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1. Introduction 

With respect to survey sampling inferences for 
finite populations, model-dependent inferences 
require a superpopulation model. Consequently, we 
must be concerned over how departures from model 
assumptions may affect estimation and inference for 
the target population. But for sampling designs based 
on models, Hansen, Madow, and Tepping (1983) 
make the following statement:  

 “As denoted before, models may also be used to 
produce model-based designs that are not model-
dependent. For example, models of the population may 
suggest useful procedures for selecting the sample or the 
estimators. This is often done in probability sampling to 
great advantage. Thus model-based designs do not need 
to be model-dependent.” (pages 778-779) 

“Models are appropriately used to guide and 
evaluate the design of probability samples, but with 
large samples the inferences should not depend on the 
model.” (page 791) 

  These paragraphs deliver an important message 
on the significant roles and usefulness  of population 
models in model-based sampling designs.  

Many sampling schemes have been developed, 
and one class of popular sampling methods for both 
model-dependent inferences and design-based 
inferences may be the traditional PSπ  (inclusion 
probability proportional to size) sampling methods.  
The PSπ designs provide efficient estimation in 
varying probability selections when reasonably good 
measures of size are available. However, there has 
been limited research on model-based approaches to 
traditional PSπ sampling designs, and there is a 
limited statistical literature on this topic. 

Raj (1956) suggested a PSπ sampling design to 
minimize the variance of the Horvitz-Thompson (H-
T) estimator under a simple model. This method may 
be called the origin of model-based psπ sampling 
designs. Hanurav (1967) showed that Raj’s (1956) 
method is not valid due to the use of an inappropriate 
model and exemplified the use of a different model. 
Rao and Bayless (1969, 1970) empirically compared 

the expected (or average) variances of several 
estimators under a superpopulation model.  

One of the main differences in the linear models 
considered in those earlier papers  is of whether the 
line passes through the origin or not . The models that 
Raj (1956) and Hanurav (1967) used involved the 
intercept, while Rao and Bayless (1969, 1970) model 
has a zero intercept. 

In fact, the presence of the intercept in the 
superpopulation model for a variable of interest, y, 
has  been one of the key issues  in the debate 
surrounding model-dependent versus design-based 
inferences (See Section 2, Hansen, Madow, and 
Tepping (1983) and Section 3.7, Valliant, Dorfman, 
and Royall (2000) ).  

In this paper, we first prove that different 
population models involving the intercept result in 
the  same optimization problem, and therefore  the 
same model-based PSπ  sampling design. Second, 
we revisit the formula of the expected variance of the 
H-T estimator presented by Rao and Bayless (1969, 
1970), which indicates all model-based 

PSπ sampling designs have the same expected 
variance. Third, we present the expected variance of 
H-T estimator under a superpopulation model with 
the intercept and a corresponding optimal PSπ  
sampling design for minimizing this  variance. Finally, 
we propose a model-based PSπ  sampling design 
based on the optimization problem for minimizing 
possible variance estimates subject to constraints on 
the desirable properties of those estimates .   

 
2. Background 
 
 
 
 

Consider a finite population of N  units, denoted  
by { }1 2, , , NU u u u= ⋅⋅ ⋅ . Let s  be a selected sample of 

size n  from U with a sampling plan ( )P ⋅ .  Then we 
define the first-order inclusion probabilities iπ , 
given by  

( )i iP u s s Sπ = ∈ ∧ ∈ , 1, ,i N= ⋅⋅⋅ ,       (2.1) 
where S  is the collection of all possible samples 
selected from U . 

 Also, we define the joint probabilities (or the 
second-order inclusion probabilities) as  follows:  
 

( & )ij i jP u u s s Sπ = ∈ ∧ ∈ , 1, ,i j N≠ = ⋅ ⋅ ⋅  (2.2) 
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Let 
iy  be the value of the characteristic of the 

unit iu  in U . We may prefer using the H-T (1952) 
estimator, which is unbiased for estimating the 

population total 
1

N

i
i

Y y
=

= ∑ . The H-T estimator is 

given by: 

ˆ
n

i
HT

i i

y
Y

π1=

= ∑                             (2.3) 

According to the method of sample selection, the 

iπ  in (2.3) may be replaced by  

i inpπ = ,                             (2.4) 

where /i ip x X= , 
N

i
i

X x
1=

= ∑ , and 
ix  is a auxiliary 

variable correlated with the iy .  

The sampling design satisfying (2.4) is called a  
PSπ  design. If the ix  is exactly proportional to the 

iy , then the variance of the corresponding H-T 
estimator is zero.  In principle, survey samplers  may 
choose a measure of size, 

ix , that is thought to be 

highly correlated with the iy  and select a sample by a 
sampling mechanism or sampling plan that assigns 
each population element a selection probability based 
on this measure of size. 

 Most PSπ  sampling designs including the long-
standing methods of Brewer (1963) and Sampford 
(1967) and comparatively new approaches  of Kim, 
Herringa, and Solenberger (2003, 2004, 2005) may 
not be efficient for some populations due to the fact 
that selection probability depends only on the 
available measure of size, ix  . In section 3, we show 
that by using population models, more elaborate 
sampling designs can be established to increase the 
precision of the H-T estimator. 

  
3. Considering Population Models for Sampling 
Designs 

 
If we know enough about a population, the 

population model can guide the choice of the sample 
design, resulting in increased precision for estimates. 
Of course, the model-based sample design should be 
developed by keeping in mind an appropriate 
estimator such as the H-T estimator. Then the main 
question becomes, given the population model 
assumptions, what sampling design is optimal for the 
H-T estimator? 

We define a model-based PSπ  sampling design 
that consists of (a) an evaluated quantity (e.g., 
expected variance of the estimator of Horvitz and 
Thompson (H-T) (1952)) under an assumed 

population model, and  (b) a sampling plan that each 
sample is selected with the probability to optimize 
the quantity.  

Assume that from experience with the population 
to be studied we have enough information on the 

ix , 

correlated with the iy , to specify a population model. 
As the first approach for finding a model-based 

PSπ  sampling design, we may choose Raj (1956)’s 
method for the case of 2n = . Raj assumed the 
following model: 
 

i iy xα β= + ,  1, ,i N= ⋅⋅⋅ ,                  (3.1) 
 
The linear model includes no error term and no 

knowledge of the values of α  and β is assumed. 
This model simply indicates that the relation between 

iy  and ix  is a straight line.  
Raj(1956) considered the following form of the 

variance of the H-T estimator. 
 

( )ˆ
N N N

iji
HT i j

i i j ii i j

y
Var Y y y Y

π

π π π

2
2

1
1 1

2
= = >

= + −∑ ∑∑    (3.2) 

 
He showed that s ince the first and third terms are 

fixed under the assumed model, the problem of 
minimizing (3.2)  reduces to the optimization 
problem: 

    Minimize 
N N

ij

i j i i j

π

π π1= >
∑∑                      (3.3)   

 subject to  

ij i
j i

π π
≠

=∑ ,  1, ,i N= ⋅ ⋅ ⋅ .                   (3.4) 

 
Note that (3.3) and (3.4) constitute a linear 

programming (LP) problem and the sums in (3.4) are  
the linear constraints for achieving PSπ sampling 
designs. Raj gave an illustration to obtain the 
optimum sampling plan ( )Pξ ⋅  based on the model 

(3.1) for the three populations ,A B  and C originally  
given by Yates and Grundy (1953). 

In addition to (3.2), there exist various forms of 
the variance of the H-T estimator. For example, one 
alternative form of the variance is: 

( ) ( )( )ˆ
N N N

i j ij i ji i
HT

i i j ii i j

y yy
Var Y

π π ππ
π π π

2

2
1 1

1
2

= = >

−−
= +∑ ∑∑  

(3.5) 
 Since (3.5) can be expressed as: 

            
( )N N N N N

iji i
i j i j

i i j i i j ii i j

y
y y y y

ππ
π π π

2

1 1 1

1
2 2

= = > = >

−
+ −∑ ∑∑ ∑∑ ,  (3.6) 
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the minimization of (3.6) reduces to the minimization 
of the same second term as in (3.2) in Raj’s approach. 
But an alternative LP problem can be obtained by the 
following theorem. 
 
Theorem 3.1.  Under the population model (3.1), the 
minimization of the variance of the H-T estimator 
given in (3.6) is equivalent to minimizing  
 

( )N N
i j

ij
i j i i j

x x

x x

α β
π

1= >

+ +
∑∑                   (3.7) 

 
Proof. Since the first and third terms in (3.6) are 
based on N  units  in a population, they are fixed 
under the assumed model. We know that under the 

PSπ sampling design, 

i
i

nx
X

π = ,                                (3.8) 

as denoted by (2.4) .  
On substituting the iπ  in the second term in (3.6), we 
have  
                                 

 
( )N N

i j i j
ij

i j i i j

x x x xX
x xn

α αβ β
π

2 22

2
1

2

= >

+ + +
∑∑  

                     
( )N N N N

i j
ij ij

i j i i j ii j

x xX X
x xn n

α βα β
π π

2 2 2

2 2
1 1

2 2

= > = >

+ +
= +∑ ∑ ∑ ∑  

                     
( )

( )
N N

i j
ij

i j i i j

x xX
n

n n x x
α βα

π β
2

2

1

2
1

= >

 + +
= + − 

  
∑∑                       

(3.9) 
 
Since all terms in (3.9) except for (3.7) are fixed, the 
minimization of (3.9) leads to min imization of (3.7).  
This completes the proof. 
 
Remark 3.1 . (3.7) can be regarded as the objective 
function to minimize the variance of the H-T 
estimator under the model (3.1). 
 
Remark 3.2.  If 0α = ( 0β ≠ ), then the second term 

reduces to ( ) /X n nβ 2 2 1− , which does not depend 

on the joint probabilities. Thus any PSπ sampling 
design produces the same variance under the model   
If 0β = ( 0α ≠ ), then the objective function    
reduces to simply : 

N N
ij

i j i i jx x

π

1= >
∑∑                       (3.10) 

 

Note that (3.10) is equivalent to (3.3) due to (3.8). 
  

Based on Theorem 3.1., the following LP problem 
to minimize the variance of the H-T estimator can be 
established under the model (3.1). 
 

    Minimize 
( )N N

i j
ij

i j i i j

x x

x x

α β
π

1= >

+ +
∑∑              (3.11)   

 subject to 
 

( 1)ij i
j i

nπ π
≠

= −∑ ,  1, ,i N= ⋅⋅⋅ .              (3.12) 

 
Now consider different models. First, assume the 

following superpopulation model 1: 
 

i i iy xα β ε= + + , 1, ,i N= ⋅⋅⋅ ,              (3.13) 
 
where ( )i iE y xξ α β= + , 2 2( )i iV y xξ σ=  , and 

( , ) 0i jCov y yξ = . Here Eξ
 denotes the model 

expectation over all the finite populations that can be 
drawn from the superpopulation. 
 

The model (3.13) was used by Hanurav (1967) 
who pointed out several problems with Raj’s (1956)  
approach, and asserted that under the model the 
expected variance of H-T estimator is minimized for 
all α and β  for given values of 

ix ’s and 
iπ ’s, if and 

only if 
 

N N
i j

ij
i j i i j

x x
π

π π1= >
∑ ∑ ,                            (3.14) 

N N
i j

ij
i j i i j

x x
π

π π1= >

+
∑∑ ,                         (3.15)  

and  
N N

ij

i j i i j

π

π π1= >
∑ ∑                            (3.16) 

are simultaneously minimized. 
 

But minimizing the three problems (3.14), (3.15), 
and (3.16) at the same time is not valid . For example, 
since (3.14) reduces to a constant under 

PSπ sampling, 
( )N N

ij
i j i

X X n
nn

π
2 2

2
1

1
2= >

−
=∑ ∑  ,            (3.17) 

and (3.14) is not necessary to minimize this  
component under PSπ  sampling designs. Also, we 
show that there exists an optimization problem unlike 
the above that involves (3.14), (3.15), and (3.16). 
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Theorem 3.2.  Consider the form of variance of H-T 
estimator given by (3.6) and let superpopulation 
model (3.13) hold. Then the expected variance under 
the model is  
 

( )
( )

N N
i j

ij
i j i i j

x xX
n

n n x x
α βα

π β
2

2

1

2
1

= >

 + +
+ − 

  
∑ ∑  

         ( )( )2 2 2 2

1

/ 1 ( ) 2
N

i i i
i

X nx x xα β σ αβ
=

+ − + + +∑  

                 ( )2 22 ( )
N N

i j i j
i j i

x x x xα αβ β
>

− + + +∑∑  

(3.18) 
 
Proof. For the first and third terms  in (3.6) under the 
model, we have 
 

 
( )N N N

i i
i j

i i j ii

y
E y yξ

π
π

2

1 1

1
2

= = >

 −
− 

 
∑ ∑∑  

( / ) ( ) ( ) ( )
N N N

i i i j
i i j i

X nx E y E y E yξ ξ ξ
2

1 1

1 2
= = >

= − −∑ ∑∑  

( )( / ) ( ) ( ) ( )
N N N

i i i i j
i i j i

X nx x x E y E yξ ξσ α β2 2 2

1 1

1 2
= = >

= − + + −∑ ∑ ∑
                   (∵ 2 2 2 2( ) ( ) ( ( ))i i i iV y E y E y xξ ξ ξ σ= − = ) 

( ) ( )2 2 2 2

1

/ 1 ( ) 2
N

i i i
i

X nx x xα β σ αβ
=

= − + + +∑  

                     ( )2 22 ( )
N N

i j i j
i j i

x x x xα αβ β
>

− + + +∑∑  

(3.19) 
 
In terms of the second term in (3.6) under the model, 
we have 
 

N N N N
i ji j

ij ij
i j i i j ii j i j

E y yy yX X
E

x x x xn n
ξ

ξ π π
2 2

2 2
1 1

2 2

= > = >

    = 
  

∑ ∑ ∑ ∑   

N N
i j

ij
i j i i j

E y E yX
x xn

ξ ξ
π

2

2
1

2

= >

     = ∑ ∑                                      

                                              (∵ ( , ) 0i jCov y yξ = ) 

( )N N
i j i j

ij
i j i i j

x x x xX
x xn

α αβ β
π

2 22

2
1

2
= >

+ + +
= ∑∑  

( )N N N N
i j

ij ij
i j i i j ii j

x xX X
x xn n

α βα β
π π

2 2 2

2 2
1 1

2 2

= > = >

+ +
= +∑∑ ∑∑  

 ( )
( )

N N
i j

ij
i j i i j

x xX
n

n n x x
α βα

π β
2

2

1

2
1

= >

 + +
= + − 

  
∑∑  

(3.20) 
 

Hence (3.18) follows from (3.19) and (3.20). 
 
Remark 3.3. Since the first term in (3.18) is the same 
as (3.9) and the other terms are fixed, the same LP 
problem specified by (3.11) and (3.12) can be 
established to minimize the variance of the H-T 
estimator. In cases of 2n = , this problem will be the 
minimization of the sum of the weighted selection 
probability for each sample. That is, 
 

          Minimize   
( )

( )
N N

i j

i j i i j

x x
p s

x x

α β

1= >

+ +
∑∑      (3.21) 

subject to 
              ( ) i

j i

p s π
≠

=∑ ,  1, ,i N= ⋅⋅⋅             (3.22) 

 
 

Also, consider the following superpopulation 
model 2: 

i i iy xα β ε= + + ,  1, ,i N= ⋅⋅⋅ ,            (3.23) 

where ( ) 0iEξ ε = , 2 2( )i iV xξ ε σ=  , and ( , ) 0i jEξ ε ε = . 

 
 Although this model looks like a different model 
than (3.13), they coincide. Note that ( , ) 0i jEξ ε ε =  

gives ( ) ( ) ( )i j i jE y y E y E yξ ξ ξ= , resulting in 

( , ) 0i jCov y yξ = . Hence the same expected variance 

as under the model (3.13) and optimization problem 
is obtained.  
 
Remark 3.4. The three models mentioned above give 
the same optimization problem to minimize the 
model expectation of the design-based variance of the 
H-T estimator. Solving the optimization problem by 
using some linear programming software would 
provide an optimal sampling plan ( )Pξ ⋅ . A variety  of 
software is available for this problem, but using a 
powerful software may be recommended because of a 
number of the unknowns in the optimization problem. 
 
Remark 3.5. Under the models  discussed above,  if 

0α = , the model expectation of the variance is fixed 
without depending on the joint probabilities ijπ . Thus 
any PSπ sampling design is acceptable. 
 

In addition to the forms of the variance of the H-T 
estimator such as (3.2), (3.5), and (3.6), we may 
consider one of the popular forms given by 

µ( ) ( )
N N

ji
HT i j ij

i j i i j

yy
Var Y π π π

π π

2

3
1= >

 
= − −  

 
∑ ∑ ,  (3.24) 

which is equivalent to Var1 or Var2 . 
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Rao and Bayless (1969) (1970) provided results 
from an empirical study based on a super-population 
approach for examining the efficiencies of the several 
estimators including the H-T estimator. They 
assumed the following superpopulation model with 
no intercept: 
 

i i iy xβ ε= + , 1, ,i N= ⋅⋅⋅ ,              (3.25) 

where ( ) 0iEξ ε = , 2( ) g
i iE axξ ε = ( 0a > , 0g ≥ ), and 

( ) 0i jEξ ε ε = . 
  

Here we call this model the superpopulation 
model 3. They showed that the average variance of 
the H-T estimator under this model is as follows: 
 

       ( )
g N

g
i i

i

aX
EVar np p V

nξ ξ
1

3 1 −= − =∑         (3.26)    

 
Note that Vξ  does not depend on the i jπ . Hence 

all model-based PSπ sampling designs using H-T 
estimator have the same expected variance under the 
model and any PSπ design is good for minimizing 
the variance.  

 
Since they did not provide the details of the proof 

for (3.26), we give them as follows: 
Consider a different form of Var3  given by 
 

 µ( )
N N

ij ji
HT i j

i j i i j

yy
Var Y p p

p pn

π
2

4 2
1= >

  
= − −       

∑∑  

(3.27) 
When taking the model expectation for Var4 , we 

have        
µ( )( )HTE Var Yξ 4      

       
N N

ij ji
i j

i j i i j

yy
p p E

p pn ξ

π
2

2
1= >

  
= − −       

∑∑ (3.28) 

Noting  
( ) g

i iV y axξ =  ,                                  (3.29) 

          2 2 2g
i i iE y ax xξ β= + ,                         (3.30) 

and  
2( )i j i jE y y x xξ β= ,                          (3.31) 

 we have 

( )( ) ( )j i ji ii

i j i ji i

y E y yE y E yy
E

p p p pp p
ξξ ξ

ξ

2 2 2

2 2 2
 

− = + −  
 

 

                        ( )g
i i i j

i ji

ax x x x
p pp

β β2 2 2
2

2 2
= + −       

                        g
iaX x X Xβ β2 2 2 2 2 22 2 2−= + −  

                        g
iaX x2 22 −=  

                        g g
iaX p 22 −=                                (3.32) 

 
Then  

µ( )( )
N N

ijg g
HT i i j

i j i

E Var Y aX p p p
nξ

π
2

4 2
1

2 −

= >

 
= − 

 
∑∑  

    
N N

ijg g
j i

i j i i

aX p p
n p

π 1
2

1

2 −

= >

 
= − 

 
∑ ∑  

    
N N

ijg g
j i

i j i i

aX p p
n p

π
1

2
1

1
2

2
−

= ≠

 
= − 

 
∑∑  

    
N N N

g g g
i j i ij

i j i i j ii

aX p p p
n p

π1 1
2

1 1

1− −

= ≠ = ≠

 
= − 

 
∑ ∑ ∑ ∑  

    ( )
N N N

g g g
i j i i

i j i i i

aX p p p n n p
n p

1 1
2

1 1

1
1− −

= ≠ =

 
= − − 

 
∑ ∑ ∑  

    ( )
N N

g g g
i i i

i i

n
aX p p p

n
1 1

1 1

1
1− −

= =

− 
= − − 

 
∑ ∑  

    
N

g g
i i

i

n
aX p p

n
1

1

1
1 −

=

− = − −  
∑  

    ( )
g N

g
i i

i

aX
np p

n
1

1

1 −

=

= −∑                             (3.33) 

 
 
Hence (3.26) follows. 
                          

Note that if 1g =  and 2a σ= ,  then 

 µ( )( )HTE Var Yξ 4

N n
X

n
σ 2−

=        (3.34) 

 
Now, consider the superpopulation model 4 with 

intercept term as follows: 
 

i i iy xα β ε= + + , 1, ,i N= ⋅⋅⋅ ,              (3.35) 

where ( ) 0iEξ ε = , 2( ) g
i iE axξ ε = ( 0a > , 0g ≥ ), and 

( ) 0i jEξ ε ε = . 

 
Although the only difference between the model 3 

and the model 4 is  the intercept, obtaining 

µ( )( )HTE Var Yξ 4
under model 4 becomes more 

complicated. as described below.  
 

Theorem 3.3.  Assume the population model given in 
(3.35) and consider the variance o f  H-T estimator 
given by (3.27). Then the model expectation of the 
variance under the model is  given by  
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µ( )( )HTE Var Yξ 4                             

( ) ( )
N N

j i i
i j i

V x x xξ α α β1

1

2 −

= >

 
= + − + 

 
∑∑  

     ( ) ( )
N N

j i i ij
i j i

X
x x x

n
α

α β π
2

1 1 1
2

1

2 − − −

= >

+ − +∑∑ ,    

(3.36) 

where ( )
g N

g
i i

i

aX
V np p

nξ
1

1

1 −

=

= −∑ . 

 
Proof. Since  

2 2 2 2 2g
i i i iE y ax x xξ α β αβ= + + +        (3.37)                         

and  
2 2( ) ( )i j i j i jE y y x x x xξ α αβ β= + + + ,     (3.38) 
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α α β2 2 12 2− −

−
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Then we have 
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(∵(3.33)) 
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j i i
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Hence (3.36) follows. 
 
Corollary 3.1. If 0α = , then the model expectation 
of the variance of the H-T estimator under the 
population model (3.35), *Vξ , reduces to Vξ . 
Corollary 3.2. Even if the true population model does 
not involve the intercept α unlike (3.35), the PSπ  
sampling designs obtained from the optimization 
problem consisting of (3.40), (3.41), and (3.42) have 
the same model expectation as the variance of the H-
T estimator under any other PSπ sampling designs. 
 

Because the first and second terms are fixed in 
(3.36) under the model (3.35), we may consider the 
following optimization problem to minimize the 
model expectation of the variance of the H-T 
estimator. 
 

Minimize ( )( )
N N

j i i ij
i j i

x x xα β π1 1 1

1

− − −

= >

− +∑ ∑    (3.40) 

 
under the linear inequality constraints   
 

i j ij i jcπ π π π π≤ ≤ , 1, ,j i N> = ⋅⋅ ⋅ ,     (3.41) 
where c  is a real number between 0 and 1,  

and      

         ( )
N

ij i
j i

nπ π1
≠

= −∑ , 1, ,i N= ⋅⋅⋅ .            (3.42) 

 
 
Remark 3.6. The optimization problem consisting of 
(3.40), (3.41), and (3.42), based on *Vξ , does not 

depend on ( 0)a > or ( 0)g ≥ under the model (3.35). 
 

 Next, consider model-based PSπ sampling 
designs for minimizing expected variance estimates 
under a superpopulation model. This approach may 
be encouraged to reduce the length of the confidence 
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intervals based on the model of a population to be 
sampled. 

The variance estimator of the H-T estimator given 
by Sen (1953) and Yates and Grundy (1953), termed 
the Sen-Yates-Grundy (S-Y-G) estimator is denoted 
by 

µ
2

1

( )
n n

i j ij ji
HTSYG

i j i ij i j

yy
var Y

π π π

π π π= >

 −
= −  

 
∑∑ ,   (3.43) 

which is expressed as a different form 

µ
2

2
1

1
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p p yy
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∑∑ (3.44) 

 
Theorem 3.4.  Consider the variance estimator of H-
T estimator given by (3. 44) and let a population 
model be (3.35). Then the model expectation of the 
variance estimator under the model (3.35) is   
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n n
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i j i ij
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where ( )( )g
i j i j j i ix ax x x x xα α β1 1− −= + − + .    (3.46) 

 
Proof. Taking the model expectation for the S-Y-G 
variance estimator, we have  
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(3.47) 
 
The first and third term in (3.47) are  re-expressed as  

                                                                                           
n n

ij

i j i ij

x

π1

2
= >
∑∑ ,                           (3.48) 

where ( )( )g
ij i j j i ix ax x x x xα α β1 1− −= + − + . 

 
From (3.47) and (3.48) we have (3.45). Hence the 
proof is completed. 
 
 

We may consider minimizing the possible 
variance estimates of the H-T estimator under the 
model (3.35). It is clear that under the model (3.35) 
the second and third terms in (3.45) are fixed. Thus 
for minimizing the possible variance estimates, the 
following can be used 

 µ( )
1

2( 2)!
( )

( 2)!( )!

N N
ij

HTSYG
s S i j i ij

xN
E var Y

n N nξ π∈ = >

−
=

− −∑ ∑∑  

                              (3.49) 
 

Thus minimizing (3.49) reduces to  

Minimize
N N

ij

i j i ij

x

π1= >
∑∑ ,                       (3.50) 

where ( )( )g
ij i j j i ix ax x x x xα α β1 1− −= + − + . 

 
With res pect to the objective function (3.50) to 

reduce the possible variance estimates, the constraints  
(3.51) and (3.52) can be added for the optimization 
problem and the following constraint can be added to 
maintain some desirable properties for variance 
estimation.      

        i j ij i jcπ π π π π< ≤ , 1, ,j i N> = ⋅⋅⋅ ,      (3.51) 

  where c  is a real number between 0 and 1 . 

 

  ( )
N

ij i
j i

nπ π1
≠

= −∑ , 1, ,i N= ⋅⋅⋅ .               (3.52)    

 

If 0α = , the problem (3.50) will be minimizing 
 

      
gN N

i j

i j i ij

x x

π

1

1

−

= >
∑∑  ,                       (3.53) 

which depends on g in the model. 

 
Note that (3.50) and (3.53) are the nonlinear 
programming (NLP) problem and they will be solved 
by using an optimization software program. 
 
 4. Discussion 

  
Raj’s (1956) approach only uses a simple model, 

but it is useful in developing other PSπ  sampling 
designs based on the superpopulation models . 
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We have suggested several approaches for model-
based PSπ  sampling designs. Introducing the 
intercept term into the model may be desirable with 
respect to flexibility in sampling design. It does not 
result in any loss of model expectation of variance by 
a given sampling design, even though the model may 
pass through the origin . The structure of the 
optimization problem for the minimization of model 
expectation of variance   estimates depends on the 
expressions of the variance as well as model 
assumptions. The construction of the sampling plan, 
which is a solution of the optimization problem, may 
be possible by using LP or NLP software.  

Empirical comparison studies between model-
based PSπ  sampling design and traditional PSπ  
sampling design under a diversity of superpopulation 
assumptions may be useful.  

We did not deal with PSπ  sampling designs 
involving more complicated models such as a 
multiple regression model or a nonlinear model. 
Examining those models for sampling designs may 
be recommended.  
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