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1 Abstract  1 
 
Many surveys employ weight adjustment procedures to 
compensate for unit non-response.  This paper frames 
such procedures as second-phase sampling adjustments 
(where the second phase refers to a Bernoulli sample of 
respondents from sampled units). We compare the effect 
of replicating the unit non-response weight adjustment 
procedure on stratified jackknife variance estimates to 
those obtained using the corresponding “shortcut 
procedure” variance estimates on the same data. Two 
weight adjustment procedures are examined.  
 
Key words:  unit non-response, Bernoulli sample, 
linearization variance estimator 
 

1 Introduction 
 
Many surveys employ weight adjustment procedures to 
compensate for unit non-response.  Such weight 
adjustment procedures can be viewed as bias corrections 
accounting for underestimation or as second-phase 
sampling adjustments (where the second phase refers to 
a random sample of respondents from the initial 
sample).  The latter view couches the issue of unit non-
response as a variance estimation problem.  If we 
assume a uniform response mechanism in each 
weighting class p, then the second phase sample can be 
viewed as a Bernoulli sample with a random sample 
size of respondents -- each with response probability πp 
-- from the first-phase sampled units in each weighting 
class (Särndal, C., Swensson, B., and Wretman, J., 1992, 
pp. 62-65 and Kott, 1994).  This two-phase sample 
interpretation is equally valid with a missing-at-random 
(MAR) model, which assumes probability of unit non-
response depends on an auxiliary variable or set of 
auxiliary variables, not the characteristic(s) of interest.  
In the two-phase  framework, we compare the effect of 

 
   
1 This report is released to inform interested parties of 
ongoing research and to encourage discussion of work 
in progress.  The views expression on statistical and 
methodological issues are those of the authors and do 
not necessarily reflect those of the U.S. Census Bureau 
or Statistics Canada. 

replicating the unit non-response weight adjustment 
procedure on stratified jackknife variance estimates to 
those obtained using the corresponding “shortcut 
procedure” stratified jackknife variance estimates on the 
same data.   
 
Shortcut procedure variance estimates use replicate 
weights constructed from the full-sample unit non-
response adjusted weights instead of repeating the 
weighting procedure in each replicate.  This approach 
was originally presented (not recommended) in Wolter 
(1985, pp. 82-84). Note that the shortcut procedure 
variance estimator is not a naïve variance estimator, 
which treats imputed values as though they were 
reported values and which has been repeatedly shown to 
underestimate the true variance.   The naïve variance 
estimator replaces the missing item responses with 
imputed values, yielding a dataset with no (visible) item 
non-response, and the replicate values do not contain 
any missing values.  Our replicate assignment 
procedures assign sample units to replicates.  
Consequently, these replicate estimates contain both 
responding and non-responding units, regardless of the 
replicate reweighting procedure. 
 
We consider two different weight adjustment 
procedures, both of which are adjustment-to-sample 
models described in Kalton and Flores-Cervantes 
(2003), i.e., all sampling weights in a weighting class p 
are multiplied by a factor derived from data 
corresponding to sample units.  The first procedure (the 
ratio adjustment procedure) controls the respondent 
estimates to full-sample estimates of an auxiliary 
variable.  The second procedure (the count adjustment) 
yields estimates that are controlled to sample counts; 
when weighted counts (population estimates) are used, 
then the count adjustment procedure is the “quasi-
randomization” estimator (Oh and Scheuren, 1983); 
when weighting cells are sample strata, then the count 
procedure is the inverse unweighted response rate 
adjustment recommended by Vartivarian and Little 
(2002). 
 

2 The Jackknife Linearization Estimator 
Given a Two-Phase Sample with Bernoulli 

Sampling at the Second Phase 
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Suppose we have a stratified SRS-WOR design with nh 
sampled units in the hth stratum (h = 1, 2, …, L) .  Let yhi 
(i=1, …, nh) be the value of the variable of interest for 
the ith unit in the hth stratum (obtained from survey 
respondents) and let xhi be the corresponding auxiliary 
variable (available for all sampled units).  For 
simplicity, assume that sampling fractions in all strata 
are negligible, and that there are at least two sampled 
units in all strata.  In addition, we assume that there exist 
P disjoint weighting classes, which can cut across the 
design strata.  With unit non-response, we divide the 
sampled units, s, into respondents, sr, and non-
respondents, snr. The following derivations assume that 
each weighting class contains at least two respondents, 
although in practice, surveys generally collapse 
weighting cells with insufficient respondents. 
 
2.1 Ratio Adjustment Procedure 
 
Since  is known for all sampled units in s, it can be 
used in the unit non-response weight adjustment.  The 
non-response weight adjustment for the p

hix

th weighting 
class is 
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where  denotes the summation over all sampled 

units,  is the response indicator variable (I
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given by hi
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where  is the respondent-based estimate of 
characteristic Y.  This expression is exactly equal to the 
ratio imputation estimator presented in Deville and 
Särndal (1994).  

p
rŶ

 
We obtain the variance of Ŷ  by decomposing it within 
weighting cell p (see Cochran, 1977, p. 343) 
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and thus, 
 

( ) .ˆ AB +=+=− ∑
p

pp ABYY  

The first term (B) corresponds to the ordinary error of a 
ratio estimate; the second term (A) is the error 
contribution of the auxiliary variable from the 1st to 2nd 
phase sample.  Consequently, the mean squared error of 
the non-response adjusted estimator is given by 
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where E1 is the conditional expectation at the first stage 
of sampling (stratified SRS-WOR) and E2 is the 
conditional expectation at the second stage of sampling 
(Bernoulli).  It is difficult to derive a closed-form 
expression for this statistic, since sampling strata may 
not be entirely confined within weighting cells.  The Bp 
component contains two sources of variability from the 
respondent sample:  the variable of interest and the 
auxiliary variable, x. 
 
If the weighting cells consist entirely of one or more 
strata, then the MSE expression can be further 
simplified.  In this case, the weighting cell estimates are 
independent, and the expectations can be taken within 
the weighting cells.  Weighting cells that comprise more 
than one stratum will yield second phase combined ratio 
estimates; weighting cells that equal strata will yield 
second phase separate ratio estimates.  In the latter case, 

( ) ∑=
p

pYMSEYMSE ).ˆ(ˆ  Under an ignorable response 

mechanism, the MSE is minimized when the all units 
within the same weighing cell have (1) the same 
probability of response (response propensity) or (2) the 
same mean for the characteristic of interest.  Satisfaction 
of both conditions (i.e., same response propensity and 
mean within weighting cell) results in substantial MSE 
reduction in both the bias and variance terms when the 
count adjustment procedure is applied to correct for unit 
non-response, in a model-based or model-assisted 
perspective (Little and Vartivarian, 2005).   
 
Business surveys often use the sampling strata as 
weighting classes.  When the stratification procedure 
depends on some sampling unit measure of size, for 
example, then the model assumption is that all units 
within a stratum have the same probability of response 
(e.g., larger units are more likely to respond or be 
recontacted for response than smaller units).  The 
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second model is assumed when all survey variables of 
interest are highly correlated with auxiliary stratification 
variables.  
 
As shown below, the fully reweighted stratified 
jackknife variance estimator implicitly simulates all 
error components of the two-phase sample MSE ( )Ŷ .  To 
see this, we first define the stratified jackknife weights 
when the jth unit in the gth stratum is removed as 
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where ng ≥ 2  for all strata g. The non-response 
adjustment when the (gj)th unit is deleted is then 
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The non-response adjusted jackknife weight is 

( ) ( ) ( )gjhi
p
gj

p
gjhi wdw 1

~ = .  The replicate estimate when the 
( )gj th unit is deleted is then 
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and the jackknife variance estimator of Ŷ is 
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To obtain a linearization type variance estimator, note 
that from a Taylor Series expansion we have (ignoring 
second order and higher derivatives) 
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which yields the reweighted jackknife linearization 
variance estimator  
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(Derivation available upon demand from the authors).  It 
is not a coincidence that the bracketed term of 

has exactly the same form as the MSE expression 
of a two-phase ratio estimator. Moreover, the first term 
in this linearization estimate – the term – contains 
two explicit error components:  one for the characteristic 
of interest and one for the auxiliary variable (both within 
the response set).    Our derived linearization estimator 
is slightly different from the comparable estimator 
derived in both Rao and Sitter (1995) and Shao and 
Steele (1999), following from different assumptions 
about the second phase sample of respondents. 
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Turning to the shortcut jackknife variance estimator, 
where the non-response adjustment is not recalculated 
in each replicate, we express the non-response adjusted 
jackknife weight as .~

)(1)( gjhi
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and the shortcut jackknife variance estimator is 
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Comparing the fully reweighted and shortcut 
linearization estimators, we see that the difference 
between the reweighted and the shortcut jackknife 
variance estimators is the term 
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within the squared term.  The shortcut variance 
estimator is a partial approximation of the ordinary 
ratio estimate error:  it does not include the error 
contribution of the auxiliary variable to the ratio 
estimate or its covariance with the characteristic.  Thus, 
the  term approximates the difference between the 
error contribution of the auxiliary variable from 1

A ′′ˆ
st 

(sample units) to 2nd phase (respondent units) and the 
error contribution from the auxiliary variable in the 
ordinary ratio estimate, both missing from the shortcut 
jackknife variance estimator.  In a given weighting cell, 
the term should be small when the unit response 
rate is high (say greater than 70%) since 

 is a non-response adjusted estimator of 
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With a stratified SRS sampling plan where the 
weighting classes correspond to strata, we can show that 
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Turning to the second error component term, we have 
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When ,1≈grg xx the weighing cell’s contribution to 

the  term is positive or zero.  When this 
condition holds for all strata – true under a MAR 
response mechanism -- then the cumulative contribution 
of  is negative or zero, reducing the estimated 
variance over the shortcut procedure.  We can interpret 

the 
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( )2A ′′ˆ term as the estimated cumulative MSE 
contribution of the auxiliary variable, and the 

term as the cumulative covariance contribution.  
If the auxiliary variable has high positive correlation 
with the characteristic of interest and low relative-
variance, then the shortcut procedure will overestimate 
the variance.   
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2.2 Count Adjustment Procedure 
 
A commonly used unit non-response adjustment 
procedure controls the estimated respondent population 
to the population total estimates within weighting cell, 
setting  =1 for all sample units.  The non-response 
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the non-response adjusted weight is 
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The reweighted jackknife variance estimator is 
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The count adjustment procedure is designed to account 
for both estimator bias and variance given a MAR 
response mechanism by judiciously forming weighting 
cells (Little and Vartivarian, 2005).  This estimator is 
mathematically equivalent to the mean imputation 
estimator presented in Deville and Särndal (1994). 
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where r(gj) are the number of respondent units in the 
jackknife replicate. These replicate weights have exactly 
the same form as the full-sample adjusted weights, and 
the replicate estimates are also Horvitz-Thompson 
estimates based on respondents.   
 
The reweighted jackknife linearization variance 
estimator is given as 
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 (Derivation available upon demand from the authors), 
and the shortcut jackknife linearization variance 
estimator is given by 
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That is, the shortcut procedure variance estimator is 
always larger than the reweighted estimator. As rg → ng  
the contribution from the gth group to this term 
approaches zero, i.e.,   the higher the response rate, the 
closer the procedure is to the usual textbook variance 
estimator.  As with the ratio adjustment procedure, the 

relative contribution of the missing (  term to the 
total MSE depends on the unit response rate and the 
magnitude of the characteristic within each stratum.   

)2
A ′′ˆ

 
3 Empirical Results 

 
Section 2 addresses the question of what are the 
variance estimation effects of using a shortcut procedure 
compared to a reweighted procedure, demonstrating 
overestimation with the count adjustment procedure and 
expected overestimation with the ratio adjustment 
procedure.  The question then becomes what is the 
degree of overestimation and what factors might cause 
the overestimation to be severe enough to bias survey 
conclusions.   
 
To evaluate these questions empirically, we used survey 
data from the U.S. Census Bureau’s Annual Capital 
Expenditures Survey (ACES).  The ACES survey is a 
mail-out/mail-back that collects data about the nature 
and level of capital expenditures in non-farm businesses 
operating within the United States.  Respondents report 
capital expenditures for the calendar year in all 
subsidiaries and divisions for all operations within the 
United States.  ACES respondents report total capital 
expenditures, broken down by type (expenditures on 
Structures and expenditures on Equipment). Hereafter, 
we refer to these characteristics as Total, Structures, and 
Equipment.  Tables 1 through 3 compare standard error 
estimates of capital expenditures statistics from three 
years’ of ACES data: the first two data sets (from survey 
years 2002 and 2003) are the full collection of final 
tabulated ACES data and the third data set (survey year 
2003) contains a mid-survey collection of data. 
 
The ACES universe contains two sub-populations: 
employer companies and non-employer companies. 
Different forms are mailed to sample units depending on 
whether they are employer (ACE-1) companies or non-
employer (ACE-2) companies.  New ACE-1 and ACE-2 
samples are selected each year, both with stratified SRS-
WOR designs.  The ACE-1 sample comprises 
approximately seventy-five percent of the ACES sample 
(roughly 45,000 companies selected per year for ACE-1, 
and 15,000 selected per year for ACE-2).  The ACE-
survey strata are defined by four company size class 
categories within industry (denoted 2A through 2D, 
ranked from largest to smallest within industry), with 
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approximately 500 non-certainty strata each year.  
Sampling fractions in the large-size class-within-
industry strata (2A) can be fairly high (approximately 
55% of the sample in these strata are sampled at rates 
between 1 and 2); sampling fractions in the other three 
size class within-industry strata are usually less than 
0.20 and sampling weights range from 5 to 1000, 
depending on industry and size-class strata.  The ACE-2 
component is much less highly stratified, with between a 
total of six to eight size-class strata used each year, and 
sampling fractions less than 0.01 in all strata.  Because 
the response rates in certainty strata are generally close 
to 100%, we exclude certainty units from the variance 
estimates discussed below.  We do not otherwise 
incorporate fpc’s into our calculations.  The ACE-1 
component has a fairly high expected unit response rate 
(approximately 80% in most strata), whereas the 
corresponding rate for ACE-2 tends to be somewhat 
lower (ranging from 60 to 80%). 
 
The ACE-1 component uses the ratio adjustment 
procedure with administrative data payroll as auxiliary 
variable to account for unit non-response, whereas the 
ACE-2 component uses the count procedure.  In almost 
all cases, ACES uses design strata as weighting cells:  
under complete unit non-response in an ACE-1 
industry’s certainty stratum or in the large company 
(2A) stratum, the two strata are combined into one 
weighting cell (within the sample industry).  Presently, 
there is no collapsing procedure in place for complete 
non-response in the three remaining ACE-1 (within-
industry) non-certainty strata.  In general, stratum 
collapsing for weight adjustment is a very rare 
occurrence and is hereafter ignored in this paper.  To 
assess the effect of unit non-response weight adjustment 
procedure on the ACE-1 standard errors, we compute 
standard errors from ACE-1 data using both weight 
adjustment procedures (ratio and count).  Since payroll 
data are not available for the ACE-2 component, we 
only present results using the count adjustment for that 
sub-population. 

 

 
Capital expenditures data are fairly atypical business 
data, in that they often are characterized by low year-to-
year correlation for the same reporting unit:  for 
example, a company that spends a large amount of 
capital expenditures on structural (building) 
improvements one year is unlikely to invest much in 
structural improvements in the following year.   
Moreover, a reported value of zero for an expenditures 
item is quite legitimate and is often the response value 
for most items reported by a small company. 
 
Table 1 presents standard error estimates for reweighted 
stratified jackknife (SJR) standard errors for the ACE-1 

and ACE-2 data sets, along with the jackknife 
linearization standard errors obtained from reweighted 
procedures (LinR) and shortcut procedures (LinS).  The 
shortcut procedure stratified jackknife and shortcut 
linearized jackknife standard errors are equivalent. 
 
The reweighted jackknife and linearized reweighted 
jackknife standard error estimates are all within 1-
percent of each other.  Regardless of weight adjustment 
procedure, the linearized shortcut standard errors are 
larger than corresponding linearized reweighted 
standard errors.  The degree of “overestimation” is, 
however, quite small:  in most cases, the shortcut 
procedure standard errors are less than 2-percent larger 
than their fully reweighted procedure counterparts. 
 
Table 1:  Comparison of Fully Reweighted and Shortcut 
Procedure Standard Errors (in Millions) 

 Ratio Adjustment Count Adjustment 

  SJR LinR LinS SJR LinR LinS

Total 8.4 8.3 8.4 8.5 8.4 8.5 

Structures 6.1 6.1 6.1 6.2 6.2 6.2 ACE-
1 

Equipment 4.6 4.6 4.7 4.7 4.6 4.7 

Total 3.0 3.0 3.0 

Structures 1.9 1.9 1.9 

2
0
0
1 ACE-

2 
Equipment

   

2.0 2.0 2.0 

Total 9.5 9.5 9.6 9.8 9.7 9.8 

Structures 8.3 8.3 8.3 8.7 8.5 8.5 ACE-
1 

Equipment 4.2 4.2 4.2 4.3 4.2 4.3 

Total 5.7 5.7 5.8 

Structures 4.9 4.9 4.9 

2
0
0
2 ACE-

2 
Equipment

   

2.4 2.4 2.4 

Total 19.9 19.5 19.9 21.5 21.2 21.4 

Structures 43.0 42.6 43.1 44.2 44.0 44.4 ACE-
1 

Equipment 17.4 17.1 17.4 19.0 18.9 18.8 

Total 15.8 15.8 15.8 

Structures 25.0 25.0 25.0 

2
0
0
3 ACE-

2 
Equipment

   

89.0 89.0 8.9 

 
For the ratio adjustment procedure estimates, the 
difference between shortcut and reweighted procedure 
standard error estimates is the sum of two separate 
terms, ( )2

A ′′ˆ (the auxiliary variable MSE contribution 

from both sampling phases) and .  Table 2 
presents the linearized reweighted variance estimates 
(LinR_V) along with these estimated components. 
Notice that the relative contribution of the

YBA2 ˆˆ ′′

( )2
A ′′ˆ term is 

very small compared to the covariance term and YBA2 ˆˆ ′′
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(

 

to the total estimated variance.  The relative magnitude 
of the ( term indicates a “canceling” effect of the 
auxiliary variable error contributions from both sample 
phases, i.e., the error contribution from the 1

)2
A ′′ˆ

st to 2nd 
phase is only slightly larger than the auxiliary variable 
error contribution to the ordinary ratio estimate.  This is 
not unreasonable, given the consistently high unit 
response rates in the ACE-1 strata.   The correlation 
between payroll and capital expenditures data is quite 
low for small companies, accounting for the proximity 
of corresponding reweighted and shortcut variance 
estimates. 
 
Table 2:  Variance Components of Fully Reweighted 
Linearized Jackknife with Ratio Adjustment (ACE-1)  
(x 1012)  
 Item LinR_V ( )2A ′′ˆ  YBA2 ˆˆ ′′  ( ) YBA2A

2 ˆˆˆ ′′+′′  

Total 69.7 2.3 -4.7 -2.3 

Structures 37.5 0..7 -1.5 -0.8 

2
0
0
1 Equipment 21.5 1.0 -1.9 -0.9 

Total 89.8 1.7 -3.8 -2.1 

Structures 68.4 0.68 -1.6 -0.9 

2
0
0
2 Equipment 17.3 0.6 -1.3 -0.6 

Total 381 9.3 -23.2 -14 

Structures 18.1 0.6 -1.1 -0.4 

2
0
0
3 Equipment 293 4.7 -13.3 -8.6 

 
Table 3 presents the linearized reweighted variance 
estimates using the count adjustment procedure from the 
ACE-1 and ACE-2 data and the ( )  component.  
Again, we see canceling in the auxiliary variable error 
contributions, with the ordinary ratio estimate error 
increase being offset by an approximately equally large 
error component due to the random sample size (1

2
A ′′ˆ

st to 
2nd stage error component). 
 
Table 3:  Variance Components of Fully Reweighted 
Linearized Jackknife with Count Adjustment (x 1012) 
 

  Item LinR_V ( )2
A ′′ˆ  

Total 71.0 1.6 

Structures 38.2 0.5 ACE-1 

Equipment 21.5 0.7 

Total 9.0 0.1 

Structures 3.7 0.01 

2001 

ACE-2 

Equipment 4.0 0.08 

Total 94.5 1.5 

Structures 72.2 0.6 

2002 

ACE-1 

Equipment 18.0 0.5 

  Item LinR_V )2
A ′′ˆ  

Total 32.8 0.7 

Structures 24.1 0.1 

 ACE-2 

Equipment 5.7 0.1 

Total 451 8.6 

Structures 19.3 0.4 ACE-1 

Equipment 349 5.5 

Total 248 1.6 

Structures 6.2 0.01 

2003

ACE-2 

Equipment 79.1 0.6 
 
 
The ACES data are characterized by high unit response 
rates and high reported zero rates.  The results presented 
in Tables 2 and 3 are completely in line with a MAR 
model assumption:  that is, there is a very small 
contribution to the overall error from unit non-response.  
The variance estimation results alone are not, however, 
sufficient for assuming ignorable non-response, since 
our derivations assume a uniform or MAR response 
mechanism. 

4 Conclusion 
 
This paper presents research undertaken to investigate 
the variance estimation effects of not replicating a unit 
non-response weight adjustment procedure.   We 
assume that respondents comprise a Bernoulli sample of 
sampled units within a weighting class, so that the 
realized sample has a random sample size and this 
random element is reflected in the fully reweighted 
jackknife variance estimates.   
 
Given an ignorable response mechanism and a two-
phase sample design (stratified SRS-WOR at 1st phase, 
Bernoulli at 2nd phase), we show that using a shortcut 
procedure yields overly large MSE estimates with the 
count procedure adjustment and generally overestimates 
the MSE with a ratio adjustment procedure.  The degree 
of overestimation is, however, a function of the 
weighting cell sample size, the weighting cell 
respondent rate, and in the case of the ratio adjustment 
procedure, the covariance between the characteristic of 
interest and the auxiliary variable.  In a highly stratified 
survey with varying survey weights and varying unit 
response rates, it is difficult to predict at what point the 
cumulative effect of the shortcut procedure 
overestimation will become severe enough to affect 
confidence interval coverage.  In fact, it is likely that 
corresponding fully reweighted and shortcut variance 
estimates will often be comparable; the two MSE 
components from the auxiliary variable will nearly 
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cancel, and the majority of the variance will derive from 
the respondent sample ratio estimate. 
 
The justification for the use of a shortcut procedure in a 
replicate variance estimation method is to save time and 
computing resources.  If these are truly issues and the 
program has consistently high unit response-rates in all 
weighting cells, then while there are clearly theoretical 
advantages to fully replicating the weight adjustment 
procedure, there may be little or no practical advantage.   
Having said that, our applications demonstrated 
excellent approximations to stratified jackknife variance 
estimates with our linearized jackknife variance 
estimators, both of which are computationally quick and 
computer overhead “free” (in terms of replicate storage).  
Given these viable alternatives, it is difficult to justify 
the use of a shortcut procedure variance estimator -- 
replicated or linearized – over a fully replicated 
procedure variance, at least in the case of weighting 
adjustment for unit non-response. 
 
In conclusion, note that our findings rely on several 
assumptions.  In Section 2, we assume that 2nd order and 
higher derivatives are negligible for the linearization.  
Moreover, these derivations rely on a Bernoulli sample 
of respondents.   We make statements about the 
expected “overestimation” with a shortcut procedure 
stratified jackknife ratio estimator and a ratio adjustment 
procedure for unit non-response, assuming a positive 
correlation between characteristic(s) and auxiliary 
variables.  The empirical results in Section 3 provide 
some support for the first two assumptions.  More 
general statements about the variance estimation effects 
with a ratio adjustment procedure or the degree of 
variance overestimation using a shortcut procedure and 
a count adjustment are not possible without a controlled 
study; and in fact, the next steps of our research will 
explore these issues via a simulation study.    Finally, 
the results presented in this paper are applicable to data 
sets with missing-completely-at-random (uniform) or 
missing-at-random (MAR) response mechanisms.  
However, the view of unit non-response as a second 
random stage of sampling is not necessarily realistic for 
a voluntary survey.  It is equally likely that several non-
respondents are fixed in the population, so that the unit 
non-response is an estimation-bias problem.  A 
limitation of our results is they do not apply to survey 
data that has a nonignorable response mechanism.  And 
of course, without conducting a survey of 
nonresponding units, it is impossible to assess the 
validity of the model assumptions used. 
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