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Abstract

Quantile regression investigates the conditional quantile func-
tions of a response variables in terms of a set of covariates. M-
quantile regression extends this idea by a “quantile-like” gen-
eralization of regression based on influence functions. In this
work we extend it to nonparametric regression, in the sense
that the M-quantile regression functions do not have to be as-
sumed to be linear, but can be left undefined and estimated
from the data. Penalized splines are employed to estimate
them. This choice makes it easy to move to bivariate smooth-
ing and additive modeling. An algorithm based on penalized
iteratively reweighted least squares to actually fit the model is
also proposed. Simulation studies are presented that show the
finite sample properties of the proposed estimation technique.

Keywords: Robust regression, Iteratively Reweighted Least
Squares, Nonparametric smoothing.

1 Introduction

Regression analysis is a standard tool for modeling the rela-
tionship between a response variable y and some covariates
x. It summaries the average behavior of y given x and has
been one of the most important statistical methods for applied
research for many decades. However, in some circumstances
the mean does not give a complete picture of the distribution.
It does not consider, for example, the extreme behavior of y
conditional on x. For this reason, a method that allows for di-
rect modeling of the relationship between the dependent vari-
able and the explanatory variables for these extreme values is
needed. In other words, it may be useful to investigate the
conditional quantile functions. Such a modeling exercise is
referred to as quantile regression. M-quantile regression ex-
tends this idea by a “quantile-like” generalization of regres-
sion based on influence functions (Breckling and Chambers,
1988). For a specified q, in a linear M-quantile regression
model Qq(x, ψ) = xβψ(q), where ψ denotes the influence
function associated with the M-quantile.

Nonparametric smoothing has been usefully applied to
quantile regression (see e.g. He, 1997; Takeuchi, Le, Sears
and Smola, 2005), but little or no work has been done on ex-
tending M-quantile regression with nonparametric modeling.
Here we will do so by using Penalized Splines.

The outline of the paper is the following. Section 2 briefly
review the M-quantile regression. Section 3 is devoted to Pe-
nalized Spline M-quantile regression. Section 4 stretches the
simulation study and its results. The attention is on the perfor-
mance of our method when a single covariate model expresses
the true underlying relationship between y and x information,

and especially when a bivariate model is considered. This sec-
ond case is meanly relevant to test the empirical properties of
the method when the study variable has a clear spatial pattern
as a function of its position in space represented by its geo-
graphical coordinates. Section 5 presents and discusses our
main findings.

2 M-quantile regression

Quantile regression is a generalization of median regression
and has been developed by Koenker and Bassett (1978). In
the linear case, quantile regression leads to a family of hyper-
planes indexed by the value of the corresponding quantile co-
efficient q ∈ (0, 1). For each value of q, the corresponding
model Qq(x) = xβ(q) explains how the qth quantile of the
conditional distribution of y given x varies with x.

The set of regression quantiles parameter estimates satis-
fies the criterion of minimum sum of absolute asymmetrically
weighted residuals: given a sample of n observations, the vec-
tor β(q) is estimated by minimizing
n∑
i=1

|ri[β(q)]|{(1− q)I(ri[β(q)] ≤ 0) + qI(ri[β(q)) > 0]},

(1)
where ri[β(q)] = yi − xiβ(q), with respect to β(q) by using
linear programming methods (Koenker and D’Orey, 1987).
However, regression quantile hyper-planes are not compara-
ble with the regression ones based on ordinary least-squares
that describe how the mean of y changes with x (Breckling
and Chambers, 1988). In fact, the former are based on an ab-
solute deviations criterion, while the latter on a least-squares
one.

A generalization of expectation was suggested by Newey
and Powell (1987) through the use of expectile lines. M-
quantile regression extends this idea by a “quantile-like” gen-
eralization of regression based on influence functions (Breck-
ling and Chambers, 1988). For a specified q, in a linear M-
quantile regression model Qq(x, ψ) = xβψ(q), where ψ de-
notes the influence function associated with the M-quantile. In
particular, the general M-estimator of βψ(q) can be obtained
by solving the set of estimating equations:

n∑
i=1

ψq(yi − xiβψ(q))xTi = 0 (2)

with respect to βψ(q), assuming that

ψq(t) = 2ψ{s−1(t)}{(1− q)I(t ≤ 0) + qI(t > 0)}

where s is a robust estimate of scale. Robust regression mod-
els can be fitted using an Iterative Reweighted Least Squares
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algorithm (IRLS) that guarantees the convergence to a unique
solution (Kokic et al., 1997).

The advantages of M-quantile regression models are (a) the
simplicity of the algorithm used to fit the model and (b) the
great flexibility in modeling by using a wide range of influ-
ence functions (i.e. Huber function, Huber proposal 2, Hampel
function). A drawback for all quantile-type fitted regression
plans is the phenomenon of quantile crossing and it is due to
model misspecification, collinearity or huge outlying values.
He (1997) proposed a restricted version of regression quantile
that avoids the occurrence of crossing while maintaining suf-
ficient modeling flexibility. Another method to overcome this
problem is described in Koenker (1984) by forcing proper or-
dering of the percentile curves. The author considered parallel
quantile planes for linear models, but they do not cater to the
needs of heteroscedastic models.

3 Penalized Spline M-quantile Regression

3.1 The method

Nonparametric regression is a popular technique that extends
linear regression by relaxing the assumption of a pre-specified
functional relationship between the mean value of y and the
covariates x. Such relationship does not have to be assumed
linear or polynomial, but only an unknown smooth function.
Techniques like Kernels, Local polynomials or Smoothing
Splines can then be used to learn this function from the data.
Nonparametric regression is a well-established branch of sta-
tistical modeling and a wide choice of books and monographs
are available; Hastie, Tibshirani and Friedman (2001) is a
good introductory guide.

Smoothing has been usefully applied to quantile regression
(see e.g. He, 1997; Takeuchi et al., 2005), but little or no
work has been done on extending M-quantile regression with
nonparametric modeling. Here we will do so by using Pe-
nalized Splines. Penalized splines are now often referred to
as p-splines and have been recently brought up to attention
by Eilers and Marx (1996). P-splines provide an attractive
smoothing method for their simplicity of implementation, be-
ing a relatively straightforward extension of linear regression,
and flexibility to be incorporated in a wide range of modeling
contexts. Ruppert, Wand and Carroll (2003) provide a thor-
ough treatment of p-splines and their applications.

Let us first consider only smoothing with one covariate x1;
we will then move to bivariate smoothing and semiparamet-
ric modeling. Given an influence function ψ, a nonparamet-
ric model for the qth quantile can be written as Qq(x1, ψ) =
m̃ψ,q(x1), where the function m̃ψ,q(·) is unknown and, in the
smoothing context, usually assumed to be continuous and dif-
ferentiable. Here, we will assume that it can be approximated
sufficiently well by the following function

mψ,q[x1;βψ(q),γψ(q)] = β0ψ(q) + β1ψ(q)x1 +

+ . . .+ βpψ(q)xp1 +
K∑
k=1

γkψ(q)(x1 − κk)
p
+, (3)

where p is the degree of the spline, (t)p+ = tp if t > 0

and 0 otherwise, κk for k = 1, . . . ,K is a set of fixed
knots, βψ(q) = (β0ψ(q), β1ψ(q), . . . , βpψ(q))T is the co-
efficient vector of the parametric portion of the model and
γψ(q) = (γ1ψ(q), . . . , γKψ(q))T is the coefficient vector for
the spline one. The latter portion of the model allows for han-
dling nonlinearities in the structure of the relationship. If the
number of knots K is sufficiently large, the class of functions
in (3) is very large and can approximate most smooth func-
tions. In particular, in the p-splines context, a knot is placed
every 4 or 5 observations at uniformly spread quantiles of the
unique values of x1. For large datasets, this rule-of-thumb can
lead to an excessive number of knots (and therefore parame-
ters), so that a maximum number of allowable knots, say 35,
may be recommended. Note that, on the contrary, the degree
of the spline does not have to be particularly large: it is usu-
ally taken to be between 1 and 3. The spline model (3) uses a
truncated polynomial spline basis to approximate the function
m̃ψ,q(·). Other bases can be used; in particular we will later
use radial basis functions to handle bivariate smoothing. More
details on bases and knots choice can be found in Ruppert et
al. (2003, Chapters 3 and 5).

Given the large number of knots, model (3) can be over-
parametrized and the resulting approximation would look too
wriggly. The influence of the knots is limited by putting
a constraint on the size of the spline coefficients: typically∑K
k=1 γ

2
kψ(q) is bound by some constant, while the paramet-

ric coefficients βψ(q) are left unconstrained. Therefore, esti-
mation can be accommodated by mimicking penalization of an
objective function and solving the following set of (1+p+K)
estimating equations

n∑
i=1

ψq(yi−xiβψ(q)−ziγψ(q))(xi,zi)T +λ
[
0(1+p)

γψ(q)

]
= 0,

(4)
where xi here is the i-th row of the n× (1 + p) matrix

X =

 1 x11 · · · xp11
...

...
. . .

...
1 x1n · · · xp1n

 , (5)

while zi is the i-th row of the n×K matrix

Z =

 (x11 − κ1)
p
+ · · · (x11 − κK)p+

...
. . .

...
(x1n − κ1)

p
+ · · · (x1n − κK)p+

 , (6)

and λ is a Lagrange multiplier that controls the level of
smoothness of the resulting fit.

Section 3.2 provides an algorithm to effectively com-
pute β̂ψ(q) and γ̂ψ(q). Once those estimates are obtained,
m̂ψ,q[x1] = mψ,q[x1; β̂ψ(q), γ̂ψ(q)] can be computed as our
estimate for Qq(x1, ψ). The approximation ability of this fi-
nal estimate will heavily depend on the value of the smoothing
parameter λ. Generalized Cross Validation (GCV) has been
usefully applied in the context of smoothing splines (Craven
and Wahba, 1979) and will be used here too. Details on the
criterion are given in Section 3.2.
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As we have just dealt with flexible smoothing of quantiles in
scatterplots, we can now handle the way in which two contin-
uous variables affect the quantiles of the response without any
structural assumptions: Qq(x1, x2, ψ) = m̃ψ,q(x1, x2), i.e.
we can deal with bivariate smoothing. It is of central interest
in a number of application areas as environment and public
health. It has particular relevance when geographically refer-
enced responses need to be converted to maps. As seen earlier,
p-splines rely on a set of basis functions to handle nonlinear
structures in the data. Bivariate smoothing requires bivariate
basis functions; Ruppert et al. (2003, Chapter 13) advocate
the use of radial basis functions to derive Low-rank thin plate
splines. In particular, we will assume the following model at
quantile q for unit i:

mψ,q[x1i, x2i;βψ(q),γψ(q)] = β0ψ(q) +
+β1ψ(q)x1i + β2ψ(q)x2i + ziγψ(q). (7)

Here zi is the i-th row of the following n×K matrix

Z = [C(x̃i − κk)] 16i6n
16k6K

[C(κk − κk′)]−1/2
16k6K , (8)

where C(t) = ||t||2 log ||t||, x̃i = (x1i, x2i) and κk, k =
1, . . . ,K are knots. The derivation of the Z matrix as in (8)
from a set of radial basis functions is lengthy and goes beyond
the scope of this paper; Ruppert et al. (2003, Chapter 13) and
Kammann and Wand (2003) give a thorough treatment of it.
Here, it is enough to notice that the C(·) function is applied
so that in the full rank case – i.e. when knots correspond to all
the observations – the model for classical bivariate smooth-
ing leads to Thin plate splines (see e.g. Green and Silverman,
1994). In addition, the second part of the right hand expression
in (8) is a transformation used so that the estimation procedure
simplifies; in particular, it can again be written as in (4), with
xi = (1, x̃i).

The choice of knots in two dimensions is more challenging
than in one. One approach could be that of laying down a
rectangular lattice of knots, but this has a tendency to waste
a lot of knots when the domain defined by x1 and x2 has an
irregular shape. In one dimension a solution to this issue is
that of using quantiles. However, the extension of the notion
of quantiles to more than one dimension is not straightforward.
Two solutions suggested in literature that provide a subset of
observations nicely scattered to cover the domain are space
filling designs (see e.g. Ruppert et al., 2003) and the clara
algorithm. The first one is based on the maximal separation
principle ofK points among the unique x̃i and is implemented
in the fields package of the R language. The second one is
based on clustering and selectsK representative objects out of
n; it is implemented in the package cluster of R.

It should be noted, then, that the estimating equations in
(4) can be used to handle univariate smoothing and bivariate
smoothing by suitably changing the parametric and the spline
part of the model, i.e. once the X and the Z matrices are set
up. Finally, other continuous or categorical variables can be
easily inserted parametrically in the model by adding columns
to the X matrix.

3.2 The algorithm

Let us rewrite the set of estimating equations in (4) as follows
n∑
i=1

ψq(yi − uiηψ(q))uTi + λGηψ(q) = 0, (9)

where ui = (xi,zi), ηψ(q) = (βψ(q)T ,γψ(q)T )T and G =
diag

{
0(1+p),1K

}
. If we define the weight function w(e) =

ψ(e)/e and let wi = w(ei), then (9) can be written as

n∑
i=1

wi(yi − uiηψ(q))uTi + λGηψ(q) = 0. (10)

Solving this set of estimating equations is a penalized
weighted least squares problem in which weights, residuals
and coefficients depend one upon another. Further, the value
of the smoothing parameter λ has to be chosen. The GCV cri-
terion to be optimized (minimized) to this end is the following

GCV (λ) =
∑n
i=1 {(I − Sλ)y}i

(1− n−1θtr(Sλ))
2 ,

where Sλ is the smoother matrix associated with m̂ψ,q[ui], i.e.
m̂ψ,q[ui] = Sλy and y = (y1, . . . , yn)T , and θ is a constant
that penalizes additional degrees of freedom given by the trace
of the smoother matrix.

An iterative solution to this problem through Iteratively
Reweighted Penalized Least Squares, IRPLS, is here pro-
posed. In what follows we will consider fixed the influence
function ψ and the quantile of interest q; we will then drop
suffixes and indexes for ease of notation when this will not
lead to ambiguity.

1. Select initial estimates η0.

2. At each iteration t, calculate residuals e(t−1)
i = yi −

uiη
(t−1) and associated weights w(t−1)

i from the previ-
ous iteration.

3. Optimize the GCV (λ) criterion over a grid of λ values
and obtain λ∗.

4. Calculate the new weighted penalized least squares esti-
mates as

ηt =
[
UTW (t−1)U + λ∗G

]−1

UTW (t−1)y,

where U = {ui}i=1,...,n and W (t−1) = diag
{
w

(t−1)
i

}
is the current weight matrix.

Iterate steps 2, 3 and 4 until convergence. R code that imple-
ments this algorithm is available from the authors.

4 Simulation studies

In this section we report on some Monte Carlo simulation
studies carried out to investigate the performance of the p-
splines M-quantile regression – PSPL– as compared to stan-
dard linear M-quantiles – LIN. We first report on simulations
with a single covariate and then move to the bivariate case.
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4.1 A single covariate

The following four models are used to generate the true un-
derlying relationship between the covariate x and the response
variable y:

Linear. m(x) = 1 + 2(x− 0.5);

Exponential. m(x) = exp(6x)/400;

Cycle. m(x) = 2 sin(2πx);

Jump. m(x) = 1 + 2(x− 0.5)I(x 6 0.5) + 0.5I(x > 0.5).

The first model represents a situation in which LIN is based
on the true model and PSPL may be too complex and over-
parametrized. The second and third models define an increas-
ingly more complicate structure of the relationship between y
and x, while the last one is a discontinuous function for which
both LIN and PSPL are misspecified. More in detail, n = 200
x values are generated from a Uniform distribution in [0, 1]; y
values are generated at each replicate by adding errors to the
signals defined above. Two different settings are considered:
Gaussian errors with mean 0 and standard deviation 0.4 and
Cauchy errors with location parameter 0 and scale parameter
0.05. The first setting is considered as a situation of “regu-
larly” noisy data with a signal-to-noise ratio of about 2 for
all signals, but the Exponential function for which it is only
about 0.4. The second one, on the contrary, defines a situa-
tion of more noisy data with the likely presence of extreme
and outlying observations. This provides a 4 × 2 design of
simulations.

For each simulation and each of the R = 1000 replicates,
LIN and PSPL parameter estimates and response estimates at
observed x points are calculated at the deciles using the Huber
2 influence function. In addition, for PSPL a truncated linear
bases is used, i.e. p = 1, withK = 39 knots set at x quantiles;
the smoothing parameter λ has been chosen via GCV with
θ = 2; this means that each additional degree of freedom used
to approximate the underlying signal is penalized twice. It is
common to use a value of θ between 1 and 3.

For each technique the following quantities are computed at
each quantile to compare performances.

MCEV. Monte Carlo Expected Value, defined for each i and
each q as R−1

∑R
r=1 m̂

r
ψ,q[xi];

MASE. Mean Average Squared Errors, defined for each q as

(Rn)−1
n∑
i=1

R∑
r=1

(m̂r
ψ,q[xi]−mψ,q[xi])2.

Figure 1 shows the MCEV for both LIN and PSPL for all
simulations, together with the true value of the signal for the
nine deciles investigated. LIN works well in the linear case for
all quantiles; PSPL, on the other hand, seems to work well
with more complicated structures and is able to capture even
the Cycle signal with a Cauchy error. These findings were
somehow expected and are supported by Table 1. The first
part of it reports the values of the ratios of LIN MASEs to the

PSPL ones. Large gains in efficiency of PSPL over LIN are
shown for the more complicated structures as expected. In the
Linear case, the performance of the two methods is similar in
the Gaussian case, while for Cauchy errors losses of efficiency
are shown by PSPL.

4.2 Bivariate case

Let x1 and x2 take uniformly spread values in the interval
[−1, 1] to form a grid of n = 256 points. Two model surfaces
have been considered:

Plane. m(x1, x2) = 0.5x1 + 0.2x2;

Mountain. m(x1, x2) = cos
√

(1.2πx1)2 + (1.2πx2)2.

Figure 2 shows the perspective plots of these two models. Re-
sponse values are generated at each simulation replicate by
adding errors to the surfaces introduced.

Figure 2: Perspective plots of the two models used in the bi-
variate simulation studies.

As in the previous section, two settings are considered:
Gaussian errors with mean 0 and standard deviation 1 and
Cauchy errors with location parameter 0 and scale parameter
1. Signal to noise ratios for the Gaussian settings take values
of 0.11 for the Plane surface and 0.26 for the Mountain one;
these represent less good-quality datasets compared to the uni-
variate case. This becomes especially true for the Cauchy er-
rors distribution case. A 2 × 2 design of simulations is there-
fore set up. For each of the R = 1000 replicates LIN and
PSPL parameters and surface estimates have been computed;
in particular, PSPL uses the radial basis mentioned in Section
3.1 with K = 50 knots laid down on a regular grid. The per-
formance quantities computed for the two techniques are the
same as those explored for the univariate case.

Plots of MCEV for all cases would be too space consuming
and are not reported here, although available from the authors.
Here we report only those for the Plane and Mountain with
Gaussian errors simulations and a subset of quantiles. Figures
3 and 4 are arranged with quantiles on rows and, respectively,
the true surface, LIN and PSPL MCEVs on columns. Biases
look negligible in all cases except for the LIN approximation
of the Mountain surface as expected.

The second part of Table 1 reports MASE ratios for all
quantiles and the four simulations. Gains in efficiency for
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Figure 1: MCEV for LIN and PSPL together with the true quantile functions for all univariate simulation studies.

ASA Section on Survey Research Methods

3600



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

m(x1, x2)  at quantile 0.1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

LIN

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

PSPL

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

m(x1, x2)  at quantile 0.3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

LIN

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

PSPL

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

m(x1, x2)  at quantile 0.5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

LIN

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

PSPL

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

m(x1, x2)  at quantile 0.7

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

LIN

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

PSPL

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

m(x1, x2)  at quantile 0.9

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

LIN

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

PSPL

Figure 3: Images of the true quantile function and MCEVs for LIN and PSPL at five quantiles for the Plane with Gaussian
errors simulation.
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Figure 4: Images of the true quantile function and MCEVs for LIN and PSPL at five quantiles for the Mountain with Gaussian
errors simulation.
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Table 1: MASE values for LIN for each quantile and simulation study; MASE for PSPL = 1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Univariate
Linear, Gaussian 1.0 1.0 0.9 0.9 0.8 0.8 0.9 0.9 1.0
Linear, Cauchy 0.9 0.7 0.6 0.5 0.6 0.6 0.7 0.9 1.1
Exponential, Gaussian 1.3 1.8 2.5 3.5 4.0 3.4 2.5 1.8 1.3
Exponential, Cauchy 2.3 4.7 6.8 8.2 9.1 9.9 9.8 7.2 3.0
Cycle, Gaussian 5.5 10.4 17.5 26.1 30.7 26.2 17.6 10.5 5.6
Cycle, Cauchy 5.0 5.4 5.2 5.0 4.9 4.9 5.1 5.2 4.7
Jump, Gaussian 1.2 1.6 1.9 2.2 2.4 2.2 1.9 1.6 1.2
Jump, Cauchy 2.1 2.8 3.0 3.1 3.2 3.3 3.3 3.2 2.6
Bivariate
Plane, Gaussian 0.9 0.9 0.8 0.7 0.6 0.7 0.8 0.9 0.9
Plane, Cauchy 1.0 0.8 0.7 0.7 0.7 0.7 0.8 0.9 1.0
Mountain, Gaussian 1.3 1.9 2.5 2.9 3.1 2.9 2.5 1.9 1.3
Mountain, Cauchy 1.0 0.9 1.0 1.1 1.1 1.1 1.0 1.0 1.0

PSPL are shown as expected for the Mountain response sur-
face. Such gains are more remarkable for the Gaussian errors
distribution. Losses in efficiency are shown for the Plane sur-
face and central quantiles.

5 Conclusions

In this paper we propose an extension to M-quantile regres-
sion with nonparametric modeling via penalized splines. This
may be particularly useful when the functional form of the re-
lationship between the variable of interest and the covariates
is believed to be non linear. The proposed approach, beyond
the features of M-quantile models, allows for dealing with un-
defined functional forms that can be estimated from the data.
To fit the model we propose an algorithm based on penalized
iteratively reweighted least squares.

Relative performances of nonparametric M-quantile regres-
sion are evaluated through Monte Carlo experiments. Results
from the simulation studies indicate that this approach works
well and competes with the conventional M-quantile regres-
sion models. The nonparametric M-quantile regression can be
widely used in many important application areas, such as fi-
nancial and economic statistics and environmental and public
health modeling. Currently, following Chambers and Tzavidis
(2006), the authors are investigating the use of nonparamet-
ric M-quantile models in small area estimation methods in the
case in which the functional form of the relationship between
the variable of interest and the covariates is left unspecified
(Pratesi, Ranalli and Salvati, 2006).
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