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Abstract: When the variable of interest is relatively 
expensive to measure and a correlated auxiliary 
variable can be measured easily then it is efficient to 
employ a double sampling. The primary purpose of 
this paper is to compare the efficiency between the 
Jackknife method and the bootstrap method when 
applied to double sampling. The variance of the 
estimated total or the estimated mean will be sought. 
The estimated variance will be compared by using the 
jackknife and the bootstrap methods, respectively. 
Using a simulation study, we evaluate the efficiency of 
double sampling by comparing the bootstrap and the 
jackknife to simple random sampling.  
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1. INTRODUCTION 
 
Double sampling, proposed for the first time by 
Neyman (1938), now is widely applied in sample 
surveys for various reasons. Usually, this technique is 
used for situations when response data are too 
expensive to obtain but some correlated data can be 
easily measured. In the first phase, the correlated 
variables are measured for every unit and thus the 
phase I sample is generally relatively large. Then, 
samples are randomly selected from the phase I sample 
population by a probability scheme and taken as phase 
II sample. After the phase II sample is obtained, the 
variables of interest are measured for each unit in the 
sub-sample. Since the phase I sample is treated as the 
population from which the phase II sample is drawn, 
the auxiliary information gathered in the phase I might 
be used to design the phase II sample.  
 

2. VARIANCES IN DOUBLE SAMPLING 
 
Let iy be the variable of interest for the ith unit, and 

the auxiliary variable be ix . Let n′  be the number of 

the units in the first sample S ′  and n be the number of 
the units in the second sample. For each unit in the 

second sample, both iy and ix are observed, while for 

the rest of the units in the first sample, only ix is 

observed. The first sample S ′  is selected from the 
whole population of N units, where x-values are 
observed by random sampling without replacement. 
The estimated variance of a ratio estimation of rY is:               
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The estimated variance of a regression estimation is: 
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The estimated variance of a difference estimation is 
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3. THE BOOTSTRAP METHOD 
 
3.1 Percentile Bootstrap Confidence Intervals 
 

Suppose that  ),...,,( 21 nYYYY =  is a random sample 

of size n and )(ˆˆ yθθ = is a point estimator ofθ . A (1-

α)100% confidence interval for θ  is )ˆ,ˆ( UL θθ , where 

θα δθθ ˆ2/1
ˆˆ

−−= zL  and ,ˆˆ
ˆ2/ θα δθθ zU −= where 

θδ ˆ  is standard error of θ̂ . 

Then 2/)ˆˆ( * αθθ =≤ LP and 

2/1)ˆˆ( * αθθ −=≤ UP  (see Hogg et al.  (2005)).  
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interval for θ , which is called the percentile bootstrap 
confidence interval for θ .  
The standard error of the bootstrap estimate is  
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where *
iθ is the bootstrap value of a quantity and *

avgθ is 

the average of the bootstrap values of the quantity. 
 

4. THE JACKKNIFE METHOD 
 

Letθ̂ denote an estimator of the unknown parameterθ  
based on the sample of size n=gh where g is the 
number of group and h is the size of the sample in each 

group and i−θ̂ be the estimator of θ  based on the 

sample by deleting the ith group,  then the estimated  
variance is 
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where avgθ̂ is the average of all estimator i−θ̂ s’ values 

(see Quenouille  (1956)) . 
 

5. DATA ANALYSIS 
 
The example in this paper is based on an experiment, 
through which some conclusions can be obtained. In 
this experiment, the dataset “audit” (Lohr, 1998) is 
adopted to compute the estimated variances of the 
population mean and the population total when double 
sampling is applied with three estimation schemes: 
ratio estimation, difference estimation, and regression 
estimation. For each estimation scheme, the bootstrap 
and the jackknife sampling techniques are applied, 
respectively, to compute the estimated values. We use 
only two variables from the dataset, one is bookval 
(book value account) treated as the auxiliary variable x, 
and cumbv (cumulative book value) taken as the 
response variable y. From the scatter plot (not shown 
here), it appears that there is a linear relationship 
between the variable x and the response y. Table 1 
summarizes some necessary information for this 
experiment.  
 
Note that three different sample sizes (16, 32, 64) for 
the second phase are tried in this experiment. The 
values of k and repeat are just assumed by the 
experimenter and can be changed though programming 
interface. The other parameters can be observed by 
running the main function. 
 

Table 1. Parameter information of experiment 
 
N n′  n 'x  k 

(difference) 
Repeat 
(bootstrap) 

87 79 16, 
32, 
48 

7400.86 2 20 

 
N: the size of the population; n′ : the size of the first 
sample; n: the size of the second sample; 'x : the 
average value of the auxiliary variable in the first 
sample; k: the coefficient in the difference estimation 
equation.; repeat: the number of bootstrap samples  
generated in this experiment.  
The following table summarizes the means for 
different sample sizes. 
 
Table 2. Summary of the estimated mean for three 
sample sizes 

 Ratio Difference Regression 
n=16 

Simple 
Boot 
Jack 

 
61526 

44808 

59106 

 
44685 

35908 

43192 

 
42437 

43097 

42330 

n=32 
Simple 
Boot 
Jack 

 
72473 

50589 

71149 

 
27964 

22582 

27533 

 
27856 

28408 

27850 

n=48 
Simple 
Boot 
Jack 

 
20897 

16980 

20694 

 
18570 

15495 

18396 

 
18552 

18777 

18548 

 
 We produce 6 figures from the SAS output. 
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Figure 1:  Ratio estimation 
 

6. CONCLUSIONS AND DISCUSSIONS 
 

Following four conclusions are obtained from the 
figures: 
1. Bootstrap method makes the best performance when 
given the estimation scheme and the size of the second 
sample in double sampling. Jackknife method performs 
not much different from simple method.  
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2. The performances of estimation schemes are relative 
to the size of the second sample in double sampling. 
The larger the sample size is, the better the 
performance is.  
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Figure 2:  Difference estimation 
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Figure 3:  Regression estimation 
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Figure 4:  Simple sampling performance 
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Figure 5:  Bootstrap sampling performance 
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Figure 6:  Jackknife sampling performance 
 
3. Ratio estimation is worse than the other two 
estimation schemes when given the size of the second 
sample in double sampling and the resampling method. 
Difference estimation performs nearly the same as 
regression estimation, but it does better than that of 
regression estimation when bootstrap resampling 
method is applied. 
3. When the resampling technique is given, the 
performance of regression estimation is not sensitive to 
the sample size in the second phase. While the 
performance of difference estimation is relative to the 
sample size; the larger the size is, the better the 
difference estimation performs. No obvious rule can be 
concluded between ratio estimation and the sampling 
size in the second phase.  
 
In this experiment, we did not change the parameter 
how many runs the bootstrap sampling is applied, 
which is set to a fixed number “20”; hence, different 
runs of bootstrap method can be tried in future work. 
Also, only one guess about the coefficient k in 
difference estimation was tried; so, different guesses 
can be tried in the future. The more important point is 
that only one dataset (population) was tested. More 
datasets should be put into experiment to see to what 
extent these conclusions hold. We can not tell if these 
conclusions are useful in practice until we have tried 
enough different populations. 
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