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1. Introduction 
 
The allocation of fixed assets to different 
depreciation categories for tax purposes can be 
costly since it involves site visits, blueprints, 
engineers, architects, lawyers and tax experts.  
Therefore, small samples sizes are essential. 
Fortunately, business data generally includes one or 
more strong covariates, allowing the use of model- 
based sampling and estimation to improve 
precision in small samples. 
 
Occasionally there are different subgroups in the 
population that are expected to have varying 
compositions of fixed assets and do not belong in 
the same model. In these circumstances, we stratify 
based on the anticipated mix of assets. Separate 
models are then developed in each stratum to 
estimate the asset amounts that can be moved to a 
shorter depreciable life category.  The stratum 
estimates are summed and the corresponding 
variances of the estimates are summed.  
 
This paper assesses the appropriate degrees of 
freedom to use when constructing a confidence 
interval of the overall total estimate and explores 
how well confidence intervals cover the true values 
in our setting. 
 
 
 
2. Background 
 
It is important to distinguish the type of 
stratification we are considering in this study. 
 
Figure 1 illustrates an example when two 
subgroups of a population have two distinct 
depreciation compositions, for which we will 
stratify.  By contrast, Figure 2 shows stratification 
based on the design variable, or the independent 
variable. 
 
In settings illustrated by Figure 1, separate models 
are built for each stratum.  However, when stratum 
data fall on the same line, as in Figure 2, we use a 
single model incorporating sampling weights to 
account for the stratification.  The degrees of 
freedom in this latter setting are well established, 
and not a subject of study in this paper.   

Figure 1.  Stratification by Anticipated Trend 
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Figure 2.  Stratification by Size  
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Figure 3.  Stratification by Size and Trend  
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Occasionally, data may level off somewhat in the 
second stratum as shown in Figure 3.  In these 
situations, we may use a transformation on x and a 
single model.  However, we sometimes obtain a 
smaller variance by building separate models for 
each stratum.  In this case, we again have a 
question regarding the degrees of freedom.  
 
When calculating the correct total degrees of 
freedom (df) for a confidence interval of the sum of 
two model based estimates, it is tempting to use the 
sum of each model’s degrees of freedom: 
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df = df1+ df2 . 

 
However, we know summing degrees of freedom 
over strata is inappropriate in design based 
estimation where theoretically:  
 

min(df1, df2) ≤ df ≤  df1+ df2. 
 
In design-based estimation, we commonly use 
Satterthwaite’s approximation to df.  If Y is a linear 
combination of normally distributed Yj, then, 
Satterthwaite’s df is a linear combination of the 
variances of Yj divided by the sum of the weighted 
variances squared: 
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Is Satterthwaite’s approximation applicable to 
model-based estimation as well?  Consider that our 

model-based sum is a linear combination of jŶ , 
with the variance of the total given by the sum of 
the stratum variances:  
 

∑∑ =
j jjj j MSEwYVar )ˆ(  

 
where wj is a constant related to X values, 
regression weights, the sampling fraction, and 
sample sizes.  Therefore, it appears as though 
Satterthwaite’s df would be applicable with the 

Mean Square Error (MSE) in place of 2
yjS  

 
In this paper, through simulation, we studied the 
confidence interval coverage using Satterthwaite’s 
df for our sum of model-based estimates.  For 
benchmarking, we compared it to min(df1, df2) and 
df1+ df2 controlling for different factors. 
 
In design-based estimation, we know that 
Satterthwaite’s approximation may overestimate df 
in the presence of positive kurtosis in Y, causing 
under-coverage of confidence intervals.  
 
In model-based estimation, Y is assumed to be 
normally distributed about X.  The variance of the 
model, MSE, would appear to be more critical than 
the variance of Y when considering kurtosis. 
 
Yet, our application is to data with highly skewed 
distributions.  Our independent (design) variable, 
X, has long tails in the larger values, resulting in 
similar long tails in the distribution of the 
dependent variable Y.    

 
Thus in our study, in accordance with the model 
assumptions, we simulated Y normally distributed 
about X, but chose several increasing levels of 
kurtosis in X in order to mirror the data we find in 
application.  The corresponding distributions of Y 
therefore had positive kurtosis as well. 
 
In addition, deep stratification within each major 
stratum was used to draw the sample selections.  
Deep stratification is a sample selection method 
that obtains a representative sample, reduces 
sampling error, and may improve confidence 
interval coverage.  Each major stratum is divided 
into numerous (deep) substrata of equal counts.  
See Figure 4 below.  Within each major stratum, 
the deep strata are sampled at a constant rate, so 
that within each major stratum, every record has 
the same probability of selection.  
 
 
Figure 4.  Deep Stratification Illustrated 
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Thus our study of confidence interval coverage 
included deep stratification, methods of computing 
degrees of freedom, and levels of kurtosis in highly 
skewed data. 
 
 
3.  Methodology 
    
We performed simulations to assess confidence 
interval coverage under Satterthwaite’s df with two 
benchmark comparisons:   
 
1.  min(df1, df2)   
2.  Satterthwaite’s approximation 
3.  df1+ df2  
 
We generated several population data sets similar 
to Figure 1 creating both an X and Y value for the 
entire population, with the two strata differing in 
the relation between X and Y. Actual population 
values of the total Y over the two strata were 
known in these simulations.  
 
For each population, we conducted numerous 
simulations using deep stratification to draw 
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samples in each stratum.  We estimated Y, and 
created confidence intervals using the three df 
approaches above.  Finally, we noted the percent of 
confidence intervals containing the actual Y values 
to assess the confidence interval coverage.  
 
The X values were generated using a gamma 
distribution in SAS.  Eight populations with 
varying degrees of kurtosis in X were considered. 
For each distribution, 400 records were created in 
both major strata 1 and 2. 
 
The Y values were simulated according to a 
heteroscedastic model without an intercept:  
 

iii XY εβ += , where  
 

2)( σε ii XVar = . 
 
The values of iε  were generated by multiplying 

iXσ by a normal N(0,1) variable generated by 

the Rannor function in SAS.  Note that no overt 
steps were taken to create kurtosis of epsilon in this 
process.  However, small levels of kurtosis in 
epsilon were created by chance in the generation of 
normal N(0,1) variables. 
 
The value of σ was set to the same constant across 
all populations and strata in this study. The value of 
β was held constant within each major stratum 
across all populations studies.   
 
The only factor that changed between populations 
was the degree of kurtosis in X, which accordingly 
formed kurtosis in Y.  See Figure 5 for the differing 
distributions of Y depicted here just for stratum 1. 
 
In each simulation, a random sample of 20 items 
was selected from stratum 1 and a sample of 5 
items was selected from stratum 2. 
 
The estimates were calculated according to the 
ratio method as described in Lohr.1 
 
For each population, 10,000 simulations were 
conducted. Using the three methods for 
determining degrees of freedom, 90, 95, and 99 
percent confidence intervals were calculated.  We 
determined the percent of intervals containing the 
true value of Y and compared the percentage to the 
ascribed confidence level. 
 
 
 
 

                                                 
1 Lohr, S. (1999) Sampling: Design and Analysis, 
Duxbury Press: Pacific Grove, CA, pages 81-83 

Figure 5.  Kurtosis of Y in Stratum 1 
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4.  Results 
 
The results of the simulation are summarized in 
Figure 6 below in three adjacent plots, one for each 
df method. The vertical axis is the actual percent 
coverage found in the simulations, where the red 
diamonds, blue triangles and green circles show the 
coverage of 99, 95, and 90% confidence intervals 
respectively.  The horizontal axis is the varying 
levels of kurtosis on Y.  The results show that 
kurtosis has a minimal level of impact in our 
setting. 
 
 
Figure 6.  Confidence Coverage Results 
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It can be seen in the first plot that the confidence 
interval when using the minimum degrees of 

Min(df1, df2)   Satterthwaite df   df1 + df2   
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freedom over covers and is too conservative in this 
situation.  The minimum degrees of freedom are 
too small creating confidence intervals that are 
conservative, but wider than necessary, and contain 
the actual value more than their ascribed percent.   
 
The last plot demonstrates that the sum of the two 
degrees of freedom consistently under covers.  
Thus, while tempting to use, df1+df2 is not 
conservative leading to confidence intervals that 
are narrower than they should be. 
 
Satterthwaite’s approximation to the degrees of 
freedom, in the middle plot, has the closest 
coverage to the ascribed values of the confidence 
levels.  
 
However, note that Satterthwaite’s approximation 
resulted in some mild under coverage with kurtosis 
levels between 4 and 10.  This needs further 
exploration.  It is not clear whether kurtosis or 
some other factor caused these findings, since the 
coverage improved at a kurtosis of 15. 
 
The symmetry of the confidence intervals was 
evaluated by examining the simulations where the 
true Y value fell outside the confidence interval.  
The percentages where the actual value was above 
and below the confidence interval were determined 
and plotted in Figures 7 through 9.  Figures 7 and 8 
show that the percent of times the actual value fell 
below the lower limit for the 90 and 95 percent 
coverage is higher than the percent that fell above 
the upper limit in cases where the kurtosis of Y is 
low.  When the kurtosis of Y is on the higher side, 
the percent that fell above the upper limit is higher 
than the percentage that fell below the lower limit.  
However, there is less obvious asymmetry for the 
99 percent confidence coverage as can be seen in 
Figure 9.    

 
Figure 7.  Percent Above and Below the Upper 
and Lower Limit for 90 Percent Coverage 
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Figure 8.  Percent above and Below the Upper 
and Lower Limit for 95 Percent Coverage 
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Figure 9.  Percent Above and Below the Upper 
and Lower Limit for 99 Percent Coverage 
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5.  Conclusion and Next Steps. 
 
Our findings show that the conservative approach 
of using the minimum of the degrees of freedom is 
too conservative.  The sum of stratum dfs 
overstates the appropriate degrees of freedom. 
 
Satterthwaite’s approximation to the degrees of 
freedom appears to be the most accurate method in 
the scenarios we tested.   
 
More testing is needed to understand the factors 
related to the slight under-coverage that we found 
in our study.  Also, different population and sample 
sizes should be tested for a variety of variance 
levels in the strata with large variances in small 
strata and vice versa. 
 Below Lower Limit Above Upper Limit 

Above Upper Limit Below Lower Limit 

Kurtosis in Y

Above Upper Limit Below Lower Limit 

Kurtosis in Y

Kurtosis in Y 
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Finally, generalized linear models should also be 
considered as described by Dorfman, Valliant and 
Royall.2   
 
In conclusion, in the simulated populations we’ve 
tested, it appears as though Satterthwaite’s df   
applied to model-based estimation behaves 
similarly to design-based estimation.  Therefore, 
Satterthwaite’s approximation to the df can be 
considered a practical alternative to either using the 
sum or the minimum degrees of freedom. 
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