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1. Introduction

Assuring  quality, managing requirements, and
developing process metrics are common themes in
project management and software engineering. This
paper focuses on practical quality control (QC) strategies
to manage and measure quality relative to a quantified
requirement in census data keying and response coding.
These strategies build on statistical QC techniques
developed over decades. They tie acceptance sampling
plan parameters of the QC operation to specific output
quality requirements. They manage situations where it is
not feasible to prescribe or control lot size or sample size
to constant values. They guide the selection of units for
QC inspection to assure that those quality goals are met
while minimizing inspection workloads and the
operational effort needed to implement the procedures.

This paper discusses three criteria for evaluating QC
procedures:

. Effectiveness -- Does the QC procedure assure
meeting the error limit requirement?

. Efficiency -- Does the QC procedure minimize
inspection workloads?

. Burden -- Does implementing the QC procedure
complicate or increase the effort of handling
data?

The general strategies for optimizing QC procedures
with respect to these criteria are being developed in the
context of operations where humans capture
respondents’ responses in a useful electronic form. Data
keying is keyboard entry of answers to check-box or
write-in responses on returned paper questionnaires.
Some keying operations are highly automated using
scanned images. Others are based on keying directly
from paper forms. Response coding is the assignment of
one or a set of three-character alphanumeric codes for an
electronically captured write-in response to a data
element (such as race or ancestry). The codes are more
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useful for summary or analysis than the original
idiosyncratic character write-in strings.

Managing quality in these operations involves classic
statistical quality control, specifically, acceptance
sampling methods. The routine focus is on the quality of
products, rather than the process of the operations,
although diagnosing and improving the process is a
valued follow-up goal motivating the inspection of
products.  Traditional statistical QC methods are
particularly suited to repetitive operations where the
result consists of multitudes of individual product units,
an error or deficiency could occur in any unit, and the
correctness of each unit is important.

For data keying, a key field, a single answer space or
checkbox containing a response to be captured off a
paper form, is the product unit. In response coding, the
unit is a response code or set of codes assigned to a
unique write-in response. In each operation, these units
are organized naturally in batches, which are formed for
convenience and minimizing risk in handling and
tracking work through many processing steps. In
keying, a batch is a stack of forms sent together through
processing. In response coding, a batch is a collection of
write-in fields transmitted to expert coders in a single
computer file. The collection of all product units in a
batch comprises a lot in the traditional QC terminology.
The terms lot and batch are thus used interchangeably in
this context.

2. Objectives of the Data Keying and Coding QC

A general objective of census data keying and response
coding QC operations implemented in intra-decade
census tests is to assure that the amount of error in
keying or coding results does not exceed one percent.
That rate is specified in written requirements established
before the operations. Another important general
objective is to provide timely, effective feedback for
continuous improvement of the keying or coding
process. To carry out these general objectives, the QC
procedures are designed specifically to:

. Monitor errors during ongoing production,
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° Replace identified errors with corrections,

. Inspect batches completely when there are too
many errors to satisfy the one percent error
limit requirement,

° Identify concentrations of errors, often due to
an individual keyer's performance, which could
be improved by intervention (such as retraining
or reassignment) to eliminate the error source,

. Alert supervisors to general process problems,
which could be improved by intervention (such
as procedure revision),

. Minimize QC inspection workloads, and

. Minimize overall operational burden.

All these objectives shape the operational features of a
QC program. The focus of this paper is limited to the
statistical quality control criteria, effectiveness and
efficiency, and on burden to the extent that burden
impacts those criteria. Continuous improvement
objectives, where supervisors diagnose and intervene on
the production floor by adapting keyer or coder
procedures or retraining for process improvement
purposes are important but not addressed in this report.

3. Statistical QC Methods
3.1. Verification and Adjudication

Keying and coding operations involve independent
verification of production results with adjudication.
First, a production keyer or coder produces data for
every unit in a batch. A different person, in the
verification role, independently keys or codes designated
units in that batch. Usually, only a sample of batch units
is verified. However, as described below, sometimes
there is a complete, full verification of that batch, so
every unit in the batch is verified in the end.

When production and verification values do not agree, a
skilled, experienced worker, in the adjudication role,
reviews the differing results, records the correct result,
and records whether the production value was in error.
If the number of production errors in a verification
sample is higher than a specified criterion, the batch is
rejected and recycled for full verification and
adjudication. Whenever inspection leads to correcting a
production result, the correction is transmitted in final
data. This is called rectification.

3.2. Selecting Sampling Plans
Outcomes of verification and adjudication, such as the
rate of outgoing error and the amount of additional

inspection resulting from batch failures, depend on a set
of three parameters, known as a sampling plan -- lot or
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batch size (N), sample size (n), and an acceptance
number (c¢). A sampling plan is applied each time a
batch is verified. The count of fields that need to be
coded or keyed in those batches is N, of which n are
initially sampled for QC inspection or verification. No
more than c errors are acceptable; otherwise the batch
fails. The term sampling plan may denote everything
one does to conduct acceptance sampling QC for an
operation. The parameters, which are the essence of this
general definition, are all the term implies in this paper.

In manufacturing settings, it is common to choose a
single sampling plan to be applied to all production.
Using statistical tools discussed below or with analysis
of the performance of the sampling plan, the outcomes
can be predicted and fine-tuned to suit production goals.

It is not feasible to force keying or coding operations
into a one-plan approach. Batch sizes are dependent on
operational considerations like the number of forms that
come in for processing or how many write-in responses
happen to need coding on that day. There are many
unpredictable variables like how many items are
answered on each questionnaire. It would take
extraordinary efforts, like pre-counting key fields or
restructuring batches to force them all into lots of exactly
N units. It also would not likely work. The consequent
extra work, confusion, and other problems would
compound into lost data or other errors.  That
unnecessary, risky, and costly extra effort illustrates the
concept of burden.

The only operationally feasible way to handle keying
physical forms is to key the whole questionnaire.
Asking keyers to pick and choose fields on a form for
sample keying distracts and confuses natural keying
rhythms, introducing error and other burden. Keying
complete forms limits the distraction to moments
between finishing one form and beginning another. So
without splitting physical forms between lots or sample
status, sample size is as hard to control as batch size.
Somehow, sampling plans have to adapt to the values of
N and n that arise in naturally occurring batches.

A common approach to selecting a sampling plan
involves simply sampling every tenth field that comes
into production. The values of N, n, and ¢ may, by
chance, comprise an effective or efficient plan, but there
is no guarantee of that.

Therefore, the task is to identify, for each batch
encountered, the sampling plan with optimal
effectiveness, efficiency, and least burden. The first step
is to identify plans that are effective in limiting error at
the required level. Section 3.3 describes calculations
used to do that. For a given lot size or sample size, there



ASA Section on Survey Research Methods

are many sampling plans that can be shown by these
calculations to be effective in limiting error as required.

The next step is to select, from the variety of effective
plans, an operationally efficient sampling plan, which
minimizes inspection workload, that is, requires the
fewest production units be inspected. Section 3.4
describes calculations used to do that.

Throughout those steps, there is a general aim to avoid
operational complications or management burden.
Software systems may be designed to facilitate the
cognitive task, avoid distractions, and minimize human
data handling. While this report does not explore those
considerations, it is important to evaluate different
mechanisms for picking an effective and efficient plan
that will not increase delays or other burden. Section 3.5
explores varieties of sampling plan strategies.

3.3. Identifying Effective Sampling Plans

An acceptance sampling QC methodology based on the
Average Outgoing Quality Limit (AOQL) statistic is well
suited to these operations, since they are based on
rectification and focused on outgoing quality. This
method assures that, in the long run, the error rate is not
worse than the specified limiting AOQL value, no matter
what level of error exists in product submitted for
inspection (Dodge, 1963). To be effective in assuring
that the rate of final product error is below a specified
limit, the sampling plan for each of many production
batches needs to have an AOQL below that rate.

In the AOQL approach, a stream of product units is
organized into lots (of size N). Generally a lot consists
of all the units in a batch, as defined by the operation. A
sample (of n units) is inspected to determine if the
number of defective units or errors is within acceptable
limits (equal to or less than c). If the batch is acceptable,
it goes to the customer. All units in rejected batches are
inspected and corrected before going to the customer. In
an AOQL-based procedure, only unsampled units of
accepted batches could contain uncorrected errors going
out to the customer.

Computations for the AOQL are built upon the sampling
plan parameters, N, n, and ¢, as well as p, the proportion
of error in the production units before inspection and
correction. This error rate is called process error or
incoming error. While p is unknown, any prior
information convincingly suggestive of its approximate
value may be useful for optimizing efficiency. Yet for
effectiveness in meeting an error limit requirement, the
level of p cannot be assumed.

An understanding of the AOQL is the basis for options in
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efficient, effective control of errors. Wadsworth et al.
(2002, pp 520-526) and Montgomery (2001) describe the
AOQL more completely.

At the core of the AOQL are hypergeometric
probabilities (Hg), which give the chances that a lot of N
units containing D defective units and a sample of n
units, will yield d defective units in the sample. The
unknown p is D/N, so D = pN, approximately. If d is one
of the values acceptable given the sampling plan's limit
¢, the probability of accepting a lot with specific
sampling plan and incoming error values N, n, ¢, and p,
may be expressed as the probability of acceptance (Pa):

Pa = sum over d =0 to c (Hg (N, pN, n, and d)). (1)
The AOQ is the projected rate of outgoing error based on

the sampling plan and a presumed p given two
operational rules:

. Failed batches are fully (one hundred percent)
inspected, and
. All units inspected, whether in the sample or in

batches rejected, are rectified.

That means all errors identified are corrected. Since
there are then no errors left in previously failed batches
or samples, outgoing error is found, at a rate of p, in only
the non-sampled portion, (N-n)/N, of the Pa batches that
were accepted. So,

AOQ = p *((N-n)/N) * Pa 2)

Since we never know the true p, we don’t know which
AOQ applies to a given batch. At p = 0 there is no
incoming error to pass on as outgoing error. At very
high values of p, all batches are likely to be rejected and
fully rectified and thus pass on no outgoing error.
Between those values, the AOQ rises to a maximum and
then falls off.

AOQL = max over p (AOQ) 3)

The AOQL approximates how bad it could possibly get,
not how bad it will likely get. Also, it is possible, but
quite unlikely, that a particular batch contains more
outgoing error than its AOQL. That would most likely
happen if the incoming error is near the level of p for
which the AOQL is defined, and the sample happens to
under-represent the batch error. If that were to occur in
any of the batches, the other batches compensate for it
by their relatively small contributions to overall outgoing
error. So the AOQL seems to be a safe measurement tool
to assure a specified error limit. All that is needed is to
apply a sampling plan that has an AOQL fitting the
requirement. If the requirement is for "at least 99
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percent accuracy" or "no more than one percent error,"
any sampling plan with an AOQL of 0.01 or lower is
effective.

3.4. Selecting Efficient Sampling Plans

Average Total Inspection (AT]) is a traditional metric to
help evaluate workloads of sampling plans (Wadsworth
et al., 2002, p 527). It projects the average number of
cases inspected beyond production in a batch with a
given sampling plan. The ATI is the sample size plus the
portion (I - Pa) of non-sample units (N - n) units that are
inspected, assuming the sample units are not inspected
again after a batch is rejected.

ATI =n + (I - Pa) (N - n)
=N*(1-A0Q/p) 4

The value of ATT is specific not only to a given sampling
plan (with its N, n, and ¢ values) but to the value of p on
which Pa is computed. Transforming AT/ to a percent
permits comparing workloads among batches with
different parameters. Expressing it as a function of p
and AOQ lets it show the impact of incoming error on
workload. The Inspection Percent (IP) captures these
two goals: measurement of plans’ expected efficiency
that is both standardized and differentiable relative to p.

IP(p) = 100 * ATI /N = 100 * (I - AOQ /p) 5)

While the incoming error p is unknown for each
individual batch, past or current experience can provide
very good clues to the approximate level of incoming
error.  Any relevant prior information about the
approximate value of p might be useful in selecting
sampling plans that would optimize workload efficiency.
If selection of an error limit requirement implies some
prior information or interest in a level of p, that suggests
a default p value for IP(p), equal to the specified limit.
If past experience suggests strongly that error rates are
going to be much less than that limit, the /P(p) for that p
is more relevant to efficiency evaluations.

3.5. Sampling Plan Strategies

For each QC operation, planners may develop a strategy
to identify an effective and efficient sampling plan.
Something that can be implemented without delay or
distraction during production is most valuable. A
strategy is a mechanism to identify a sampling plan
using what is known about requirements, values of N or
n, and other conditions of the operation. Strategies fall
into one of two patterns. Lot-size strategies name one
sampling plan for each value of N in range, as described
in sub-section 3.5.1. Sample-size strategies identify
sampling plans primarily by n, as discussed in sub-
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section 3.5.2.

Strategies vary endlessly, partly because of the variety in
operational characteristics and requirements to which
they are fitted. One operation might call for an error
limit requirement at two percent while another requires a
half percent. An operation may prohibit ¢ = 0 because
production staff respond better when they know they will
not “fail” for making just one error. Batch sizes might
naturally range from 1000 to 2100 for one production
task, while 50 to 100 fits another better. There might be
good reason to presume an exceptionally low incoming
error rate, even while QC is still needed to check for
batches where things go very wrong.  All such
conditions help shape a strategy.

Strategies also vary in the mechanism for using observed
N or n to find the rest of the sampling plan parameters in
the midst of production. That observed value might be
looked up in a table of all possible sampling plans. It
may be submitted to a program algorithm where if-then
statements or computational formulae assign other
parameter values. A well-designed if-then algorithm or
formula may generate plans different from those in a
look-up table, but with no effect on effectiveness and
little on efficiency.

Strategies may be developed using computer programs
capable of generating the AOQL and [P statistics for
relevant ranges of N, n, ¢, and p values. The first step in
the program is to generate all sampling plans for each
value of N (or n) that has an AOQL under the error limit.
The next step is to choose the plan, for each N (or n),
with the minimum /P(p), where p is the best guess or
presumed level of incoming error. A listing of the
resulting plans comprises a look-up table.

Developing algorithms or formulae to replace the look-
up table may have advantages, perhaps less code or risk
of file corruption, in implementing a QC program. The
algorithm or formula should fit the table in the sense that
it generates the same plan listed in the table. Finding
that alternative rule still is a partly trial-and-error effort,
using statistics derived from the table. One area of
development for sampling plan strategies is to find more
deterministic means of fitting good formulae to a table.

A final step in developing strategies is to run a program
that checks each plan’s effectiveness and documents
their efficiency. It also checks to be sure none of the
plans in range were invalid (resulting in adaptations
illustrated in Table 2), due to conditions where the
hypergeometric probability is undefined, which are most
common when batches are small. The final program also
shows diagnostics, such as whether the AOQL value was
set at the highest value of p, a sign that it is not the
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maximum over a large range of p. Diagnostics may also
show that parameter ranges need to be trimmed to avoid
invalid sampling plans.

When completely developed, a strategy is specified by:

The error limit required,

Ranges of possible values for {N, n, c, p},

The presumed level of p, and

The mechanism for finding {N, n, and c}: a
table, a formula, or an algorithm.

The strategy should specify also what happens when
observed parameters fall outside appropriate ranges.
Particularly, if a batch is too small, it may be fully
verified, bypassing sample verification, or joined with
another batch to form one that is acceptably large.

3.5.1. Lot-Size Strategies

A lot-size strategy begins with the observed value of N.
It is useful when an operation's procedures make it
impossible or burdensome to set N, but not n or c. For
each batch encountered in production, these strategies
apply a suitable mechanism to find values for n and c,
using the observed value of N, specifying the AOQL
requirement and any range for N that is relevant. The
"N" in the labels of these examples denotes that they are
lot-size strategies.

° N; — AOQL < 0.01; N: 300-3000; n and c are
selected for efficiency but not otherwise
constrained in range; p is presumed not much
different from 0.01; The mechanism to find the
sampling plan is to look up N in a list and adopt
the associated n and c. (See Table 1).

. N, — Same as Ny, except p is presumed to be
0.005 or less, sponsors wish ¢ > 0, and a
different look-up table is generated.

. N; — Same as N, except the mechanism to find
a sampling plan involves computing:

c=1+int (N/ 1000) and
n = max (78, ceil (200*c/3)).

N; is an example of a set of formulae that attempt to
recreate the contents of a look-up table such as Table 1.
The formulae do not always produce the same sampling
plans found in the table. If the table has all the most
efficient plans, the formula will not always yield as
efficient a plan. It is important to double check that any
plan generated by a formula still has an AOQL less than
the required limit.
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Table 1. Rows from a Look-up Table for Strategy N,

N n ¢
300 68
451 72 1
452 109 2
1065 166 3
1066 122 2
1067 167 3
3000 289 5

3.5.2. Sample-Size Strategy

A sample-size strategy is useful when an operation's
procedures make it impossible or burdensome to set n, as
well as N. For each batch encountered in production,
these strategies apply a suitable mechanism to find a
value ¢, using the observed value of n, checking that
values of N and 7 suit range specifications and the AOQL
requirement. In this strategy, a small n (rather than N)
signals the need for full verification. The "n" in the
labels of these examples denotes that it is a sample-size
strategy.

° n; — AOQL < 0.01; N: 300-3000; n: 66-292; no
presumed level of p; The mechanism to find the
sampling plan is to look up n and range of
observed N and adopt the associated value for c.
(See Table 2).

° n, — same as n; except the mechanism to find a
sampling plan involves computing:

¢ =int ((0.015 * n) - 0.23).

Table 2. Rows from a Look-up Table for Strategy n;

n (range) N (range) c

66 — 82 1501 - 3000 invalid*

66 - 82 300-1500 0
83-132 2431 - 3000 0
83-132 300 - 2430 1
133 - 188 300 - 3000 2
189 - 246 300 - 3000 3
247 - 292 300 — 3000 4

* Some plans in these ranges are invalid — resample,
pool batches, verify 100% or otherwise reform the batch.

The n, strategy needs only one formula to completely
designate a sampling plan since both N and n are
observed from the batch.



ASA Section on Survey Research Methods

Table 2 could easily be turned into an algorithm by
generating a line of computer code for each row, like:
If 65< n < 83 and 299< N < 1501 then ¢ = 0.

4. Limitations

. This paper follows the recommendation of
Dodge (1963) to use the AOQL rather than the
Acceptable Quality Level or Lot Tolerance
Percent  Defective acceptance  sampling
approaches. Those other approaches are not
evaluated in this paper.

. Data about one strategy may not always be
validly compared to that of another. The intent
of presenting Table 3 and 4 data in this report is
to illustrate the variety in strategies and related
statistics. In general, strategy comparisons
should be limited to alternatives applicable to a
specific QC operation.  For example, in
selecting a strategy to implement in a given
situation, you might compare the projected
efficiencies of alternatives that differ only in the
mechanism formula. After a strategy has been
implemented on a second occasion, results may
be compared meaningfully. Also, projections,
such as those in Table 3, should not be treated
as a prediction or standard for implementation
results, such as those in Table 4.

. It is likely that algorithms or formulae
presented in this paper could be improved to
better fit the list of optimal plans and thus yield
marginally more efficient plans overall. This is
an area for future development.

. Incoming error and outgoing error percents are
estimated with the assumption that errors
among fields not inspected are best represented
by errors among fields that fell into inspection.

. Similarly, standard errors of those percents are
estimated without data transformations to
compensate for error rates’ proximity to zero
(Wolter, 1985, p. 368), or stratification to take
into account inherent batch structure (Cochran,

1977, p. 66).
e For better operational control and less
operational burden, keying and coding

production both implemented full rework of
failed batches. That meant sample units were
keyed or coded an extra time rather than
skipped over when the rest of a failed batch was
verified. =~ Observed workload computations
reported in this paper ignored that extra work in
order to be consistent with AOQL
computations. Actual efficiency differed as a
result, but the effectiveness of the QC did not.
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. Diagnostic review of 2005 QC data showed a
few instances where a file management step or
output record was missed in implementing QC.
No more than one percent of QC data was or
might have been affected in either operation.

5. Illustrating Sampling Plan Strategies

Insights into strategies for selecting sampling plans arise
from observing:

. statistics projected from sampling plans
representing all those that could be generated
by a strategy, and

. results of recent operations applying a strategy.

Projected effectiveness and efficiency statistics
illustrated here may be the best tools for judging the fit
of prospective strategies to an operation. Observed
statistics illustrated here are useful for evaluating one
occasion’s implementation of an operation against
another, if they are based on the same strategy.

5.1. Projected Performance of Strategies

Statistical projections using AOQL and [P formulae
illustrate how individual sampling plan strategies may be
expected to perform in a general way. However, they do
not predict results of a specific operation implementing
the strategy, because sampling plans called up in the
operation will likely come mostly from a small area
within the limits of the strategy. The projected statistics
in Table 3 show valid sampling plans with parameter
conditions noted in the table. The set of plans generated
for this analysis span uniformly those one would find
within the constraints of the strategy. That is, for every
possible observed N (or N, n combination) value that
could be observed, the most efficient effective plan is
included in this statistical summary. The strategies’
mean AOQL and [P values are comparable with the
understanding that those statistics were computed from a
complete set (not a sample) of valid sampling plans
generated given the specified error limit and those size
ranges.

The first thing to notice in Table 3 is the difference in the
number of plans implied by two types of strategies. Lot-
size strategies give the flexibility to pick the most
efficient combination of n and ¢ so there is only one plan
per N. Sample-size strategies have to provide a plan for
every combination of N and n that may be observed.
That does not complicate the task of finding an effective
plan too much, because the N has a relatively small
impact on AOQL, but each plan should be checked in
case an increase in N requires adjusting c¢ to keep the
AOQL under the limit.
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Table 3. Projected Efficiency of Certain QC Strategies
Given Effective Limit of One Percent Error, Ranges of
Parameters (N, n, and c), Presumed Level of p, and
Mechanism Employed: Averages of AOQL and IP
Statistics Computed Over Valid Sampling Plans with a
One Percent Error Limit.

Strategy N; N, n n,
N 300- 300- 300- 300-
3000 3000 3000 3000

n 66-292 66-82 66-292 66-292

c 0-5 1 0-4 0-4
assume p ~0.01 ~0.005 ~0.01 ~0.01
Mechanism table table table formula
AOQL 0.00996 | 0.00986 | 0.00682 | 0.00642
IP(0.0)* 12.4 6.6 15.3 15.3
1P(0.005) 13.1 11.7 18.5 19.6
IP(0.01) 19.9 23.9 34.6 39.4
# plans 2701 2701 613127 | 613127

* IP(0.0) = 100*n/N , since the rate of inspection equals
the sample rate when there is no error.

Since the most efficient effective plans have an AOQL
close to but less than the error limit, the proximity of the
mean AOQL to that limit is one index of the efficiency of
plans in that strategy. The IP means project efficiency
for different specific presumed levels of incoming error.
Since lot-size strategies narrow the universe of plans on
the basis of efficiency, the efficiency of sample size
strategies is generally less. That generalization may be
less dramatic if we take into account any way of
trimming the universe of sample-size strategy plans,
perhaps knowing n is close to some given percent of N.
That possibility is not illustrated in Table 3.

Even for lot-size strategy plans, the AOQL can be much
less than 0.01, suppressing errors lower than the nominal
specified limit. The specified limit is conservatively
assured, especially with more and more batches, but it
still is not guaranteed absolutely.

The IP statistics provide the best indices of efficiency
when there is some confidence about the specific level of
incoming error. An [P (0.005) value represents the
percent of the production workload that would have to
be inspected to assure no more than one percent
outgoing error — as long as the unknown incoming error
is actually 0.5 percent. Small /P values imply greater
efficiency. Efficiency is better if incoming error is low,
so IP(0.005) means are lower than /P(0.01) means in
Table 3. If there is no incoming error, the inspection is
limited to QC sample cases and the workload is at the
minimum, the sampling rate. (Formula 5 is strictly
undefined for p = 0, so IP(0.0) is defined directly as the
sample rate.)
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The value of comparing projected efficiencies for
alternate strategies designed for a given operation is
illustrated in Table 3. N, is designed for the operation
based on convincing evidence that incoming error is near
or below 0.5 percent, as is expected in the response
coding operation, where a small experienced staff of
experts define the code values and procedures as well as
implement the coding. N; is designed for the same type
of work but for much larger workloads and the influx of
less skilled coders needed to do the coding. Thus the
plans selected for N, have lower IP(0.005) and higher
IP(0.01) values than N;. If the low-error assumption is
true, N, will be more efficient. If incoming error is close
to the one percent level, N; will be more efficient.

5.2. Performance Data and Observations

QC results for the expert response coding of the 2005
National Census Test write-in fields illustrate a lot-size
strategy similar to strategy N, described in section 3.5.1,
but with lower batch-size range limits. QC for the
keying of the 2005 National Census Test questionnaires
illustrates a sample-size strategy, essentially strategy nl,
described in section 3.5.2.

Results reported in Table 4 are based on counts of errors
observed or projected over all batches, since such overall
statistics correspond to how the data were used. The
percent sampled is defined as the sum, over all sampling
plans employed, of all n divided by the sum of all plans'
N, regardless of decisions to fully verify batches for
operational reasons other than an invalid sampling plan.
If a sampling plan is not valid because the batch was too
small, n = N. Percent inspected is the same as percent
sampled, except N is substituted for n in batches fully
verified after a batch failure.

The incoming error percent is the percent of production
units determined to be in error out of all inspections
done. The outgoing error percent is the estimated
percent of error left in coded or keyed fields at final
transmission. Such errors exist only in fields that were
never inspected, since rectification means inspected units
were transmitted with corrections.  Specifically, the
outgoing error estimate is the incoming error estimate
multiplied times the portion of units transmitted that
were not inspected (one minus the proportion inspected).
By definition, outgoing error must be less than incoming
error, since rectification can only reduce incoming error.
Standard errors are provided, in parentheses, for these
error estimates, since they were based on sampled data,
unlike most results reported in this paper, which were
computed from the full complement of available data.



ASA Section on Survey Research Methods

Table 4. Results of 2005 QC Trials

Coding Keying

Strategy Similar to N, | Similar to n,
Number of batches 48 4489
Number of fields 12033 7252781
Percent sampled 26.67 10.05
Percent inspected 33.82 19.11
Percent incoming error | 0.12 (0.043) | 0.88 (0.007)
Percent outgoing error | 0.08 (0.035) | 0.71 (0.006)

The data in Table 4 are presented to illustrate the kinds
of metrics that can be generated in the context of
applying AOQL methodology. Coding and keying
operations are so different that there is not much point in
comparing them other than to show that different
operations may be served by sampling plan strategy
tools.

Developers and management might use such information
to better understand, control, and design QC processes.
Such results could be usefully compared to those from
different occasions implementing the same operation or
against expected outcomes. The percents sampled and
inspected are higher in coding results than is common.
When batch sizes are so small (average batch size is
around 250), sample verification needs to be replaced
with full verification. Another strategy that better fits
the operation or a non-burdensome change to procedures
to increase batch size could improve the efficiency of
coding QC. On the other hand, the actual estimate of
incoming error for coding QC confirms prior
understanding that p may be presumed low, justifying a
strategy like N, rather than N;.

Overall, the results of Table 4 are realistic for AOQL
applications. In keeping with the QC requirement for
both coding and keying, the outgoing error estimates are
indeed less than one percent (Standard errors are
reported in parentheses in Table 4.). Since the incoming
error estimate is also less than one percent and outgoing
error can only be less than incoming error, AOQL
methodology is not the sole cause of that success. Data
from operations with higher incoming error could
demonstrate how rectification and full verification of
failed batches control outgoing error.

6. Conclusions
1. The AOQL statistic is a tool useful for identifying one
or more acceptance sampling plans that are effective in

assuring a specified limit to outgoing error.

2. The IP(p) statistic is a tool useful for selecting, from a
set of sampling plans, the most efficient in terms of
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minimal inspection workload, given information or best
assumption about the level of incoming error p.

3. Using those tools and information about operational
constraints, strategies for selecting effective and efficient
sampling plans can be developed even when lot sizes or
sample sizes cannot be controlled.

7. Recommendations

1. Be aware of burden and ways to minimize it,
including by adapting a sampling plan strategy.

2. Use and evaluate sampling plan strategies with these
tools.

3. Research refined techniques for fitting algorithms or
formulae in developing sampling plan strategies.

4. Engage operational stakeholders in setting meaningful
error limit requirements and monitoring the effects of
using them.

References

Cochran, W. G. (1977). Sampling Techniques, fourth
edition, Wiley, New York, NY.

Dodge, H. F. (1963). Choosing Acceptance Sampling
Plans, Industrial Quality Control, R. A. Freund
(ed.), Vol. 20, No. 2.

Montgomery, D. C. (2001). Introduction to Statistical
Quality Control, fourth edition, Wiley, New
York, NY.

Wadsworth, H. M., Stephens, K. S., and Godfrey A. B.
(2002). Modern Methods for Quality Control
and Improvement, second edition, Wiley, New
York, NY.

Wolter, K. M. (1985). Introduction to Variance
Estimation, Springer-Verlag, New York, NY.



