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Abstract

In principle, hot deck imputation methods preserve means and
variances, and can also preserve covariances with other vari-
ables included in the allocation matrix. In practice, dimension-
ality problems arise quickly as predictive variables are added
and allocation matrix cells become small, undermining the
hot deck’s theoretical advantages. Predictive-mean nearest-
neighbor imputation avoids dimensionality problems, but can
reduce the variance. A combination method is described: us-
ing the predicted values from a set of sequential, triangular
regressions to form hot deck matrices. Triangularity allows
the inclusion of predictive variables that are themselves sub-
ject to non-response. The method enables the rapid develop-
ment of allocation schemes, eliminates dimensionality prob-
lems, and aids in predictor selection. The implementation of
this method in American Housing Survey income data is de-
scribed and evaluated.

Keywords: Imputation; Allocation; Predictive Mean; Se-
quential Regressions; Hot Deck

1 Introduction

This paper describes the income imputation system developed
for the 2005 American Housing Survey (AHS), called a trian-
gular regression-based hot deck. The method breaks little new
theoretical ground. In fact, it could easily be improved on,
albeit at some cost in additional computation and complex-
ity. Nonetheless, the method represents a good compromise
between current U.S. Census Bureau methods (the hot deck)
and more sophisticated imputation schemes (such as chained
regressions and multiple imputation).

The method has many desirable properties. It eliminates di-
mensionality problems, requires only weak assumptions about
the distribution of the data, allows for the flexible imposition
of logical constraints, and is robust to model misspecification.
Compared to hot deck methods, the imputation scheme de-
scribed reduces the amount of work required to develop an al-
location scheme and provides the analyst guidance in creating
the scheme. In practice, it is also better than a hot deck at im-
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puting data that reproduces the relationships among variables
(covariances) present in the reported data.

2 Hot Deck Methods

The hot deck allocation (or imputation) method is widely used
at the U.S. Census Bureau and other statistical agencies. In
this method, the analyst specifies an allocation matrix based
on characteristics thought to predict the variable being allo-
cated. For example, in an allocation matrix predicting earn-
ings, one cell might consist of white renters, aged 18-25, with
a high school education. When earnings are not reported, they
are imputed from the reported earnings of the last observa-
tion processed (typically geographically close) that falls in the
same allocation cell.

The hot deck method has several advantages. First, is its
processing simplicity: the hot deck requires a single pass
through the data, and can be easily implemented in statisti-
cal packages such as SAS that process a single observation at
a time rather than holding a complete data set in memory. Of
course, with the rapid development of computing technology,
this processing simplicity has become less and less important,
but still matters for very large datasets, such as the decennial
census. Second, the hot deck preserves the distribution of the
data. Recipient cases will have the same mean and variance
as the donors. Importantly, the hot deck imposes no distrib-
utional assumptions on the data. Hence, it will also preserve
other features of the data, such as heavy tails or heaping (when
data are reported in rounded numbers).1

In principle, hot decks can also preserve the relationship
between the allocated variable and other variables. In prac-
tice, however, dimensionality problems arise quickly, sharply
limiting the number of variables that can be used. The Ameri-
can Community Survey (ACS) earnings allocation matrix, for
example, uses 6 variables, with 2-20 categories in each, gen-
erating 3000 cells in the matrix.2 Too many cells are unde-
sirable, because small cells increase the usage of starting val-
ues, and increase the chance that a single donor will be used
multiple times. The necessity for collapsing smaller cells, a
process that requires considerable time and effort, is an im-
portant drawback of the hot deck method.

Dimensionality problems imply that many important vari-
ables are routinely omitted from allocation matrices. Econo-
mists have criticized the Census Bureau for not including ed-
ucation, a variable with strong theoretical foundations, in the
Current Population Survey (CPS) earnings allocation matrix

1The variance of the mean and other sample statistics calculated from the
imputed data set will be understated, however (Rubin 1987)

2Occupation/class of worker (20 Categories) × Weeks worked (5) ×
Hours (3) × Age (5) × Sex (2)
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(Lillard, Smith & Welch 1986). Education is not included in
the ACS allocation matrix either, and it is easy to see why,
since adding a four category education variable would expand
the matrix to 12,000 cells! Many other variables strongly cor-
related with earnings are not included due to this dimension-
ality problem (for example, public assistance payments).

Omitting any variable correlated with the imputed variable
is undesirable, since this will bias the correlation between the
omitted and imputed variable towards zero. (see, e.g., Little
(1988)). In regressions of earnings on education, for exam-
ple, the coefficient on education will be biased, presumably
towards zero, if education is omitted from the allocation ma-
trix. Since the aim of statistical agencies is to produce general
purpose allocations suitable for numerous different analyses,
this is a strong argument for including as many variables as
possible as allocation predictors, which is generally not possi-
ble with hot deck methods.

At the same time as it restricts the number of variables that
can be used in the hot deck, the hot deck provides little guid-
ance to the analyst creating the imputation matrix as to which
variables should be used. Should education replace weeks
worked in the earnings allocation matrix? Analysts typically
rely on theoretical knowledge, knowledge of the literature, and
intuition to make the choice. In principal, one could impute
using several alternative matrices and examine summary sta-
tistics to compare them, or run auxiliary regressions to make
such choices. However, this adds a substantial amount of ad-
ditional work to what is already a cumbersome procedure.

3 Alternative Imputation Methods

Many alternatives to the hot deck have been proposed by sta-
tisticians. For a recent overview of various imputation meth-
ods, see Durrant (2005). The goal here is to find a method
that is flexible (in the sense that it can be combined with a pri-
ori constraints on the data); simple to implement and justify to
nonstatisticians; and that avoids placing parametric constraints
on the data. Of course, the method should also reproduce the
distribution of the reported data.

This study does not address methods for making valid in-
ferences from statistics estimated from the final data set after
imputation. Although it is possible to impute multiple values
to each recipient case, in order to calculate standard errors that
take into account the uncertainty due to imputation, that is not
the focus here.

Multiple imputation, as proposed by Rubin (1987), entails
much more than simply imputing several different values to
each recipient. It also requires specifying a particular joint dis-
tribution of the data, typically multivariate normality. Methods
which allow the distribution of the allocated variables to be de-
termined by the data (nonparametrically), such as the hot deck,
are often much more appealing. In the case of income data,
multivariate normality is a particularly unattractive assump-
tion, since the various components of income are clearly not
distributed normally. Many income components, such as inter-
est income, are constrained to be nonnegative, have a spike in

the distribution at zero, and have heavy upper tails.3 It must be
noted, however, that multiple imputation does have the most
fully developed body of theory.

Another alternative is predictive mean matching (Little
1988). This involves regressing the variable to be imputed
on a vector of predictors (in the sample of donors with com-
plete data). Next, predicted values are calculated for both the
donors (with complete data) and recipients (with incomplete
data). The donor with the closest predicted value to a partic-
ular recipient is chosen, and that donor’s observed value (not
the predicted value) is imputed to the recipient. This method
is quite attractive, since it avoids the dimensionality problems
discussed above and, by avoiding distributional assumptions,
is likely to be robust to mispecification (Chen & Shao 2000).
It also reproduces the distribution of the complete data. The
drawback is that one case can easily be used as a donor mul-
tiple times. As as result, estimators calculated from the final
data set may be inefficient (Durrant & Skinner 2006).

Finally, a number of authors have proposed using a series of
equations to model the conditional distribution of each vari-
able, in order to avoid multiple imputation’s requirement of
specifying a joint model of all the predictors and imputed
variables. That is, instead of assuming, say, joint normality,
one can specify a series of equations, mixing OLS regres-
sion with logit models, or anything else. This adds consid-
erable flexibility to model nonnormal distributions as well as
to impose logical consistency constraints, such as the fact that
only homeowners can have a mortgage (Raghunathan, Lep-
kowski, van Hoewyk & Solenberger 2001, Buuren, Boshuizen
& Knock 1999, Buuren, Brand, Groothuis-Oudshoorn &
Rubin 2005). This study describes and tests a simple version
of this type of imputation via sequential regression, combined
with a version of the predictive mean matching approach.

4 Allocation Methodology

The problem here is impute a series of nine income variables
(denoted Yi, i = 1 . . . 9): earnings, social security income,
etc. Each of these variables may have missing data. The miss-
ing component of the data vectors are denoted Y miss, and the
reported components are Y obs. These variables are to be im-
puted jointly, with the goal of preserving the covariance struc-
ture of the income components, as well as the relationship be-
tween Yi and a set of predictor variables (Xj , j = 1 . . . J)
which do not have missing data. That is, the Xjs have already
been imputed using some simpler method.

The imputation method is a simple version of the chained
equations method. Because the income components have a
substantial fraction of zeros, and are mostly constrained to be
nonnegative (with the exception of self-employment or busi-
ness income), the imputation proceeds in two steps. First, we
impute indicators for the receipt of each type of income (de-
noted Di, i = 1 . . . 9). Next, amounts (Y miss

i are imputed for
the cases with Dmiss

i = 1. An example of a receipt variables
is employment, with earnings being the corresponding amount

3Schafer & Olsen (1999) discuss alternatives to multiple imputation for
this case.
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variable.
The method can be summarized as follows:

1. Estimate a set of nine regressions predicting D in the
sample of completely reported data. These regressions
are sequential and triangular (see below).4

2. Split the observed data into hot deck cells using the pre-
dicted values from each regression in (1). Choose cut-
points that put approximately 500 observations in each
cell, creating one hotdeck per income type.5

3. Apply the regression coefficients from (1) and the cut-
points in (2) to the cases with missing data, thus assign-
ing each piece of missing data in each case to a hot deck
cell.

4. Impute missing data using the nine hot decks in the usual
manner.

In order to preserve the covariance matrix of the income
amounts, it would be desirable to use other income variables
as predictors. However, since all the income variables contain
missing values, there is a problem of circular dependence: so-
cial security cannot be imputed until earnings are computed,
and vice versa. To overcome this problem, we specify a set of
sequential, triangular equations:

Dobs
1 = f(Xobs)

Dobs
2 = f(Xobs, Dobs

1 )

Dobs
3 = f(Xobs, Dobs

1 , Dobs
2 )

. . .

Dobs
9 = f(Xobs, Dobs

1 , Dobs
2 , . . . , Dobs

8 ).

Table 1a shows the variables in X for the receipt equations.
These equations are estimated using OLS regression in the set
of cases with completely reported income data. Receipt of
the first income type is imputed using only the X variables.
Receipt of the second income type is imputed using X plus
the first income type, and so on. The equations are ordered by
the R2 from the regression of Di on the X variables.

Table 1a: Explanatory Variables in Typical

Receipt Regression Model

Working (2) X Sex (2) X Race (2)

Sex (2) * Age (5)

Working (2) X Tenure (2) X Housing Cost (4)

Working (2) X Family Type (3) X Relat. to hhdr (5)

Working (2) X Kids (4) X Relat. to hhdr (5)

Working (2) X Sex (2) X Education (4)

Working (2) X Citizenship (2)

Receipt indicators (0 to 8 dummies)

4Although logits or probits would be more efficient, OLS regression is
used here. OLS is still consistent and I prefer its functional form assumptions
(the additivity of indicator coefficients) in this context.

5Putting 500 donors in each cell is basically an arbitrary number, chosen
to limit the reuse of donor cases.

Then, for each income type, the reported data is split into
a series of hot deck cells based on the predicted values from
each regression, with the cutpoints chosen to put about 500
observations in each cell. For example, the 500 cases with the
highest predicted earnings go into the first hot deck cell. The
next 500 cases go into the second cell, and so on. The process
is repeated for the other income types, each of which has its
own hot deck.

Finally, imputation proceeds in the usual hot deck manner.
The same coefficients (from the regression on the observed
data) are applied to the nonreporters (cases with missing data).
The missing values are filled from the donor case that is within
the matching hot deck cell and is most recent in sort order
(typically a case close in physical proximity).

This method of triangular equations is recommended by
Raghunathan et al. (2001) (who call them “sequential” equa-
tions). An alternative would be to impute a set of starting
values that don’t condition on the other income types (per-
haps using only X), and then iterate a number of times though
Di = f(X, D−1), where D−1 are all the income receipt in-
dicators other than Di. We don’t use this more sophisticated
alternative because it would require multiple passes through
the data, or the use of specialize software.

Having imputed the receipt indicators, the amount variables
are imputed next. The allocation proceeds in a similar manner,
except that we can now condition on the receipt variables, and
the regressions are confined to those with positive amounts
(Y obs

i > 0). Specifically, a set of equations are estimated as
follows:

Y obs
1 = f(Xobs, Dobs)

Y obs
2 = f(Xobs, Y obs

1 , Dobs)

Y obs
3 = f(Xobs, Y obs

1 , Y obs
2 , Dobs)

. . .

Y obs
9 = f(Xobs, Y obs

1 , Y obs
2 , . . . , Y obs

8 , Dobs).

As with the receipt variables, these equations are used to cre-
ate a set of nine hot decks. The X variables for the amount
equations are shown in Table 1b.

Table 1b: Explanatory Variables in  Typical

Amount Regression Model

Marital Status (4)

Race (2)

Sex (2) X Age (5)

Tenure (2) X Housing cost (4)

Family Type (3) X Relationship to householder (5)

Kids (4) X Relationship to housholder (5)

Sex (2) X Education (4)

Working (2)

Income Receipt Indicators (8 dummies)

Income Amounts (0 to 8 amounts)

The previous set of equations is used only for those with
for those with two or more missing amounts. Since it is com-
mon for only one amount to be missing, these cases are treated
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separately. For them, a different set of nine equations are esti-
mated:

Y obs
i = f(Xobs, Dobs, Y obs

−1 ), Y obs
i > 0

and these cases get their own set of nine hot decks.6

Cases with no reported income data (neither amounts nor
receipts) are treated separately. For them, we aim to preserve
the covariance matrix not by conditioning on the other income
variables (since there aren’t any variables to condition on), but
by jointly allocating all the income variables, so that a recip-
ient receives all its data from a single donor. For these cases,
a traditional hot deck is created, since there is no obvious way
to combine a set of nine separate equations and hot decks into
a single matrix.

5 Comparing Reported and Imputed Data

Testing the imputations of the receipt variables is straightfor-
ward, as is testing the imputations of amount variables condi-
tional on receipt. In both cases, donors are simply compared
to recipients. However, for some purposes, we would also
like to compare the amount variables without conditioning on
receipt, that is, filling in zeros for those who do not receive
a particular type of income. In particular, this kind of infor-
mation is needed to compare the covariance matrices of the
imputed and reported data. In the case of amounts-with-zeros,
the right comparison is not obvious, so this section discusses
all three comparisons in detail.

Consider a simple example with only one income type,
which will be called “wages” for concreteness. Wage infor-
mation is collected using two questions: “Are you employed?”
and “What are your wages?” (asked of the employed). There
are three possible patterns of nonresponse: (1) Answer em-
ployment and answer wages (if employed), (2) Answer em-
ployment, refuse wages, and (3) Refuse employment. In the
last case, those who do not answer the employment question
are not asked the wage question. Notice that the employment
rate for group 2 is 100 percent, since only the employed get
the opportunity to refuse the wage question.

Employment is imputed using as donors all who answered
the employment question (groups 1 and 2) as donors for group
3 who refused to answer the question. Let the employment rate
for the donors (groups 1 and 2 combined) be E. Assuming that
there are no systematic differences between the donors and
recipients, the expected value of group 3’s employment rate is
also E. Hence, to test whether the allocations are working, the
donors should be compared to the recipients, within each cell
of the imputation matrix.

Wages are imputed only for the employed (others have zero
wages). In this case the donors are the employed members
of group 1, who answered both questions. The recipients
are the employed members of groups 2 and 3. Let average
wages for the employed members of group 1 (the donors) be

6In principle a separate set of nine equations and hot decks could be cre-
ated for each pattern of missing data. However, this would require 1023 re-
gressions and hot decks. This is one reason for using a set of triangular equa-
tions.

W . Then, again assuming no systematic relationship between
wages and the reporting of wages (no systematic differences
between donors and recipients), the expected value of wages
in groups 2 and 3 combined is also W . So, again, the alloca-
tions can be tested by comparing the donors to the recipients.

In order to test the employment and wage imputations
jointly, we can fill in zero wages for the non-employed and
compare average wages in groups 1 and 2 (those answering
the employment question) to average wages in group 3 (those
not answering employment and having both employment and
wages imputed. These two quantities should be equal. The
employment rate of groups 1 and 2 is E, as assumed above,
which implies that the employment rate of group 3 is also E.
Assuming that there are no systematic differences among the
employed members of the three groups, the wages of the em-
ployed are all equal in expectation to W (the average wages in
group 1, conditional on employment). Including the nonem-
ployed, expected wages in group 1 and 2 combined are EW ,
and the expected wages of group 3 are the same.

Note that groups 1 and 2 cannot be considered “donors,”
since those in group 2 had wages imputed. All members of
group 3 are recipients, but the recipients in group 2 are com-
bined with the donors in group 1 for the sake of this compari-
son. Although this comparison may seem a little odd, the dis-
cussion in the previous paragraph has shown that it is a valid
one (the average wages of groups 1 and 2 combined should
equal the average wages of group 3).

We might naively consider comparing group 1 (complete re-
sponders) to groups 2 and 3 (all with either wages or employ-
ment allocated). Although this seems like a natural compari-
son, these two groups do not have the same expected wages.
Expected wages in groups 2 and 3 combined are the weighted
average of group 2 with 100 percent employment and group
3 with E employment, or QW + (1 − Q)EW , for some
Q ∈ [0, 1]. Let the employment rate in group 1 be E1. We
know that E1 ≤ E. That is, group 1 must have an employment
rate no greater than the rate for groups 1 and 2 combined, since
E2 = 1 (the employment rate for group 2 is 100 percent).
Clearly, E1W < QW + (1 − Q)EW , since E1W < W
and E1W < EW . So the naive comparison is invalid. By
including group 2 (with 100 percent employment) among the
recipients, we inflate that groups average wages relative to the
the complete responders.

6 Results

6.1 Means and Standard Deviations

The method described above is used on the American Housing
Survey (AHS), starting with the 2005 survey. The AHS is a
nationally representative survey which includes a battery of
income questions quite similar to the U. S. Census Bureau’s
American Community Survey (ACS).7

Table 2 compares the means and standard deviations of the
reported data and the imputed data in the AHS, labeled re-

7For a description of these data sets see
http://www.census.gov/hhes/www/housing/ahs/ahs.html and
http://www.census.gov/acs/www/.
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Table 2: Reported and Imputed Means and Standard Deviations

Reporters: Unadjusted Nonreporters
a
: Unadjusted

Mean Std Dev Std Error N Mean Std Dev Std Error N

SS 9,311 5,729 59 9,461 9,487 6,357 112 3,202

Wages 37,797 43,033 229 35,351 37,281 49,517 501 9,756

Retirement 15,632 18,877 279 4,566 14,370 15,232 411 1,375

Interest,

dividends,

rental 11,468 41,754 572 5,330 13,352 45,769 1,019 2,019

SSI 5,064 4,265 118 1,306 4,268 3,760 243 240

Welfare 2,786 3,030 117 670 2,099 2,107 175 145

Workers'

Comp. 8,629 9,323 233 1,604 9,741 11,720 655 320

Self-emp. 31,747 62,176 1,037 3,593 31,232 70,202 2,005 1,226

Other 6,754 12,348 276 2,000 5,704 6,923 407 290

NOTE:
a
. Nonreporters had the amount indicated in the table imputed but also reported at least one receipt (complete 

nonreporters are excluded).  Zeros and edited data are excluded.

Table 3: Regressions of Log Annual Earnings.  Coefficients (SEs in parentheses)

2004 ACS 2003 AHS 2005 AHS

Reported Imputed Reported Imputed Reported Imputed

Intercept
7.18

(0.01)

7.56

(0.02)

7.24

(0.04)

7.97

(0.07)

7.21

(0.03)

7.28

(0.06)

Years of 

Education

0.146

(0.001)

0.109

(0.001)

0.148

(0.002)

0.084

(0.005)

0.148

(0.002)

0.134

(0.004)

Experience
0.107

(0.000)

0.103

(0.001)

0.097

(0.001)

0.086

(0.002)

0.106

(0.001)

0.104

(0.002)

Experience

squared X 1000

-1.860

(0.007)

-1.630

(0.016)

-1.680

(0.024)

-1.380

(0.044)

-1.880

(0.027)

-1.770

(0.047)

Female
-0.483

(0.003)

-0.430

(0.008)

-0.493

(0.012)

-0.392

(0.025)

-0.469

(0.011)

-0.470

(0.022)

Black
-0.122

(0.005)

-0.106

(0.010)

-0.096

(0.019)

-0.141

(0.038)

-0.052

(0.019)

-0.064

(0.031)

Hispanic
-0.033

(0.005)

-0.032

(0.011)

0.031

(0.019)

-0.161

(0.041)

0.052

(0.017)

0.017

(0.035)

N 534,320 89,732 42,771 16,664 36,296 11,574
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Table 4: Selected Correlations Between Income Components.

Correlation Coefficients with the Largest Differences Between 

Reported and Nonreported

Wages/ Wages/ Social

Social Wages/ Self-em- Wages/ Security/

Security Retirement ployment Interest Retirement

AHS

Reporters -0.47 -0.26 -0.15 -0.06 0.43

Nonreporters -0.56 -0.31 -0.07 -0.11 0.44

Difference -0.09 -0.05 0.08 -0.05 0.01

ACS

Reporters -0.47 -0.29 -0.21 -0.10 0.44

Nonreporters -0.37 -0.16 -0.03 0.00 0.36

Difference 0.10 0.13 0.18 0.10 -0.08

porters and nonreporters. Reporters are those who answered
all the income amount questions. Nonreporters did not re-
spond to at least one amount question. Those who answered
no income questions at all (neither receipt nor amount) are
excluded, because this group was imputed using a different
method (a traditional hot deck).

In general the means and standard deviations in the imputed
data are fairly close to the data from reporters. Four of the dif-
ferences in means are statistically significant at the 5 percent
level, but none are larger than $2,000 (interest: $11,468 vs.
$13,352) or 25 percent (welfare: $2,786 vs. $2,099) different.
Of course, we would expect the means and SDs to be different
if the characteristics of reporters and nonreporters differ sys-
tematically. Hence, the top panel suggests that any systematic
difference in response rates is relatively minor.

6.2 Wage Regression

An important goal of an imputation system is to preserve the
relationship between the allocated variables and other vari-
ables in the data set. As a check of this, Table 3 estimates
basic earnings regressions using the 2003 AHS, the 2004 ACS,
and the 2005 AHS. Comparing the regressions on the reported
data, many of the coefficients are remarkably close in the three
data sets: the constant, education, experience (age - education
- 6), experience squared, and female. Only the coefficients on
Black and Hispanic differ appreciably.

The main comparison is between the regressions in the re-
ported and imputed samples. The focus is on the education
coefficient, the “return to education,” which is the target of
much attention from labor economists. In the 2004 ACS, the
coefficient on education is 0.146 in the reported data but only
0.109 in the imputed data. The difference is statistically sig-
nificant, and substantively large. This result is not surprising,
since education is not included in the ACS allocation matrix.
As noted above, it is impractical to include more than a lim-
ited number of variables in a traditional hot deck such as the
ACS uses. The 2003 AHS, which also uses a hot deck that
lacks an education variable, shows an even bigger difference.

The return to education falls from 0.148 in the reported data
to 0.084 in the imputed data. In the 2005 AHS, which uses the
simple chained equations method discussed above, the coeffi-
cients are 0.148 (reported) and 0.134 (imputed), the closest of
the three, although still showing some signs of bias.

The female coefficient shows a similar pattern, which is a
little surprising since all three allocation methods use a sex
variable (although the 2003 AHS combined female and mi-
nority into a single variable). The 2004 ACS imputed female
dummy is 0.05 lower than the dummy in the reported regres-
sion, 0.10 lower in the 2003 AHS, but in the 2005 AHS the co-
efficient is almost exactly the same in both the imputed and re-
ported data. Again we see that the triangular equations meth-
ods comes closest to reproducing the relationships in the orig-
inal data, because it takes into account many more variables in
determining the imputations.

6.3 Covariance Matrix

In both data sets, the covariance matrices for reporters and
nonreporters are fairly similar.8 Also noteworthy is the sim-
ilarity of the correlation matrices of the reporters across data
sets, with the exception of correlations with the interest vari-
able.9 In almost every case, the difference between reporters
and nonreporters is smaller in the AHS than in the ACS.

Reporters are defined as those who answered all the receipt
questions. They are compared with nonreporters, who had
at least one receipt imputed. As discussed above, this is the
correct comparison, rather than a naive comparison of donors
versus recipients. In addition, cases with any edited data and
complete non-reporters are excluded, as discussed previously.

Table 4 summarizes the correlation matrices, displaying the
correlations for the five pairs of variables with the largest dif-
ferences between the reporters and nonreporters (in either data

8The complete correlation matrices are available from the author or from
www.huduser.org.

9The fraction reporting the receipt of interest, dividends or rental income
is higher in the ACS than in the AHS, perhaps driven by differences in the in-
terview modes (predominantly mailed questionnaires in the ACS and personal
interviews in the AHS).
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set). The AHS imputation system always comes closer to re-
producing the correlations than the ACS. The improvement is
smallest for Social Security versus wages (a difference of 0.08
in the AHS and -0.11 in the ACS). It is largest for retirement
income versus salary (0.06 in the AHS; -0.13 in the ACS) and
retirement income versus Social Security (-0.01 in the AHS;
0.08 in the ACS).

7 Conclusion

This paper has described an income imputation system which
uses a triangular sequence of regression equations to define
a series of hot decks. Although this method is less efficient
than some more sophisticated alternatives described in the lit-
erature (because only a single pass through the data is made,
rather than iterating) it is simpler to implement. We showed
that this imputation method is capable of reproducing the dis-
tribution of the reported data fairly closely, if not perfectly.
More importantly, the method was able to reproduce the cor-
relations of the imputed variables with each other, and with
other variables in the data set.

A number of comparisons suggest that this method repre-
sents an improvement over methods currently used at the U.S.
Census Bureau. First, the paper showed that there is substan-
tial bias when a wage regression, a model commonly used
by labor economists, is estimated in wage data imputed using
conventional Census Bureau methods.10 When this regression
is estimated in the 2003 AHS and 2004 ACS, both of which
use a conventional hot deck, the return to education and the
female wage penalty are biased towards zero. This is unsur-
prising: the dimensionality problems inherent in traditional
hot deck methods sharply limited the number of variables that
can be included in the hot deck. Neither data set included edu-
cation in its hot deck, and the 2003 AHS did not include a sex
variable directly. Regression-based hot decks, however, place
no such limits on the number of variables that can be included.
When implemented in the 2005 AHS, this methods was able
to almost eliminate the bias.

Both methods do fairly well in reproducing the correlations
among the various income variables. The ACS’s traditional
hot deck method did much better than might be expected,
given that no explicit attempt is made to reproduce the cor-
relation structure. Apparently the variables included in the
hot deck are strong enough predictors that the correlation ma-
trix for nonreporters is fairly similar to that in the reported
data. However, for almost all correlation coefficients, the
regression-based hot deck used in the 2005 AHS came closer
to reproducing the correlation matrix of the reporters.

It should be noted that imputing income is harder in the
AHS than in the ACS. Since the AHS has a sample size less
than a tenth that of the ACS, the hot deck is constrained to have
fewer cells, limiting the ability to find close matches for non-
reporters. In addition, the AHS has fewer variables available
for predicting income than the ACS. In particular the AHS has
few labor force variables, such as occupation. The ability of

10Including cases with an imputed dependent variable is a poor practice
which will generally result in biased estimates, but it is a common practice.

the hot deck based on a sequence of triangular regressions to
do “more with less” represents an impressive achievement.
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