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1.  Introduction 
 
Assuring quality, managing requirements, and 
developing process metrics are common themes in 
project management and software engineering.  This 
paper focuses on practical quality control (QC) strategies 
to manage and measure quality relative to a quantified 
requirement in census data keying and response coding. 
These strategies build on statistical QC techniques 
developed over decades.  They tie acceptance sampling 
plan parameters of the QC operation to specific output 
quality requirements.  They manage situations where it is 
not feasible to prescribe or control lot size or sample size 
to constant values.  They guide the selection of units for 
QC inspection to assure that those quality goals are met 
while minimizing inspection workloads and the 
operational effort needed to implement the procedures. 
 
This paper discusses three criteria for evaluating QC 
procedures: 
 
• Effectiveness -- Does the QC procedure assure 

meeting the error limit requirement? 
• Efficiency -- Does the QC procedure minimize 

inspection workloads? 
• Burden -- Does implementing the QC procedure 

complicate or increase the effort of handling 
data? 

 
The general strategies for optimizing QC procedures 
with respect to these criteria are being developed in the 
context of operations where humans capture 
respondents’ responses in a useful electronic form.  Data 
keying is keyboard entry of answers to check-box or 
write-in responses on returned paper questionnaires.  
Some keying operations are highly automated using 
scanned images.  Others are based on keying directly 
from paper forms.  Response coding is the assignment of 
one or a set of three-character alphanumeric codes for an 
electronically captured write-in response to a data 
element (such as race or ancestry).  The codes are more 

useful for summary or analysis than the original 
idiosyncratic character write-in strings.   
 
Managing quality in these operations involves classic 
statistical quality control, specifically, acceptance 
sampling methods.  The routine focus is on the quality of 
products, rather than the process of the operations, 
although diagnosing and improving the process is a 
valued follow-up goal motivating the inspection of 
products.  Traditional statistical QC methods are 
particularly suited to repetitive operations where the 
result consists of multitudes of individual product units, 
an error or deficiency could occur in any unit, and the 
correctness of each unit is important.  
 
For data keying, a key field, a single answer space or 
checkbox containing a response to be captured off a 
paper form, is the product unit.  In response coding, the 
unit is a response code or set of codes assigned to a 
unique write-in response.  In each operation, these units 
are organized naturally in batches, which are formed for 
convenience and minimizing risk in handling and 
tracking work through many processing steps.  In 
keying, a batch is a stack of forms sent together through 
processing.  In response coding, a batch is a collection of 
write-in fields transmitted to expert coders in a single 
computer file.  The collection of all product units in a 
batch comprises a lot in the traditional QC terminology.  
The terms lot and batch are thus used interchangeably in 
this context.   
 

2.  Objectives of the Data Keying and Coding QC 
 
A general objective of census data keying and response 
coding QC operations implemented in intra-decade 
census tests is to assure that the amount of error in 
keying or coding results does not exceed one percent.  
That rate is specified in written requirements established 
before the operations.  Another important general 
objective is to provide timely, effective feedback for 
continuous improvement of the keying or coding 
process.  To carry out these general objectives, the QC 
procedures are designed specifically to: 
 
• Monitor errors during ongoing production, 
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• Replace identified errors with corrections, 
• Inspect batches completely when there are too 

many errors to satisfy the one percent error 
limit requirement, 

• Identify concentrations of errors, often due to 
an individual keyer's performance, which could 
be improved by intervention (such as retraining 
or reassignment) to eliminate the error source, 

• Alert supervisors to general process problems, 
which could be improved by intervention (such 
as procedure revision),  

• Minimize QC inspection workloads, and 
• Minimize overall operational burden. 
 
All these objectives shape the operational features of a 
QC program.  The focus of this paper is limited to the 
statistical quality control criteria, effectiveness and 
efficiency, and on burden to the extent that burden 
impacts those criteria.  Continuous improvement 
objectives, where supervisors diagnose and intervene on 
the production floor by adapting keyer or coder 
procedures or retraining for process improvement 
purposes are important but not addressed in this report.      
 

3.  Statistical QC Methods 
   
3.1.  Verification and Adjudication 
 
Keying and coding operations involve independent 
verification of production results with adjudication.  
First, a production keyer or coder produces data for 
every unit in a batch.  A different person, in the 
verification role, independently keys or codes designated 
units in that batch.  Usually, only a sample of batch units 
is verified.  However, as described below, sometimes 
there is a complete, full verification of that batch, so 
every unit in the batch is verified in the end. 
 
When production and verification values do not agree, a 
skilled, experienced worker, in the adjudication role, 
reviews the differing results, records the correct result, 
and records whether the production value was in error.  
If the number of production errors in a verification 
sample is higher than a specified criterion, the batch is 
rejected and recycled for full verification and 
adjudication.  Whenever inspection leads to correcting a 
production result, the correction is transmitted in final 
data.  This is called rectification.  
   
3.2.  Selecting Sampling Plans 
 
Outcomes of verification and adjudication, such as the 
rate of outgoing error and the amount of additional 
inspection resulting from batch failures, depend on a set 
of three parameters, known as a sampling plan -- lot or 

batch size (N), sample size (n), and an acceptance 
number (c).  A sampling plan is applied each time a 
batch is verified.  The count of fields that need to be 
coded or keyed in those batches is N, of which n are 
initially sampled for QC inspection or verification.  No 
more than c errors are acceptable; otherwise the batch 
fails.  The term sampling plan may denote everything 
one does to conduct acceptance sampling QC for an 
operation.  The parameters, which are the essence of this 
general definition, are all the term implies in this paper.     
 
In manufacturing settings, it is common to choose a 
single sampling plan to be applied to all production.  
Using statistical tools discussed below or with analysis 
of the performance of the sampling plan, the outcomes 
can be predicted and fine-tuned to suit production goals.   
 
It is not feasible to force keying or coding operations 
into a one-plan approach.  Batch sizes are dependent on 
operational considerations like the number of forms that 
come in for processing or how many write-in responses 
happen to need coding on that day.  There are many 
unpredictable variables like how many items are 
answered on each questionnaire.  It would take 
extraordinary efforts, like pre-counting key fields or 
restructuring batches to force them all into lots of exactly 
N units.  It also would not likely work.  The consequent 
extra work, confusion, and other problems would 
compound into lost data or other errors.  That 
unnecessary, risky, and costly extra effort illustrates the 
concept of burden.   
 
The only operationally feasible way to handle keying 
physical forms is to key the whole questionnaire.  
Asking keyers to pick and choose fields on a form for 
sample keying distracts and confuses natural keying 
rhythms, introducing error and other burden.  Keying 
complete forms limits the distraction to moments 
between finishing one form and beginning another.  So 
without splitting physical forms between lots or sample 
status, sample size is as hard to control as batch size.  
Somehow, sampling plans have to adapt to the values of 
N and n that arise in naturally occurring batches. 
 
A common approach to selecting a sampling plan 
involves simply sampling every tenth field that comes 
into production.  The values of N, n, and c may, by 
chance, comprise an effective or efficient plan, but there 
is no guarantee of that. 
 
Therefore, the task is to identify, for each batch 
encountered, the sampling plan with optimal 
effectiveness, efficiency, and least burden.  The first step 
is to identify plans that are effective in limiting error at 
the required level.  Section 3.3 describes calculations 
used to do that.  For a given lot size or sample size, there 
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are many sampling plans that can be shown by these 
calculations to be effective in limiting error as required.   
  
The next step is to select, from the variety of effective 
plans, an operationally efficient sampling plan, which 
minimizes inspection workload, that is, requires the 
fewest production units be inspected.  Section 3.4 
describes calculations used to do that.   
 
Throughout those steps, there is a general aim to avoid 
operational complications or management burden.  
Software systems may be designed to facilitate the 
cognitive task, avoid distractions, and minimize human 
data handling.  While this report does not explore those 
considerations, it is important to evaluate different 
mechanisms for picking an effective and efficient plan 
that will not increase delays or other burden.  Section 3.5 
explores varieties of sampling plan strategies.   
 
3.3.  Identifying Effective Sampling Plans  
 
An acceptance sampling QC methodology based on the 
Average Outgoing Quality Limit (AOQL) statistic is well 
suited to these operations, since they are based on 
rectification and focused on outgoing quality.  This 
method assures that, in the long run, the error rate is not 
worse than the specified limiting AOQL value, no matter 
what level of error exists in product submitted for 
inspection (Dodge, 1963).  To be effective in assuring 
that the rate of final product error is below a specified 
limit, the sampling plan for each of many production 
batches needs to have an AOQL below that rate. 
 
In the AOQL approach, a stream of product units is 
organized into lots (of size N).  Generally a lot consists 
of all the units in a batch, as defined by the operation.  A 
sample (of n units) is inspected to determine if the 
number of defective units or errors is within acceptable 
limits (equal to or less than c).  If the batch is acceptable, 
it goes to the customer.  All units in rejected batches are 
inspected and corrected before going to the customer.  In 
an AOQL-based procedure, only unsampled units of 
accepted batches could contain uncorrected errors going 
out to the customer.   
  
Computations for the AOQL are built upon the sampling 
plan parameters, N, n, and c, as well as p, the proportion 
of error in the production units before inspection and 
correction.  This error rate is called process error or 
incoming error.  While p is unknown, any prior 
information convincingly suggestive of its approximate 
value may be useful for optimizing efficiency.  Yet for 
effectiveness in meeting an error limit requirement, the 
level of p cannot be assumed.   
 
An understanding of the AOQL is the basis for options in 

efficient, effective control of errors.  Wadsworth et al. 
(2002, pp 520-526) and Montgomery (2001) describe the 
AOQL more completely.   
 
At the core of the AOQL are hypergeometric 
probabilities (Hg), which give the chances that a lot of N 
units containing D defective units and a sample of n 
units, will yield d defective units in the sample.  The 
unknown p is D/N, so D = pN, approximately. If d is one 
of the values acceptable given the sampling plan's limit 
c, the probability of accepting a lot with specific 
sampling plan and incoming error values N, n, c, and p, 
may be expressed as the probability of acceptance (Pa):  
 
  Pa = sum over d = 0 to c (Hg (N, pN, n, and d)).      (1) 
                                                                                           
The AOQ is the projected rate of outgoing error based on 
the sampling plan and a presumed p given two 
operational rules:   
 
• Failed batches are fully (one hundred percent) 

inspected, and  
• All units inspected, whether in the sample or in 

batches rejected, are rectified.   
 
That means all errors identified are corrected.  Since 
there are then no errors left in previously failed batches 
or samples, outgoing error is found, at a rate of p, in only 
the non-sampled portion, (N-n)/N, of the Pa batches that 
were accepted.  So, 
 
   AOQ =  p * ((N-n)/ N) * Pa                                      (2)         
 
Since we never know the true p, we don’t know which 
AOQ applies to a given batch.  At p = 0 there is no 
incoming error to pass on as outgoing error.  At very 
high values of p, all batches are likely to be rejected and 
fully rectified and thus pass on no outgoing error.  
Between those values, the AOQ rises to a maximum and 
then falls off.   
 
   AOQL = max over p (AOQ)                                     (3)         
 
The AOQL approximates how bad it could possibly get, 
not how bad it will likely get.  Also, it is possible, but 
quite unlikely, that a particular batch contains more 
outgoing error than its AOQL.  That would most likely 
happen if the incoming error is near the level of p for 
which the AOQL is defined, and the sample happens to 
under-represent the batch error.  If that were to occur in 
any of the batches, the other batches compensate for it 
by their relatively small contributions to overall outgoing 
error.  So the AOQL seems to be a safe measurement tool 
to assure a specified error limit.  All that is needed is to 
apply a sampling plan that has an AOQL fitting the 
requirement.  If the requirement is for "at least 99 
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percent accuracy" or "no more than one percent error," 
any sampling plan with an AOQL of 0.01 or lower is 
effective. 
 
3.4.  Selecting Efficient Sampling Plans 
 
Average Total Inspection (ATI) is a traditional metric to 
help evaluate workloads of sampling plans (Wadsworth 
et al., 2002, p 527).  It projects the average number of 
cases inspected beyond production in a batch with a 
given sampling plan.  The ATI is the sample size plus the 
portion (1 - Pa) of non-sample units (N - n) units that are 
inspected, assuming the sample units are not inspected 
again after a batch is rejected.  
 
ATI = n + (1 - Pa) (N - n)  
       = N * (1 - AOQ / p)                                              (4) 
                                        
The value of ATI is specific not only to a given sampling 
plan (with its N, n, and c values) but to the value of p on 
which Pa is computed.  Transforming ATI to a percent 
permits comparing workloads among batches with 
different parameters.  Expressing it as a function of p 
and AOQ lets it show the impact of incoming error on 
workload.   The Inspection Percent (IP) captures these 
two goals:  measurement of plans’ expected efficiency 
that is both standardized and differentiable relative to p.  
 
  IP(p) = 100 * ATI / N = 100 * (1 - AOQ / p)            (5) 
 
While the incoming error p is unknown for each 
individual batch, past or current experience can provide 
very good clues to the approximate level of incoming 
error.  Any relevant prior information about the 
approximate value of p might be useful in selecting 
sampling plans that would optimize workload efficiency.  
If selection of an error limit requirement implies some 
prior information or interest in a level of p, that suggests 
a default p value for IP(p), equal to the specified limit.  
If past experience suggests strongly that error rates are 
going to be much less than that limit, the IP(p) for that p 
is more relevant to efficiency evaluations.  
 
3.5.  Sampling Plan Strategies 
 
For each QC operation, planners may develop a strategy 
to identify an effective and efficient sampling plan.  
Something that can be implemented without delay or 
distraction during production is most valuable.  A 
strategy is a mechanism to identify a sampling plan 
using what is known about requirements, values of N or 
n, and other conditions of the operation.  Strategies fall 
into one of two patterns.  Lot-size strategies name one 
sampling plan for each value of N in range, as described 
in sub-section 3.5.1.  Sample-size strategies identify 
sampling plans primarily by n, as discussed in sub-

section 3.5.2. 
 
Strategies vary endlessly, partly because of the variety in 
operational characteristics and requirements to which 
they are fitted.  One operation might call for an error 
limit requirement at two percent while another requires a 
half percent.  An operation may prohibit c = 0 because 
production staff respond better when they know they will 
not “fail” for making just one error.  Batch sizes might 
naturally range from 1000 to 2100 for one production 
task, while 50 to 100 fits another better.  There might be 
good reason to presume an exceptionally low incoming 
error rate, even while QC is still needed to check for 
batches where things go very wrong.  All such 
conditions help shape a strategy. 
 
Strategies also vary in the mechanism for using observed 
N or n to find the rest of the sampling plan parameters in 
the midst of production.  That observed value might be 
looked up in a table of all possible sampling plans.  It 
may be submitted to a program algorithm where if-then 
statements or computational formulae assign other 
parameter values.  A well-designed if-then algorithm or 
formula may generate plans different from those in a 
look-up table, but with no effect on effectiveness and 
little on efficiency.  
  
Strategies may be developed using computer programs 
capable of generating the AOQL and IP statistics for 
relevant ranges of N, n, c, and p values.  The first step in 
the program is to generate all sampling plans for each 
value of N (or n) that has an AOQL under the error limit.  
The next step is to choose the plan, for each N (or n), 
with the minimum IP(p), where p is the best guess or 
presumed level of incoming error.  A listing of the 
resulting plans comprises a look-up table. 
 
Developing algorithms or formulae to replace the look-
up table may have advantages, perhaps less code or risk 
of file corruption, in implementing a QC program.  The 
algorithm or formula should fit the table in the sense that 
it generates the same plan listed in the table.  Finding 
that alternative rule still is a partly trial-and-error effort, 
using statistics derived from the table.  One area of 
development for sampling plan strategies is to find more 
deterministic means of fitting good formulae to a table. 
 
A final step in developing strategies is to run a program 
that checks each plan’s effectiveness and documents 
their efficiency.  It also checks to be sure none of the 
plans in range were invalid (resulting in adaptations 
illustrated in Table 2), due to conditions where the 
hypergeometric probability is undefined, which are most 
common when batches are small.  The final program also 
shows diagnostics, such as whether the AOQL value was 
set at the highest value of p, a sign that it is not the 
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maximum over a large range of p.  Diagnostics may also 
show that parameter ranges need to be trimmed to avoid 
invalid sampling plans.  
 
When completely developed, a strategy is specified by: 
 

• The error limit required, 
• Ranges of possible values for {N, n, c, p}, 
• The presumed level of p, and 
• The mechanism for finding {N, n, and c}: a 

table, a formula, or an algorithm.  
 

The strategy should specify also what happens when 
observed parameters fall outside appropriate ranges.  
Particularly, if a batch is too small, it may be fully 
verified, bypassing sample verification, or joined with 
another batch to form one that is acceptably large.     
 
3.5.1.  Lot-Size Strategies      
 
A lot-size strategy begins with the observed value of N.  
It is useful when an operation's procedures make it 
impossible or burdensome to set N, but not n or c.  For 
each batch encountered in production, these strategies 
apply a suitable mechanism to find values for n and c, 
using the observed value of N, specifying the AOQL 
requirement and any range for N that is relevant.  The 
"N" in the labels of these examples denotes that they are 
lot-size strategies.   
 
• N1 – AOQL < 0.01; N: 300-3000; n and c are 

selected for efficiency but not otherwise 
constrained in range; p is presumed not much 
different from 0.01; The mechanism to find the 
sampling plan is to look up N in a list and adopt 
the associated n and c.  (See Table 1).                            

• N2 – Same as N1, except p is presumed to be 
0.005 or less, sponsors wish c > 0, and a 
different look-up table is generated.  

• N3 – Same as N1, except the mechanism to find 
a sampling plan involves computing: 

                 c = 1 + int (N / 1000) and  
    n = max (78, ceil (200*c/3)). 
 
N3 is an example of a set of formulae that attempt to 
recreate the contents of a look-up table such as Table 1.  
The formulae do not always produce the same sampling 
plans found in the table.  If the table has all the most 
efficient plans, the formula will not always yield as 
efficient a plan.  It is important to double check that any 
plan generated by a formula still has an AOQL less than 
the required limit. 
 
 
 

Table 1.  Rows from a Look-up Table for Strategy N1 
 

N n c 
300 68 1 
. . .   
451 72 1 
452 109 2 
. . .   

1065 166 3 
1066 122 2 
1067 167 3 
. . .   

3000 289 5 
 
3.5.2.  Sample-Size Strategy      
 
A sample-size strategy is useful when an operation's 
procedures make it impossible or burdensome to set n, as 
well as N.  For each batch encountered in production, 
these strategies apply a suitable mechanism to find a 
value c, using the observed value of n, checking that 
values of N and n suit range specifications and the AOQL 
requirement.  In this strategy, a small n (rather than N) 
signals the need for full verification.  The "n" in the 
labels of these examples denotes that it is a sample-size 
strategy.   
 
• n1 –  AOQL < 0.01; N: 300-3000; n: 66-292; no 

presumed level of p; The mechanism to find the 
sampling plan is to look up n and range of 
observed N and adopt the associated value for c.  
(See Table 2).   

• n2 – same as n1 except the mechanism to find a 
sampling plan involves computing: 

    c = int ((0.015 * n) - 0.23).  
 
Table 2.  Rows from a Look-up Table for Strategy n1 
 

 n (range) N (range) c 
66 – 82 1501 - 3000 invalid* 
66 - 82 300-1500 0 

83 - 132 2431 - 3000 0 
83 - 132 300 - 2430 1 
133 - 188 300 - 3000 2 
189 - 246 300 - 3000 3 
247 – 292 300 – 3000 4 

* Some plans in these ranges are invalid – resample, 
pool batches, verify 100% or otherwise reform the batch. 
 
The n2 strategy needs only one formula to completely 
designate a sampling plan since both N and n are 
observed from the batch.  
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Table 2 could easily be turned into an algorithm by 
generating a line of computer code for each row, like: 
  If 65< n < 83 and 299< N < 1501 then c = 0. 
 

4.  Limitations 
 
• This paper follows the recommendation of 

Dodge (1963) to use the AOQL rather than the 
Acceptable Quality Level or Lot Tolerance 
Percent Defective acceptance sampling 
approaches.  Those other approaches are not 
evaluated in this paper. 

• Data about one strategy may not always be 
validly compared to that of another.  The intent 
of presenting Table 3 and 4 data in this report is 
to illustrate the variety in strategies and related 
statistics.  In general, strategy comparisons 
should be limited to alternatives applicable to a 
specific QC operation.  For example, in 
selecting a strategy to implement in a given 
situation, you might compare the projected 
efficiencies of alternatives that differ only in the 
mechanism formula.  After a strategy has been 
implemented on a second occasion, results may 
be compared meaningfully.  Also, projections, 
such as those in Table 3, should not be treated 
as a prediction or standard for implementation 
results, such as those in Table 4.  

• It is likely that algorithms or formulae 
presented in this paper could be improved to 
better fit the list of optimal plans and thus yield 
marginally more efficient plans overall.  This is 
an area for future development.  

• Incoming error and outgoing error percents are 
estimated with the assumption that errors 
among fields not inspected are best represented 
by errors among fields that fell into inspection.   

• Similarly, standard errors of those percents are 
estimated without data transformations to 
compensate for error rates’ proximity to zero 
(Wolter, 1985, p. 368), or stratification to take 
into account inherent batch structure (Cochran, 
1977, p. 66).   

• For better operational control and less 
operational burden, keying and coding 
production both implemented full rework of 
failed batches.  That meant sample units were 
keyed or coded an extra time rather than 
skipped over when the rest of a failed batch was 
verified.  Observed workload computations 
reported in this paper ignored that extra work in 
order to be consistent with AOQL 
computations.  Actual efficiency differed as a 
result, but the effectiveness of the QC did not.     

• Diagnostic review of 2005 QC data showed a 
few instances where a file management step or 
output record was missed in implementing QC.  
No more than one percent of QC data was or 
might have been affected in either operation.  

 
5.  Illustrating Sampling Plan Strategies  

   
Insights into strategies for selecting sampling plans arise 
from observing: 
   
• statistics projected from sampling plans 

representing all those that could be generated 
by a strategy, and 

• results of recent operations applying a strategy.  
 
Projected effectiveness and efficiency statistics 
illustrated here may be the best tools for judging the fit 
of prospective strategies to an operation.  Observed 
statistics illustrated here are useful for evaluating one 
occasion’s implementation of an operation against 
another, if they are based on the same strategy. 
 
5.1.  Projected Performance of Strategies 
 
Statistical projections using AOQL and IP formulae 
illustrate how individual sampling plan strategies may be 
expected to perform in a general way.  However, they do 
not predict results of a specific operation implementing 
the strategy, because sampling plans called up in the 
operation will likely come mostly from a small area 
within the limits of the strategy.  The projected statistics 
in Table 3 show valid sampling plans with parameter 
conditions noted in the table.  The set of plans generated 
for this analysis span uniformly those one would find 
within the constraints of the strategy.  That is, for every 
possible observed N (or N, n combination) value that 
could be observed, the most efficient effective plan is 
included in this statistical summary.  The strategies’ 
mean AOQL and IP values are comparable with the 
understanding that those statistics were computed from a 
complete set (not a sample) of valid sampling plans 
generated given the specified error limit and those size 
ranges. 
 
The first thing to notice in Table 3 is the difference in the 
number of plans implied by two types of strategies.  Lot-
size strategies give the flexibility to pick the most 
efficient combination of n and c so there is only one plan 
per N.  Sample-size strategies have to provide a plan for 
every combination of N and n that may be observed.   
That does not complicate the task of finding an effective 
plan too much, because the N has a relatively small 
impact on AOQL, but each plan should be checked in 
case an increase in N requires adjusting c to keep the 
AOQL under the limit. 
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Table 3.  Projected Efficiency of Certain QC Strategies 
Given Effective Limit of One Percent Error, Ranges of 
Parameters (N, n, and c), Presumed Level of p, and 
Mechanism Employed:  Averages of AOQL and IP 
Statistics Computed Over Valid Sampling Plans with a 
One Percent Error Limit. 
 
Strategy N1 N2 n1 n2 
 N 300-

3000 
300-
3000 

300-
3000 

300-
3000 

 n 66-292 66-82 66-292 66-292 
 c 0-5 1 0-4 0-4 
assume p ~ 0.01 ~ 0.005 ~ 0.01 ~ 0.01 
Mechanism table table table formula 
AOQL  0.00996 0.00986 0.00682 0.00642 
IP(0.0)* 12.4 6.6 15.3 15.3 
IP(0.005) 13.1 11.7 18.5 19.6 
IP(0.01) 19.9 23.9 34.6 39.4 
# plans 2701 2701 613127 613127 
 * IP(0.0) = 100*n/N , since the rate of inspection equals 
the sample rate when there is no error. 
                                                         
Since the most efficient effective plans have an AOQL 
close to but less than the error limit, the proximity of the 
mean AOQL to that limit is one index of the efficiency of 
plans in that strategy.  The IP means project efficiency 
for different specific presumed levels of incoming error.  
Since lot-size strategies narrow the universe of plans on 
the basis of efficiency, the efficiency of sample size 
strategies is generally less.  That generalization may be 
less dramatic if we take into account any way of 
trimming the universe of sample-size strategy plans, 
perhaps knowing n is close to some given percent of N.  
That possibility is not illustrated in Table 3. 
 
Even for lot-size strategy plans, the AOQL can be much 
less than 0.01, suppressing errors lower than the nominal 
specified limit.  The specified limit is conservatively 
assured, especially with more and more batches, but it 
still is not guaranteed absolutely. 
 
 The IP statistics provide the best indices of efficiency 
when there is some confidence about the specific level of 
incoming error.  An IP (0.005) value represents the 
percent of the production workload that would have to 
be inspected to assure no more than one percent 
outgoing error – as long as the unknown incoming error 
is actually 0.5 percent.  Small IP values imply greater 
efficiency.  Efficiency is better if incoming error is low, 
so IP(0.005) means are lower than IP(0.01) means in 
Table 3.  If there is no incoming error, the inspection is 
limited to QC sample cases and the workload is at the 
minimum, the sampling rate.  (Formula 5 is strictly 
undefined for p = 0, so IP(0.0) is defined directly as the 
sample rate.) 

The value of comparing projected efficiencies for 
alternate strategies designed for a given operation is 
illustrated in Table 3.  N2 is designed for the operation 
based on convincing evidence that incoming error is near 
or below 0.5 percent, as is expected in the response 
coding operation, where a small experienced staff of 
experts define the code values and procedures as well as 
implement the coding.  N1 is designed for the same type 
of work but for much larger workloads and the influx of 
less skilled coders needed to do the coding.  Thus the 
plans selected for N2 have lower IP(0.005) and higher 
IP(0.01) values than N1.  If the low-error assumption is 
true, N2 will be more efficient.  If incoming error is close 
to the one percent level, N1 will be more efficient.  
 
     5.2.  Performance Data and Observations 
 
QC results for the expert response coding of the 2005 
National Census Test write-in fields illustrate a lot-size 
strategy similar to strategy N2, described in section 3.5.1, 
but with lower batch-size range limits.  QC for the 
keying of the 2005 National Census Test questionnaires 
illustrates a sample-size strategy, essentially strategy n1, 
described in section 3.5.2.   
 
Results reported in Table 4 are based on counts of errors 
observed or projected over all batches, since such overall 
statistics correspond to how the data were used.  The 
percent sampled is defined as the sum, over all sampling 
plans employed, of all n divided by the sum of all plans' 
N, regardless of decisions to fully verify batches for 
operational reasons other than an invalid sampling plan.  
If a sampling plan is not valid because the batch was too 
small, n = N.  Percent inspected is the same as percent 
sampled, except N is substituted for n in batches fully 
verified after a batch failure.   
 
The incoming error percent is the percent of production 
units determined to be in error out of all inspections 
done.  The outgoing error percent is the estimated 
percent of error left in coded or keyed fields at final 
transmission.  Such errors exist only in fields that were 
never inspected, since rectification means inspected units 
were transmitted with corrections.  Specifically, the 
outgoing error estimate is the incoming error estimate 
multiplied times the portion of units transmitted that 
were not inspected (one minus the proportion inspected).  
By definition, outgoing error must be less than incoming 
error, since rectification can only reduce incoming error.  
Standard errors are provided, in parentheses, for these 
error estimates, since they were based on sampled data, 
unlike most results reported in this paper, which were 
computed from the full complement of available data. 
  
 
 

ASA Section on Survey Research Methods

3877



  

                Table 4.  Results of 2005 QC Trials 
 
 Coding Keying 
Strategy Similar to N2 Similar to n1 
Number of batches 48 4489 
Number of fields 12033 7252781 
Percent sampled 26.67 10.05 
Percent inspected 33.82 19.11 
Percent incoming error 0.12 (0.043) 0.88 (0.007) 
Percent outgoing error 0.08 (0.035) 0.71 (0.006) 
                                                             
The data in Table 4 are presented to illustrate the kinds 
of metrics that can be generated in the context of 
applying AOQL methodology.  Coding and keying 
operations are so different that there is not much point in 
comparing them other than to show that different 
operations may be served by sampling plan strategy 
tools.   
 
Developers and management might use such information 
to better understand, control, and design QC processes.  
Such results could be usefully compared to those from 
different occasions implementing the same operation or 
against expected outcomes.  The percents sampled and 
inspected are higher in coding results than is common.  
When batch sizes are so small (average batch size is 
around 250), sample verification needs to be replaced 
with full verification.  Another strategy that better fits 
the operation or a non-burdensome change to procedures 
to increase batch size could improve the efficiency of 
coding QC.  On the other hand, the actual estimate of 
incoming error for coding QC confirms prior 
understanding that p may be presumed low, justifying a 
strategy like N2 rather than N1.   
 
Overall, the results of Table 4 are realistic for AOQL 
applications.  In keeping with the QC requirement for 
both coding and keying, the outgoing error estimates are 
indeed less than one percent (Standard errors are 
reported in parentheses in Table 4.).  Since the incoming 
error estimate is also less than one percent and outgoing 
error can only be less than incoming error, AOQL 
methodology is not the sole cause of that success.  Data 
from operations with higher incoming error could 
demonstrate how rectification and full verification of 
failed batches control outgoing error.   
 

6.  Conclusions  
   
1.  The AOQL statistic is a tool useful for identifying one 
or more acceptance sampling plans that are effective in 
assuring a specified limit to outgoing error. 
 
2.  The IP(p) statistic is a tool useful for selecting, from a 
set of sampling plans, the most efficient in terms of 

minimal inspection workload, given information or best 
assumption about the level of incoming error p. 
 
3.  Using those tools and information about operational 
constraints, strategies for selecting effective and efficient 
sampling plans can be developed even when lot sizes or 
sample sizes cannot be controlled. 
 

7.  Recommendations 
 
1. Be aware of burden and ways to minimize it, 
including by adapting a sampling plan strategy.   
 
2. Use and evaluate sampling plan strategies with these 
tools.  
 
3. Research refined techniques for fitting algorithms or 
formulae in developing sampling plan strategies.   
 
4. Engage operational stakeholders in setting meaningful 
error limit requirements and monitoring the effects of 
using them.   
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