
Local Polynomial Regression for Small Area Estimation

Pushpal K Mukhopadhyay1

SAS Institute Inc.
Tapabrata Maiti2

Iowa State University

Abstract

Estimation of small area means in the presence of
area level auxiliary information is considered. A
class of estimators based on local polynomial re-
gression is proposed. The assumptions on the area
level regression are considerably weaker than stan-
dard small area models. Both the small area mean
functions and the between area variance function are
modeled as smooth functions of area level covariates.
A composite estimator that is a convex combina-
tion of the design weighted mean and the prediction
from the non-parametric model is developed. The
estimator is shown to be asymptotically consistent
under mild regularity conditions. An approximation
of the mean squared error (MSE) based on Taylor
linearization is proposed.

Keywords: Nonparametric smoothing, Multi-level
modeling.

1 Introduction

The term ”Small Area” refers to a subpopulation or
domain where the domain sample size is not large
enough to produce direct estimates with adequate
precision. Composite estimators are often used to
provide reliable small area statistics. A composite
estimator is a convex combination of a direct estima-
tor and a synthetic estimator. Several model-based
composite estimators under realistic small area mod-
els are proposed in the literature. Rao (2003) gives
an extensive review of the most commonly used es-
timators including empirical best linear predictors
(EBLUP), empirical Bayes (HB), and hierarchical
Bayes (HB) approaches. However all the model-
based approaches in use for small area estimation
have relied on parametric, most often linear, mod-
eling techniques. In this article we propose a small
area estimator that relies on a nonparametric model
formulation.

In section 2, we describe a nonparametric area
level small area model. Both the small area mean
functions and the between area variance function are
assumed to be smooth functions of some area level
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covariates. Design variance of direct area means are
estimated from unit level information and then as-
sumed to be known. The assumption of known de-
sign variance of area means are common for area
level small area models (Rao, 2003). Local poly-
nomial regression estimators are used as synthetic
estimators of the small area mean functions. The
observed residuals are adjusted for the known within
area variance. The between area variance function
is estimated using local polynomial regression by
smoothing the adjusted residuals. The small area
predictions are obtained by a convex combination of
the direct mean and the synthetic mean.

Section 3 describes the theoretical properties of
the proposed estimators. The exact and the asymp-
totic properties of the estimated mean functions and
the between area variance function are derived under
the nonparametric mixed effects model. It is shown
than both estimators are consistent under mild regu-
larity assumptions. The properties of the small area
predictions are derived from the properties of the es-
timated mean functions and the estimated variance
function.

In section 4 we propose an approximation of the
mean squared error of the proposed small area pre-
dictions. The order of the approximation depends on
the number of small areas. The mean squared error
is derived under the assumed small area model. A
practical approach for bandwidth selection by mini-
mizing the mean squared error of small area predic-
tions is also discussed. Finally the conclusions are
given in section 5.

2 Framework for Local Polynomial
Regression

For each area i = 1, 2, ..., n, assume that yi is the
Horvitz-Thompson estimator (Särndal et al., 1991)
of the true mean θi with design variance Di. Let
xi be a vector of known area level covariates. The
basic area level small area model can be written as
a special case of a linear mixed effect model,

yi = xT
i β + ui + ei, i = 1, 2, ..., n, (1)

where β is a vector of regression parameters, ui’s are
random effects and ei’s are sampling errors. Note
that the design-induced error ei accounts for within
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area variation and the model-induced error, ui, ac-
counts for between area variation. We also assume
ei

ind∼ (0, Di), ui
iid∼ (0, σ2

u) and that they are in-
dependent. For estimation purposes, Di is usually
assumed to be known; see Rao (2003).

The linearity assumption and the assumption of
homoscedastic between area variance are restrictive
in many applications. A limited simulation study
indicates that a violation of the linear relationship
may reduce the efficiency of the current method. We
consider an extension of model (1). We assume that
yi and xi are related through a smooth functionm(·)
and the between area variance component is also a
smooth function of xi. Let X be the random vector
of predictors. Thus

yi = m(xi) + ui + ei, i = 1, 2, ..., n, (2)

where ui|X
ind∼ (0, v(xi)), ei|X

ind∼ (0, Di), and ui

and ei are conditionally independent. We call m
the mean function and v the between area variance
function. The small area mean functions

θi(xi) = m(xi) + ui (3)

are linear combinations of the mean m(xi) and the
random effects ui. We propose an estimator of the
mean function using a linear smoother. By this, we
mean m̂ = P1y for some n × n matrix P1, often
referred to as the smoother matrix, and y and m
denote the column vectors with elements of yi and
m(xi) respectively. Examples of linear smoothers in-
clude smoothing splines, regression splines, and local
polynomial regression (Hastie and Tibshirani, 1990).

We concentrate on local polynomial regression es-
timators of m and v; see Fan and Gijbels (1996), or
Wand and Jones (1995) for an introduction. With
one dimensional covariate x, we estimate m(x) by
fitting a p1th-degree polynomial to the data using
weighted least squares. As commonly used in the
literature, we will use the weight

Kh1(Xi − x) = h−1
1 K

(
h−1

1 (Xi − x)
)
, (4)

where K is a probability density function known as
the kernel function and h1 is a bandwidth parameter.
The weighted least squares estimators of m(x) is

m̂(x) = eT
1 [Xp1(x)

TWp1(x)Xp1(x)]
−1Xp1(x)

T

Wp1(x)y, (5)

where

Xp1(x) =


1 X1 − x · · · (X1 − x)p1

1 X2 − x · · · (X2 − x)p1

...
...

. . .
...

1 Xn − x ... (Xn − x)p1

,

Wp1(x) = diag1≤i≤n{K1(Xi − x)}, ei denotes the
unit vector of appropriate order with 1 in the ith-
position, and diag1≤i≤n{ai} denotes the diagonal
matrix with a1, a2, ..., an on the diagonal. The (i, j)
entry of the pth-degree local polynomial smoother
for the mean function is

[P1]ij = eT
1 [Xp1(xi)TWp1(xi)Xp1(xi)]−1Xp1(xi)T

Wp1(xi)ej . (6)

To the best of our knowledge we are the first to con-
sider a nonparametric variance components model
of the form (2) where one part of the variance is
known from the survey design and the other part
of the variance is assumed to be a smooth function
of covariate x. We estimate the between area vari-
ance function by smoothing the adjusted observed
residuals using a p2th-degree polynomial

v̂ =
P2(r2 −∆2)
1 + P2∆1

, (7)

where P2 is a smoother matrix similar to P1 except it
uses a p2th-degree polynomial and a different band-
width h2, y = (y1, y2, . . . , yn)T , r = y − P1y is the
observed residual,

∆1 = diag{P1P
T
1 − 2P1}, (8)

∆2 = diag{D + P1DP
T
1 − 2P1D}, (9)

D = diag1≤i≤nDi, 1s is a column vector of ones,
diag{A} is the column vector containing the diag-
onal elements of any square matrix A, and vector
multiplications and divisions are elementwise.

We define a composite estimator of small area
means by taking a convex combination of the sur-
vey weighted mean and the mean function m(·) from
model (2),

θ∗i = γiyi + (1− γi)mi, (10)

where mi = m(xi) and θi = θi(xi) = mi + ui. The
ratio γi is obtained by minimizing the mean squared
error of θ∗i . The mean squared error for θ∗i can be
written as

E[θ∗i − θi]2 = E[γiyi + (1− γi)mi +mi − ui]2

= E[γi(yi −mi)− ui]2 (11)
= E[γi(ei + ui)− ui]2 (12)
= E[γiei + (1− γi)ui]2 (13)
= γ2

i Di + (1− γi)2vi (14)
= γ2

i (vi +Di)− 2γivi + vi, (15)

since E[eiui|X] = 0. Therefore γi = (vi + Di)−1vi

minimizes the mean squared error of θ∗i . Assume
Di’s are known. Estimate γi by

γ̂i = (v̂i +Di)−1v̂i. (16)
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Thus, a two stage estimator for θi is given by,

θ̂i = γ̂iyi + (1− γ̂i)m̂i (17)
= m̂i + γ̂i(yi − m̂i), (18)

where
m̂i = eT

i P1y, (19)

v̂i = eT
i

P2(r2 −∆2)
1 + P2∆1

(20)

and γ̂i is given in (16). For the linear mixed ef-
fects model (1), the plug-in estimator of γi gives an
empirical best linear unbiased predictor for θi (Rao,
2003).

Remark 1. Ruppert et al. (1997) proposed similar
estimators of m̂ and v̂ for the model yi = m(xi)+ei,
where ei

ind∼ (0, v(xi)) and v(·) is a smooth function.
The nonparametric model we considered is different
in the sense that it accounts for separate within area
variabilities and between area variability. The effect
of estimating the within area sampling variance Di

is generally ignored in small area estimation (Rao,
2003).

Remark 2. If the between area variance function
is assumed to be the same for all x then one should
simply replace the smoother matrix P2 by n−111T .

Remark 3. For theoretical convenience we con-
sider only one covariate X; however the results can
be extended to a vector of covariates.

Remark 4. We assume the random ma-
trix Xp1(x0)TWp1(x0)Xp1(x0) is invertible.
In other words, the PX probability that
Xp1(x0)TWp1(x0)Xp1(x0) is singular is zero.
This assumption is not new in sample survey
(Breidt and Opsomer, 2000) and is meaningful in
small area estimation.

Remark 5. The nature of the marginal mean
functionm(·) and the variance function v(·) are quite
different. We should be able to model high spikes on
m(·) but usually in practice the variance function
v(·) is more smooth. Hence, a lower degree polyno-
mial fit is often used for v(·). Ruppert et al. (1997)
recommended the use of p1 = 2 and p2 = 1 in most
situations.

3 Theory for Local Polynomial Re-
gression

Estimators of the following quantities are proposed:
(i) the mean function m(·), (ii) the between area
variance function v(·), and (iii) the small area mean
function θi(·). In this section, the exact matrix al-
gebraic expressions for the bias and the variance of
the proposed estimators are obtained. Asymptotic

approximations for the bias and the variance of the
proposed estimators are also obtained under certain
regularity conditions. Asymptotic approximations
are useful for choosing bandwidths or evaluating the
performances of the proposed estimators. Proofs can
be obtained from the author.

In practice, Xi can either be fixed or random. For
theoretical convenience, we assume Xis are random
and Xi

iid∼ fX(·). Let X = (X1, X2, . . . , Xn)T be the
random vector of predictors. Results for exact bias
and covariance are conditional on X and therefore do
not depend on a particular form of the distribution
of X. Results are derived for an interior point x0

and for odd integers p1 and p2. Similar to local
polynomial estimators for a fixed effects model (Fan
and Gijbels, 1996), our results can easily be derived
for boundary points and for even integers.

3.1 Exact Bias and Variance

Theorem 3.1 The expectation and variance of
m̂(x0) are given by

E[m̂(x0)|X]
= m(x0) + e1[[Xp1(x0)TWp1(x0)Xp1(x0)]]−1

Xp1(x0)TWp1(x0)tx0 , (21)

and

V [m̂(x0)|X]
= e1[Xp1(x0)TWp1(x0)Xp1(x0)]−1Xp1(x0)T

{Σ(1)
1,x0

+ Σ(2)
1,x0

}Xp1(x0)

[Xp1(x0)TWp1(x0)Xp1(x0)]−1eT
1 (22)

where tx0 = m−Xp1(x0)β(x0) is the remainder from
the Taylor series expansion of m around m(x0),
Σ(1)

1,x0
= diag{K2

h1
(Xi − x0)v(Xi)} and Σ(2)

1,x0
=

diag{K2
h1

(Xi − x0)Di} are the weighted variance
components.

Proposition 3.2 For a homoscedastic model, the
expected value of the squared residuals after fitting
the conditional mean function is given by

E[r2|X] = {E[P1y −m]|X}2 + σ2(1 + ∆1) + ∆2,
(23)

where v(xi) = σ2, Di = ψ for all i, and ∆1 and ∆2

are defined in (8) and (9).

Theorem 3.3 Let Gu = diag{Eu3
i }, Tu =

diag{Eu4
i }, Ge = diag{Ee3i }, Te = diag{Ee4i },

P21 = P2, D = diag1≤i≤n{Di}, ψ = (ψ1, ..., ψn)T

and Σ = diag1≤i≤n{v(xi)}. The expectation and
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variance of v̂ are given by

E[(v̂ − v)|X]
=

[
(P2 − I)v + P2{b2 + diag{P1ΣPT

1 − 2P1Σ}}
−P2∆1v] /{1 + P2∆1}, (24)

and

Cov[v̂|X]
= P2[{(P1 − I)� (P1 − I)}(T − 3V 2)

{(P1 − I)� (P1 − I)}T

+2diag{b}(P1 − I)G{(P1 − I)� (P1 − I)}T

+2{(P1 − I)� (P1 − I)}G(P1 − I)diag{b}
+2{(P1 − I)V (P1 − I)T }
�{(P1 − I)V (P1 − I)T }
+4{(P1 − I)V (P1 − I)T }
�(bbT )]PT

2 /{(1 + P2∆1)(1 + P2∆1)T },(25)

where b = E[m̂−m|X] is the bias due to the esti-
mation of the mean, G = Gu +Ge, T = Tu +Te and
� denotes element wise matrix multiplication.

3.2 Asymptotics for Local Polynomial Esti-
mators

The exact bias and variance expressions involve
unknown quantities. Approximations of the bias
and the variance are required for most applica-
tions. Asymptotic approximations are derived un-
der certain regularity assumptions about the nature
of fX(·), m(·), v(·) and Di. Most of these assump-
tions are standard for local polynomial regression
(Fan and Gijbels, 1996).

Theorem 3.4 Assume the following:
(A1) x0 is an interior point in the X space.
(A2) fX(x0) ≥ 0.
(A3) There exists a δ1 ≥ 0 such that fX(·),

m(p1+1)(·), and v(·) are continuous and m(p1+2)(·)
is bounded on Nδ1(x0).

(A4) n−1
∑

iDi and n−1
∑

iD
2
i are bounded.

(A5) p1 is an odd integer.
(A6) h1 → 0 and nh1 →∞ as n→∞.
The asymptotic bias and variance of m̂(x0) are

given by

Bias[m̂(x0)|X]

= eT
1 S

−1
1 cp1

1
(p1 + 1)!

m(p1+1)(x0)h
p1+1
1

+oP (hp1+1
1 ), (26)

and

V ar[m̂(x0)|X]

= eT
1 S

−1
1 S∗1S

−1
1 e1

v(x0) + n−1
∑

iDi

fX(x0)nh1

+oP (n−1h−1
1 ), (27)

where
cp1 = (µp1 , ..., µ2p1+1)T , (28)

S1 = [µj+l]0≤j+l≤p1 , (29)

S∗1 = [νj+l]0≤j+l≤p1 , (30)

µj =
∫
ujk(u)du, (31)

and
νj =

∫
ujK2(u)du. (32)

Theorem 3.5 Assume that (A1) - (A6) hold. In
addition, assume the following:

(A7) There exists a δ2 > 0 such that fX(·) and
v(p2+1)(·) are continuous and v(p2+2)(·) is bounded
on Nδ2(x0).

(A8) h2 → 0, nh2 →∞, as n→∞.
(A9) p2 is an odd integer.
(A10) h2(p1+1)

1 + (nh1)−1 = o(hp2+1
2 ).

(A11) Ee4i = κi where n−1
∑
κi = O(1),

n−1
∑
κ2

i = O(1) and ki are known from the sam-
pling design.

(A12) Skewness in both error components can be
ignored. i.e., Ee3i = 0 and Eu3

i = 0.

The asymptotic bias and variance of v̂(x0) are
given by

Bias[v̂(x0)|X]

= eT
1 S

−1
2 cp2

1
(p2 + 1)!

v(p2+1)(x0)h
p2+1
2

+op(h
p2+1
2 ), (33)

and

V ar[v̂(x0)|X]
= eT

1 S
−1
2 S∗2S

−1
2 e1[{fX(x0)}−1

{η(x0) + η̄π − 2v(x0)ψ̄}](nh2)−1

+op(nh2)−1 (34)

where
η̄π = κ̄− (ψ̄)2, (35)

cp2 = (µp2 , ..., µ2p2+1)T , (36)

S2 = [µj+l]0≤j+l≤p2 , (37)

S∗2 = [νj+l]0≤j+l≤p2 , (38)

µj =
∫
ujk(u)du (39)
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νj =
∫
ujK2(u)du, (40)

and
η(xi) = Eu4

i − (Eu2
i )

2. (41)

Remark 6. Assumption (A10) is satisfied if
p1 = p2 and for any optimal selection of bandwidth.
Ruppert et al. (1997) used the same assumption for
variance function estimators of nonparametric fixed
effect models.

Remark 7. Di’s are variances of county means.
For many survey designs, the assumptions about Di

and ei are valid (Fuller, 2006).
Remark 8. We are smoothing the observed resid-

uals, not the true residuals. Asymptotically v̂(x0)
behaves like a local polynomial smooth of the true
residuals (Theorem 3.5). There is no loss in asymp-
totic efficiency of v̂ due to the estimation of m̂.

4 Approximation of the MSE

We provide an approximation for the MSE of θ̂i us-
ing the formulas derived in Section 3. Let

θ̃i = γiyi + (1− γi)m̂i (42)

and
θ∗i = γiyi + (1− γi)mi. (43)

We write

E(θ̂i − θi)2

= E(θ∗i − θi)2 + E(θ̃i − θ∗i )2 + E(θ̂i − θ̃i)2

+E(θ̂i − θ̃i)(θ̃i − θ∗i ), (44)

since the expected values for the other product terms
vanish. The first two terms on the right side of
(44) have similar expressions to those in Prasad and
Rao (1990). However, the last two terms are not
tractable in general. We approximate the last two
terms by the Taylor series expansions. More for-
mally, Theorem 4.1 can be shown.

Theorem 4.1 Assume that (A1) - (A12) hold. As-
sume ui

ind∼ N(0, vi) and ei
ind∼ N(0, Di). Then

E[θ̂i − θi|X]2

= g1i(vi) + g2i(vi,mi) + g3i(vi) + g4i(vi)
+OP (anh), (45)

where
g1i(vi) = (vi +Di)−1viDi, (46)

g2i(vi,mi) = (1− γi)2MSE(m̂i), (47)

g3i(vi)
= {b2i + vi(1 + ∆1i) + ∆2i}

(vi +Di)−4D2
i MSE(v̂i), (48)

g4i(vi)
= (Di + vi)−3D2

i {b2i + vi(1 + ∆1i) + ∆2i}
Bias(v̂i), (49)

and anh = max{(nh2)−3/2, h2p2+2
2 }. Asymptotic ex-

pressions for g2i(vi), g3i(vi), and g4i(vi) are given
by

g2i(vi,mi)
= (1− γi)2

[
eT
1 S

−1
1 cp1cp1S

−1
1 e1{(p1 + 1)!}−2

{m(p1+1)}2(xi)h
2p1+2
1 + eT

1 S
−1
1 S∗1S

−1
1 e1

{v(x0) + n−1
∑

i

Di}{fX(x0)nh1}−1

]
+op(bnh), (50)

g3i(vi)
= (vi +Di)−3D2

i

[
eT
1 S

−1
2 cp2c

T
p2
S−1

2 eT
1

{(p2 + 1)!}−2{v(p2+1)(x0)}2h2(p2+1)
2

+ eT
1 S

−1
2 S∗2S

−1
2 e1[{fX(x0)}−1

{η(x0) + η̄π − 2v(x0)ψ̄}](nh2)−1
]

+op(cnh), (51)

g4i(vi)
= (vi +Di)−2D2

i e
T
1 S

−1
2 cp2{(p2 + 1)!}−1

v(p2+1)(x0)h
(p2+1)
2 + oP (hp2+1

2 ), (52)

where bnh = max{h2p1+2
1 , (nh1)−1}, and cnh =

max{h2p2+2
2 , (nh2)−1}.

4.1 Bandwidth Selection for Local Polyno-
mial Estimators

An important issue is the choice of bandwidth pa-
rameters, h1, and h2. Local optimal bandwidths and
global optimal bandwidths are common in practice
(Fan and Gijbels, 1996). We provide a methodology
for local optimal bandwidths selection. Ideally, the
local optimal bandwidths should minimize the MSE
of the small area predicted means. Thus,

(hopt
1 , hopt

2 )i = argminh1,h2
MSE(θ̂i|X), (53)

subject to

h2p1+2
1 + (nh1)−1 = op(h

p2+1
2 ), (54)
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where MSE[θ̂i|X] is given in (45). Finding
(hopt

1 , hopt
2 ) by minimizing (53) is difficult to do in

practice because the effects of h1 on the MSE of θ̂i

are of second order. Using Theorem 3.4 and Theo-
rem 3.5, we propose the following strategy:

1. Select an asymptotically optimal bandwidth,
hopt

1 , for the estimation of the mean function m(xi)
by minimizing MSE[m̂(xi)|X]. One can use any
bandwidth selection strategy described in Fan and
Gijbels (1996).

2. Find the residuals

ŷi − m̂hopt
1

(xi) (55)

using the asymptotic optimal bandwidth hopt
1 .

3. Assume the observed residuals are true residu-
als. Apply the same bandwidth selector as in Step
1 to the observed squared residuals from Step 2 and
obtain hopt

2 . By Remark 8, the proposed bandwidth
selector will produce asymptotically optimal band-
widths (Ruppert et al., 1997).

5 Summary

A nonparametric mixed effects model is considered
for small area estimation. Local polynomial estima-
tors for both the mean function and the between
area variance function are proposed. The between
area variance function is estimated by smoothing
the observed residuals. Theoretical properties of the
proposed estimators are studied. A shrinkage esti-
mator using the direct mean and the local polyno-
mial estimator is proposed for the small area mean
function. Asymptotic approximation for the MSE of
the proposed estimator of the small area mean is de-
rived. An asymptotic optimal bandwidth selection
technique is discussed.

Our main theoretical contributions are results on
the bias and the variance of the estimated mean and
the estimated variance functions for a nonparamet-
ric mixed effects model. We develop predictors of
small area mean function. The theoretical prop-
erties of the proposed estimators are studied. An
optimal bandwidth selection method based on the
estimated mean squared error of small area means
is discussed. Our framework is expandable to the
empirical Bayes estimation under a hierarchical non-
parametric model assumption.
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