⎛ ⎞
− − + + + +⎜ ⎟

⎝ ⎠

⎛ ⎞
− + =⎜ ⎟

⎝ ⎠

 

1 2 0 0c n c nm Cλϕ∇ = + − ≤ , 

  

( )1 2 0 0c n c nm Cλ + − = , 

 
and , and 0 n m λ ≥ . 
 
For the case , and 0 n m λ >  the above expressions 
give the same set of equations as (4.2), (4.3) and (4.4), 
which implies that the K-T conditions hold at the point 

( )* *,n m  given by (4.5) and (4.6). Hence, ( )* *,n m  

is optimum for NLPP (2.6).  
 

If 
2

2 2
1

A
A

M
≤ , one may use a single-stage sampling 

design instead of two-stage sampling by considering 
*m M= . 

 
4.2 NLPP – II 
 
The objective function Z  of the NLPP – II given in 

(3.5) will be minimum when the values of hn  and him  

are as large as permitted by the cost constraint. 
Therefore, this problem also suggests that at the 
optimum point the cost constraint will be active and 
one can use Lagrange multipliers technique to 

determine the optimum values of *
hn  and *

him  

considering the cost constraint as an equation and 
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ignoring the non-negativity restrictions on the 
variables.  
 
The Lagrangian function ϕ  is defined as 
 

( )
22 2

2
1 1

1 2 0
1 1

1
, ,

h

h

NL
hiyh hi

h hi h
h ih h h hi

NL
h

h h h hi
h ih

BW M
n m A

n N M m

n
c n c m C

N

ϕ λ

λ

= =

= =

⎛ ⎞
= + ⋅ +⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞⎛ ⎞
+ ⋅ −⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∑ ∑

∑ ∑

   

                       (4.7) 
 
where λ  is a Lagrange multiplier. 
 
The necessary conditions for the solution of the 
problem are 
 

22 2

2 2
1

1 2
1

1

1
0

h

h

N
hiyh hi

h
ih h h h hi

N

h h hi
ih

BW M
A

n n N M m

c c m
N

δϕ
δ

λ

=

=

⎛ ⎞
= − + ⋅ +⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞
+ ⋅ =⎜ ⎟

⎝ ⎠

∑

∑

,      (4.8) 

 
22 2

22 2

1
0hiyh hi h

h
hi h h h hi h

BW M n
c

m n N M m N

δϕ λ
δ

= − + = ,  (4.9)            

 
and 
 

1 2 0
1 1

0
hNL

h
h h h hi

h ih

n
c n c m C

N

δϕ
δλ = =

⎛ ⎞
= + − =⎜ ⎟

⎝ ⎠
∑ ∑ .,   (4.10) 

 

Multiplying by hi

h

m

n
 and summing over i 

( 1,2,..., )hi N= , (4.9) reduces to 

 
22 2

2
2

1 1

0
h hN N

hiyh hi h
hi

i ih h h hi h

BW M c
m

n N M m N
λ

= =

− + =∑ ∑ .      (4.11) 

 
(4.8) and (4.11) give 
 

    
1

1 h h
h

h

W A
n

cλ
= , provided 0hA >         (4.12) 

 

Substituting the values of hn  from (4.12) in (4.9), the 

optimum values of him  are obtained as: 

 

     * 1

2

hi hiy h
hi

h h h

M B c
m

M A c
= ⋅                (4.13) 

 

for 1, 2,..., , 1, 2,...,hi N h L= = . 

  

Substituting the values of hn  and him  from (4.12) and 

(4.13) respectively, (4.10) gives 
 
 

0

2
1

1 1

1
hNL

h h hi
h h h hiy

h ih h

C

W c M
W A c B

N M

λ

= =

=
⎛ ⎞
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⎝ ⎠

∑ ∑

. 

              (4.14) 
 

From (4.12) and (4.14) the optimum values of hn  are 

obtained as: 
 

0 1*

2
1

1 1

h

h h h
h NL

h h hi
h h h hiy

h ih h

C W A c
n

W c M
W A c B

N M= =

=
⎛ ⎞
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⎝ ⎠

∑ ∑

. 

                                                                               (4.15) 
 
As the objective function of (3.5) is convex for 

2 2
, ,2

1 1

1
0

hNp
hi

h k k hb k hiy
k ih h

M
A a S S

N M= =

⎛ ⎞
= − ⋅ >⎜ ⎟

⎝ ⎠
∑ ∑  and the 

constraint is linear, the (K-T) necessary conditions of 
the NLPP (3.5) are sufficient also. It can be easily 
verified that the K-T conditions hold at the point 

( )* *,h hin m  given by (4.13) and (4.15). Hence, 

( )* *,h hin m  is optimum for NLPP (3.5). 
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