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Abstract 
 
This paper is concerned with the identification of 
influential observations when we analyze survey data 
using a linear regression estimator involving survey 
weights. Based on conventional OLS diagnostic 
approaches, adapted statistics are proposed and 
justified to deal with the sampling weights in survey 
data. Using a sample from NHANES data, a 
comparison will be made between the diagnostics with 
and without sampling weights for some types of 
diagnostic statistics. 
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1. Introduction 
 
Several decades have passed since linear regression 
analysis became a widely employed statistical 
methodology that utilizes the relation between 
quantitative and qualitative variables to make 
predictions and inferences. Discussion of diagnostics 
for linear regression models are often indispensable 
chapters or sections in most of the statistical textbooks 
on linear models. Although techniques for regression 
diagnostics have been developed theoretically and 
methodologically for conventional linear regression 
models, diagnostics have not been extensively studied 
in survey sampling. This paper is concerned with the 
identification of influential observations when we 
analyze survey data using a linear regression estimator 
involving survey weights. A comparison will be made 
between the diagnostics with and without sampling 
weights.  
 
Examples from real surveys show that there is a need 
for influence diagnostics since a small number of the 
sampled units with extreme values could play a crucial 
role in the estimation of statistics and their variances. 
Chambers (1986) characterized outliers in survey data 
into nonrepresentative and representative. The premise 
in this research is that an analyst will be looking for a 
model that fits reasonably well for the bulk of the 
population. The influence diagnostics should allow the 
analyst to identify points that may not follow that 

model and have an influence on the size of estimated 
model parameters, or their estimated standard errors, or 
both. Cook and Weisberg (1982) propose that the basic 
idea in influence analysis is to monitor how small 
perturbations change the outcome of the analysis when 
they are introduced in the data. Conventional model-
based influence diagnostics mainly use the technique 
of row deletion, determining if the fitted regression 
function is dramatically changed when one or multiple 
observations are discarded. The statistics which are 
widely adopted include DFBETAS and DFFITS, etc. 
These statistics need to be adapted for application to 
randomization inference for sample surveys. 
 
The influence of observations on regression estimation 
under the survey setting may come from at least three 
sources: outlying Y  values, X  values, and sampling 

weights 1( ,..., )T
nw w=W . Atypical or extreme values 

of any of these or a combination of these can affect 
both parameter estimates and their estimated standard 
errors. Unlike conventional model-based influence 
diagnostics which have been available in standard 
software for ordinary least squares, diagnostics for 
regression using complex survey data need to pay 
attention to the following: First, as a source of 
influence, survey weights, which are computed with 
the primary goal of estimating finite population 
statistics, need to be incorporated into the construction 
of influence measurement. Second, the model 
assumptions which provide the basis of justification 
for conventional influence diagnostics are partially 
violated or completely ignored in the context of 
randomization inference. Third, given the large sample 
size in many surveys it would be important to set up 
some criteria to single out the influential units, instead 
of reporting diagnostics for all units in the sample. 
Belsley, Kuh and Welsch (1980) recommended 
choosing reasonable cutoffs by judgment and intuition, 
combining empirical and theoretical arguments. 
 

2. Regressions for Complex Survey Data 
 
Parameter estimates in linear regression using survey 
data are derived from the Pseudo Maximum 
Likelihood (PML) approach (Skinner, Holt, and Smith, 
1989). Suppose that the underlying structural model is 
a fixed-effects linear model:  
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2,     ~ ind (0, )T
i i i iY Nε ε σ= +x β  (1) 

where iε  is independently normally distributed with 

mean 0 and variance 2σ . The model-based likelihood 
for β  is 

2( ) ( ; , , )i i
i s

L f Y σ
∈

= ∏β x β , 

where s  is the set of sample units and 2( ; , , )i if Y σx β  

is the normal density with mean T
ix β  and variance 

2σ . The PML estimate of β  is the solution to the set 

of estimation equations 
log ( )

0i
i s

L
w

∈

∂ =
∂∑

β

β
, where 

iw  is the survey weight for unit i. Survey weights, 
which in probability samples are usually inversely 
proportional to inclusion probabilities, are used in 
PML to account for an informative design in which 
sample distribution of the Y ’s is likely to differ from 
that of the finite population. The estimation equations 
based on the normal probability density function can 

be simplified as ( ) 0T − =X W Y Xβ  and solved 

explicitly as 1ˆ ( )T T−=β X WX X WY . 
 

The above regression estimator β̂  is approximately 
design unbiased for the finite population parameter 

1( )T T
N N N N

−=B X X X Y , where 1( ,..., )TN NY YY = , 

and 1( ,..., )T
N NX = x x . It is also unbiased for the 

superpopulation slope β  in model (1), regardless of 
whether the variance is specified correctly or not. The 
finite population parameter B  should be close to β  
for a good model, and therefore a design-based 
estimate of B  should also estimate β . This estimator 
will be referred as Survey Weighted estimator (SW) in 
the following discussion and is the one usually 
computed by software packages that handle survey 
data. 
 
Researchers who advocate model-based approaches 
may argue that the sample design should have no effect 
in regression estimation as long as the design is 
ignorable and the observations in the population really 
follow the model. In that case, an OLS estimator can 
be used to infer about the model parameters. However, 
with survey data a theoretically derived model rarely 
holds for all observations. First, the model may not be 
appropriate for every subgroup in the population; 
second, some relevant explanatory variables may not 
be measured in the survey; third, the true relations 
among the variables may not be exactly linear. In 

addition, informative nonresponse can distort the 
model relationship because of its dependency on 
variables of interest. 
 
Using sampling weights in regression can provide a 
limited type of robustness to model misspecification. 
From a model-based perspective, Rubin (1985), Smith 
(1988) and Little (1991) argue that the sampling 
weights are useful as summaries of covariates which 
describe the sampling mechanism. Pfeffermann and 
Holmes (1985), DuMouchel and Duncan (1983), and 
Kott (1991) claim that the estimators using sampling 
weights are less likely to be affected if some 
independent variables are not included in the model. 

Although both β̂  and the OLS estimator b  are model-

biased estimators for β  when necessary covariates are 

omitted, the model bias of β̂  diminishes while the 

sample size increases, whereas b  is only 
asymptotically unbiased if the selection probabilities 
are not related to the variables that are left out of the 
model. The advantage of using the weighted estimates 
is the ability to say we are estimating a population 
quantity with the price of generally larger estimated 
variances than for OLS. If the working model is good, 

we expect that the point estimators β̂  and b  should be 
similar. However, if the model is misspecified, survey-
weighted and OLS estimates can be far apart as 
illustrated in Korn and Graubard (1995). In this study, 
we assume that analysts will use survey weights to 
estimate regression models. The diagnostics to be 
developed account for the effects of these weights. 
 

3. Variance Estimation 
 
As in OLS influence diagnostics, some statistics are 

formulated using variance estimates of β̂  and cutoff 
points are developed in terms of some distributions. In 

this study we consider the variance estimate of β̂  
under a design of single stage sampling with 
replacement and with varying probabilities. Assuming 
max( / ) (1)iw n N O= , where n and N are sample size 
and population size, respectively, we have 

1) ( ),  elementwise.T O N= =A X WX  

2) 1 1( ), elementwise.T O n− −= =C A X W  

3) 1 1( ), elementwise.T O n− −= =H XA X W  
If the working model is (1), treating the finite 
population as a sample of size N for that model, we 

estimate the model error variance 2σ  using 
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2
2 iU
U

i U

e

N p
σ

∈
=

−∑ , where T
iU i ie y= − x B . 2

Uσ  is an 

model unbiased estimate of 2σ . According to the 
pseudo maximum likelihood approach, we can obtain 

the design-based estimate of 2
Uσ  from a sample of size 

n using a π -estimator 

2 21
ˆ

ˆ i i
i s

w e
N

σ
∈

= ∑  (2) 

where ie  is the sample residual defined as 

ˆT
i i ie y= − x β . As sketched in the Appendix, 2σ̂  is an 

approximately design unbiased estimator for 2
Uσ  and, 

if the working model is correctly specified, is also 

estimating 2σ . 
 
Suppose that an analyst uses the survey-weighted 

estimator β̂ , which can be rewritten as a weighted sum 

of the Y  values, 1

1

ˆ
n

i i i
i

w Y−

=
=∑β A x . Its unknown 

model variance is 

( ) 2 1 2 1

1

ˆvar
n

T
M i i i

i

wσ − −

=

⎛ ⎞
= ⎜ ⎟

⎜ ⎟
⎝ ⎠
∑β A x x A , 

which can be estimated as  

( ) 2 1 2 1

1

ˆ ˆ
n

T
M i i i

i

v wσ − −

=

⎛ ⎞
= ⎜ ⎟

⎜ ⎟
⎝ ⎠
∑β A x x A . (3) 

If the variance structure of model (1) is misspecified, 
instead let us consider a more general model in which 
the iY ’s are independent but whose variance differs 
among the units: 

,  ~ (0, )i i i i iY indε ε ψ′= +x β , (4) 

where iψ  is an unknown variance parameter. The 

model variance of β̂  is 

( ) 1 1

1

ˆvar
n

T
M i i i i i

i

w wψ− −

=

⎛ ⎞
= ⎜ ⎟

⎜ ⎟
⎝ ⎠
∑β A x x A . (5) 

Under model (4), the squared residual has expectation 

( ) ( )22 21M i i i ij jj i
E e h hψ ψ≠= − +∑ , 

with ijh  being the (ij)th element of the hat matrix 

1 T−=H XA X W . Under certain regularity conditions, 

asymptotically ( )2
M i iE e ψ≈  and therefore 2

ie  is an 

approximately model-unbiased estimator of iψ  
(Valliant, Dorfman, and Royall 2000). By replacing 
the unknown variance elements iψ  in (5) by the 

squares of the corresponding residuals 2
ie  based on the 

regression fit, the sandwich estimator of the unknown 
model variance is 

( ) 1 2 1

1

ˆ
n

T
W i i i i i

i

v w e w− −

=

⎛ ⎞
= ⎜ ⎟

⎜ ⎟
⎝ ⎠
∑β A x x A . (6) 

Using ( )1 T
jk p n

c−
×

= =C A X W , we have 

2 2

1

ˆ( )
n

W j jk k
k

v c e
=

=∑β . This estimator is model robust 

against deviations from the constant variance structure 
as in model (1). It is also design consistent under a 
single-stage, unstratified and unclustered design where 
units are selected with probabilities, 1/i iwπ = , with 
replacement. 
 
Another useful variance estimator is the design-based 
linearization variance estimator. The linear 

approximation of β̂  is 
1ˆ ( )T T

N i i i i ii s i s
w Y−

∈ ∈− − =∑ ∑β B A x x B z�  (7) 

where T
N N N=A X X , and 1 ( )T

i N i i i iw Y−= −z A x x B  
(Fuller, 2002). If the design is approximated by single 
stage with-replacement sampling, the linear substitute 
approach can be used to obtain the design consistent 
variance estimator 

( ) * * * *

1

* *
1

ˆ ( )( )
1

         
1

n
T

L i i
i

n T
i ii

n
v

n

n

n

=

=

= − −
−

=
−

∑

∑

β z z z z

z z

, 

where * 1
i i i iw e−=z A x , ˆT

i i ie y= − x β , and 
* * /i

s

n= =∑z z 0  (e.g. see SUDAAN v.8 manual). 

This estimator also has robust model-based 
interpretations under certain types of misspecification 
of model variance parameter. Lv  and Wv  are 
approximately the same when the sample size is large 

enough that 1
1

n

n
≈

−
. 

 
4. Adaptations of Traditional Diagnostics to 

Regression on Survey Data 
 
4.1 Residuals and Leverages 
 
When survey weights are used in the regression, the 

predicted values become ˆ =Y HY  and the residuals 

are ˆ ( )= − = −e Y Y I H Y . The survey weighted hat 
matrix H  has the following properties: 
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1) 0 1ih≤ ≤ ;  

2) 
1

n

i
i

h p
=

=∑ ,  

where p is the number of columns in X  matrix. (for 
proofs see Valliant et. al., 2000). Leverages are defined 
as the diagonal elements of the hat matrix, which are 
the weights of observation iY  in determining the fitted 

value îY . A large leverage may be caused by outlying 
X  values, an outlying weight, or both. However, a 
large residual mainly results from an outlying iY . 
 
Leverages can be decomposed into components that 
separate the effect of the weight and the X  values for 
a unit. Assuming we have a model with intercept, let 

( )
1

1

1  

     

1  

T

T
n

⎛ ⎞
⎜ ⎟

= ≡⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

x

X 1 X

x

M M , and 
1

1  

T

T
n

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

x

X

x

M , 

where 1 , 1( , , )T
i i i px x −=x K  are 1 ( 1)p× −  vectors, 1  is 

a 1n×  vector with all the elements equal to 1, and 1X  

is a ( 1)n p× −  matrix. The A  matrix is computed as 

( )1
11

ˆ ˆ  
 

ˆ  

T T
T X

T
X

N⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= = =

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

1 t
A X WX W 1 X

t AX
, 

where ˆ
Xt  is a ( )1 1p − ×  vector with elements 

ˆ
Xj i ij

i s

w x
∈

=∑t  and 1 1 1
T=A X WX  is a ( 1) ( 1)p p− × −  

matrix. Using the inverse of partitioned matrix, we 
have 

( )

1 1

1

1 1

1

1 1 1 1ˆ ˆ ˆ   -
ˆ ˆ ˆ ˆ

1 ˆ        -                
ˆ

1
  

ˆ       
      

T T
X X X

X

T
W

W

N N N N

N

N

− −

−

− −

−

⎛ ⎞+⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞−⎜ ⎟= + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

t S t t S
A

S t S

0 x
S x I

I0 0

, 

where 
ˆ

ˆ
X

W
N

= t
x  is a ( 1) 1p − ×  vector, and 

1
1ˆ ˆ
ˆ

T
X X

N
= −S A t t  is a ( 1) ( 1)p p− × −  matrix. 

Simplifying the hat matrix using the above inverse 
matrix, we obtain 

1 T−=H XA X W  

( ) ( )1
1

1

1
    

ˆ      
      

TT
W

W T
N

−
⎧ ⎫⎛ ⎞ ⎛ ⎞⎛ ⎞−⎪ ⎪⎜ ⎟ ⎜ ⎟= + −⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎝ ⎠⎩ ⎭

0 1x
1 X S x I W

I X0 0

( )
1

1
1

1
        , , .

ˆ

T T
W

T
W n W

T T
n W

N
−

⎧ ⎫⎛ ⎞−
⎪ ⎪⎜ ⎟⎪ ⎪= + − −⎜ ⎟⎨ ⎬

⎜ ⎟⎪ ⎪⎜ ⎟−⎪ ⎪⎝ ⎠⎩ ⎭

x x

11 S x x x x W

x x

M K

Then the leverage of ith observation, or the ith 
diagonal element of H , is 

( ) ( )1ˆ1
Ti

i i W i W
w

h N
nw

−⎡ ⎤= + − −
⎢ ⎥⎣ ⎦

x x S x x . 

( ) ( )1T
i W i W

−− −x x S x x  is an ellipsoid centered at 

Wx  (e.g., see Weisberg 1985). A leverage can be large 

if (1) iw  is large, especially relative to the average 

weight w ; or (2) ix  is far from the weighted average 

of the X ’s, Wx . 
 
Usually it is helpful to standardize the residuals for 
residual analysis. In the OLS case, a residual is scaled 

either by MSE  or by its estimated standard error to 
obtain a semistudentized or studentized residual. 
 
Assuming single stage sampling, under model (1), the 

residual for unit i  is ˆT
i i ie Y= − x β  and its model 

variance is ( ) ( )22 2 21M i i ijj i
E e h hσ ≠

⎡ ⎤= − +
⎢ ⎥⎣ ⎦∑ . Since 

1( )ijh O n−= , and ( )2 2
M iE e σ� , we can standardize 

the residual for unit i by σ̂  estimated from (2) and 
compare it with a standard normal random variable. 
 
It is not feasible to define the distribution of residuals 
from the design-based point of view. However, plots of 
residuals are helpful in highlighting data points 
suspected of unduly affecting the fit of regression. The 
added variable plot, also known as partial regression 
leverage plot, provides a method of assessing the 
impact of individual observations on the estimate of a 

single parameter ˆ
kβ  in a multiple regression model. 

Korn and Graubard (1999) illustrated the use of these 
plots with survey data. Let ( )k−X  be ( 1)n p× −  
matrix formed from the data matrix, X , by removing 
its kth column, kx . Further let ku  and kv  be the 

residuals that result from regressing Y  and kx  on 

( )k−X  using survey weights. The kth regression 

coefficient of the multiple regression model, ˆ
kβ , is the 

same as the slope coefficient of the weighted 
regression of ku  on kv . The added variable plot is 
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defined as a scatter plot of ku  against kv  along with 
their simple linear regression line. For survey data it is 
presented as a bubble plot with each bubble 
representing an observation and its area proportional to 
the sample weight. Although the plot is not able to 
precisely measure how severely an observation is 
different from others, when it is used as an extra tool to 
the adapted methodologies, it can directly tell us why 
some points are identified as outlying and toward 
which direction those points pull the weighted 
regression line. 
 
4.2 DFBETAS 
 
DFBETA is the change in parameter estimate after 
deleting the ith observation. It becomes 

1

( )
ˆ ˆ

1

T
i i i

i i
i

e w
DFBETA

h

−
= − =

−
A x

β β , 

and /(1 )ij ji i iDFBETA c e h= − , 

when sampling weights W  are taken into 
consideration (Valliant, et al 2000). It is different from 
the one in the OLS case in both numerator and 
denominator because sample weights are involved in 
the leverages and residuals. To create a survey 
weighted version of DFBETAS, we need to divide 

DFBETA by an estimate of the standard error of β̂  
that accounts for sample weights. Under model (1), we 
propose a specification of DFBETAS statistic as 
follows: 

2

1

/(1 )

ˆ( )

1
                   .

ˆ 1

                   

ji i i
ij

M j

ji i

n i
jk

k

c e h
DFBETAS

v

c e

h
c

β

σ

=

−
=

= ⋅
−

∑

. 

Knowing the order conditions 1( )jkc O n−=  and 

1( )ih O n−=  and assuming that 
ˆ
ie

σ
 is approximately 

(0,1)N  in large samples, we rewrite the DFBETAS 
statistic as the approximate product of two terms, 

1/ 2( ) (0,1)ijDFBETAS O n N− ⋅� . An observation i  

may be identified as influential on the estimation of 

ˆ
jβ  if 

2
ijDFBETAS

n
≥ . This is the same cutoff 

suggested by Belsley et al (1980) for OLS. Moreover, 

the model robust sandwich estimator ˆ( )W jv β  or the 

linearization variance estimator ˆ( )L jv β  can be used to 

replace ˆ( )M jv β  in case the underlying model deviates 

from the working model. 
 
4.3 DFFITS 
 

Multiplying the DFBETA statistic by T
ix  vector, we 

obtain the measure of change in the ith fitted values 
due to the deletion of the ith observation, 

( )( )
ˆ ˆˆ ˆ ( )

1
T i i

i i i i i
i

h e
DFFIT Y Y i

h
= − = − =

−
x β β . 

The model variance of îY  is 

( ) ( )2 2 2ˆ T
M i ik

ii k

Var y hσ σ= = ∑HH , 

which is estimated by ( ) 2 2ˆ ˆM i ik
k

v y hσ= ∑ . In OLS, 

2
ik i

k

h h=∑  because T =HH H when T=A X X , but 

this simplification does not occur when H  contains 
the survey weights. Under single stage sampling and 
model (1), DFFITi is divided by the square root of 

ˆ( )M iv y  and rearranged as follows: 

2 2

2

/(1 ) /(1 )

ˆ( ) ˆ

1 1
              

ˆ1 1/

              (0,1) (1),

i i i i i i
i

M i ik
k

i i

i iik i
k

h e h h e h
DFFITS

v y h

h e

h hh h

p
N O

n

σ

σ

− −
= =

=
− −

≅ ⋅ ⋅

∑

∑
 

where we approximate ih  by its mean /p n  and use 

( ) ( )/ 1 / /i ih h p n p p n− −� � . Hence the cutoff value 

is 2
p

n
 if we use DFFITS to determine the influential 

observations. Note that this is also the same cutoff 
suggested for OLS by Belsley et al (1980). 
 

5. Case Study 
 

The adapted diagnostic techniques will be applied and 
justified based on a linear regression analysis of data 
from the National Health and Nutrition Examination 
Survey (NHANES). This survey is a rich source of 
quantitative and qualitative variables and is quite 
important for analysis of health conditions in the U.S. 
There are several of these data sets publicly available. 
From NHANES 1999-2002 we draw a sample of size 
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500 among women aged 20 to 39. In order to have a 
large variation in sample weights, we keep the 100 
observations with the largest weights and the 100 
observations with the smallest weights, and select the 
remainder 300 randomly. The survey weights in this 
subset range from 698.39 to 103831.17. This set was 
selected to illustrate the use of the diagnostics and does 
not represent any particular estimation domain. The 
influence analysis is conducted on the regression of 
systolic blood pressure on the logarithm of blood lead 
levels, ages, and body mass index. The same 
regression analysis has been done by Korn and 
Graubard (1999) using a different sample. The 
stratified clustering design of the survey is ignored in 
our diagnostics. 
 
5.1 Parameter Estimation 
 
Table 1 shows the difference of parameter estimates 
between the OLS estimation and the Survey Weighted 
estimation. The coefficients of age and BMI have 
slightly discrepancies between the two methods 
whereas the coefficient of blood lead differs 
dramatically. The effect of survey weights on 
coefficient estimation signals that survey weights 
could play a crucial role in influence analysis on this 
regression. 
 
Table 1. Coefficient Estimates and Their Standard 
Errors for the Ordinary Least Squares Estimation and 
the Survey Weighted Estimation.  
Independent OLS Estimation SW Estimation 
Variables Coefficient SE Coefficient SE 
Intercept 91.803 2.853 89.575 3.319 
Age(years) 0.060 0.075 0.098 0.095 
BMI 0.536 0.068 0.603 0.101 
Lead (Log) 1.367 0.714 2.262 1.053 
 
5.2 Diagnostics by Leverages and Residuals 
 
Figure 1 is a scatterplot of leverages calculated using 
two methods: the OLS formulation and the survey 
weighted formulation. Influential leverages, greater 
than twice their mean, are identified to be associated 
with the points beyond the two reference lines. The 54 
influential observations identified by SW but not by  
OLS diagnostics are associated with large sample 
weights ranging from 31655.76 to 103831.17, which 
are represented by the size of the bubbles; whereas the 
23 influential observations identified by OLS only 
have small weights, ranging from 725.10 to 17987.69. 
The bubbles in the upper right square, with moderate 
sizes, stand for the points identified by both methods. 
 
The points in Figure 2 show the residuals scaled by the 
estimated standard error σ̂  of model (1), where σ̂  is 

estimated by both the OLS estimator and the survey 
weighted formula (2). With a few exceptions, the 
weighted and unweighted diagnostics identify almost 
the same extreme residuals. The residual analysis 
mainly filters out the observations with outlying Y  
values, but not outlying weights. 
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Figure 1. Leverage Plot. Area A includes points 
identified as influential by the SW diagnostic only. 
Area B includes points identified by the OLS 
diagnostic only. 
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Figure 2. Residual Plot. Scaled residuals with absolute 
values exceeding 2 indicate the existence of outlying 
observations. 
 
5.3 Diagnostics by DFBETAS and DFFITS 
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The diagnostic results of DFBETAS statistics are 
presented in Figure 3. It conveys the same messages as 
the leverage diagnostics in Figure 1. Using the SW 
formula of DFBETAS, we are more likely to single out 
the points associated with large sampling weights. It is 
clearly shown in the graph that points identified by the 
OLS method only have small weights symbolized by 
the bubbles of small sizes. 
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Figure 3. DFBETAS Plot. Areas A and B include 
points identified only by the SW diagnostics whereas 
areas C and D include points identified by the OLS 
diagnostics only. 
 
Another way to show how the deletion of an 
observation affects the coefficient estimation is to draw 
an added variable plot, as we introduced in Section 4.1. 
Figure 4.a and 4.b display two added variables plots of 
BMI for the OLS regression and the SW regression, 
respectively. The points in red indicate the influential 
observations identified by using DFBETAS statistics. 
In Figure 4.a, the identified influential points are 
scattered around the corners where they deviate further 
from the middle of the regression line than the 
unidentified points. However, in Figure 4.b, the red 
dots are not necessarily the furthest away from the 
center of the regression line if they are associated with 
very large sampling weights. Even some points that  
stray greatly from the rest are not identified because 
their weights are too small. 
 
Basically the DFFITS diagnostics reach the same 
conclusion as DFBETAS unless they identified fewer 
influential points because DFFITS summarizes the 
effect of deleting a specific unit on the overall 
parameter estimation. There are 19 influential 
observations identified by the SW in Figure 5 but not 
by the OLS diagnostics, with their weights ranging 

from 44843.48 to 103831.17. There are 15 influential 
observations identified by the OLS diagnostics only. 
Their weights are relatively small, ranging from 833.35 
to 31722.48. 
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Figure 4.a. Added Variable Plot of BMI using the OLS 
regression. 
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Figure 4.b. Added Variable Plot of BMI using the SW 
regression. 
 

6. Conclusion 
 
The conventional OLS influence diagnostics are 
adapted to be used for survey data. The cutoff values 
for adapted statistics are determined and justified in 
terms of model distributions and the order of 
magnitude of survey weights and other sample 
quantities. Based on the comparison of the OLS and 
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the SW influence analysis on a NHANES sample, we 
conclude that the SW diagnostics, including leverages, 
DFBETAS, and DFFITS, identify different points than 
the OLS diagnostics as being influential. This is 
because in survey weighted regressions, points can be 
influential due to outlying sample weights besides 
extreme Y  and X  values. 
 
In this study we only consider the single-stage with 
replacement sampling designs. In subsequent work we 
will generalize DFBETAS and DFFITS for a complex 
sampling design accounting for clustering and 
stratification. Also, we plan to adapt other statistics 
used in the conventional OLS diagnostics such as 
Cook’s Distance and COVRATIO, and the expansion 
of the single-case deletion to the identification of 
influential groups. 
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Figure 5. DFFITS Plot. Areas A and B include points 
identified only by the SW diagnostics whereas areas C 
and D include points identified by the OLS diagnostics 
only. 
 

Appendix 
 

Assume that ( )ˆ 1/pO n= +β B . It follows that 
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