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Abstract

Sample surveys typically gather information on a sample of units
from a finite population and assign survey weights to the sampled
units. Survey frequently have missing values for some variables
for some units. Fractional regression imputation creates multiple
values for each missing value by adding randomly selected empir-
ical residuals to predicted values. Fractional imputation methods
assign fractional survey weights to the imputed values. Fractional
nearest neighbor imputation randomly selects multiple donors for
each missing value from a set of nearest neighbors. The fractional
regression nearest neighbor imputation method developed in
this paper imputes more than one value for each missing item
using donors that are neighbors selected by a distance calculation
involving both regression model predictions and variables used
in other nearest neighbor methods. Different distance function
specifications, which can involve both observed and predicted
values, produce alternative imputation procedures. In this paper,
we compare the performance of fractional imputation methods,
including fractional regression nearest neighbor imputation, in
a simulation study. In addition, we examine empirically the
performance of the imputation methods studied in this paper on
a subset of data from the Iowa Family Transitions Project under
different missing data assumptions.

Keywords: Cell mean model, Hot deck, Missing data, Multiple
imputation, Regression imputation.

1. Introduction

Sample surveys typically gather information on a sample of units
from a finite population and assign survey sampling weights to the
sampled units. Surveys usually have missing values for some vari-
ables for some units. Imputation methods fill in the missing values
with plausible values to create a completed data set. Various impu-
tation methods have been developed to compensate for item nonre-
sponse. Simple imputation methods are commonly used in practice,
but these may not be adequate in many circumstances. More sophis-
ticated methods, such as fractional hot deck imputation and multiple
imputation, have been developed and may be preferable for repre-
senting uncertainty due to imputation. Methods that are more or
less parametric in terms of imputation model are available.

Fractional imputation was developed to reduce the imputation vari-
ance which came from the random component of the variance of
the estimator arising from imputation. Kim and Fuller (2004) in-
vestigated the method of fractional hot deck for the cell mean re-
sponse model. Fractional imputation using a hot deck method was

shown to have certain advantages related to avoiding distributional
assumptions that arise in parametric multiple imputation. In their
study, the fractional hot deck imputation is more efficient than mul-
tiple imputation based on the same number of donors. The authors
also suggest a consistent replication variance estimation procedure
for their fractional hot deck method. Hot deck imputation of a single
missing value using the cell mean model can not, however, preserve
the correlation structure among two or more quantitative variables.
Except for the variables that define cells, fractional hot deck impu-
tation under the cell mean model ignores covariates.

Regression imputation uses covariates to predict missing values.
Regression imputation is potentially advantageous if the variable
of interest is strongly related to auxiliary variables. Kim (2003)
studied fractional imputation using a regression imputation model.
Fractional regression imputation creates multiple values for each
missing value by adding randomly selected empirical residuals to
predicted values. Each imputed value is assigned a fractional sur-
vey weight.

Fractional nearest neighbor imputation also was studied by Fuller
and Kim (2005a,b). They demonstrated the properties of the es-
timator under some conditions and developed a jackkife variance
technique for fractional nearest neighbor imputation.

In this paper, we extend the fractional nearest neighbor imputa-
tion to fractional regression nearest neighbor imputation. The new
method uses a suitable distance measure to choose nearest neigh-
bors. It preserves the correlation structure among quantitative vari-
ables, thereby combining the advantages of both a nearest neighbor
method and a regression model using fractional imputation. Since
this new procedure is a specific case of fractional nearest neighbor
imputation, a jackknife variance estimation technique developed by
Fuller and Kim (2005a,b) can be applied for variance estimation. A
simulation is conducted to compare imputation methods.

Methods are applied to a subset of data from the Iowa Family
Transitions Project (IFTP), which is a combination of the Iowa
Youth and Family Project (IYFP) and the Iowa Single Parent Project
(ISSP). The Iowa Family Transitions Project (IFTP) is one of those
rare opportunities when researchers have repeatedly entered the
lives of individuals to chart the development of their relationships,
and link variability in relationship quality to antecedent conditions
in families of origin and to important consequences such as phys-
ical health and emotional well being. The FTP involves the study
of a cohort of over 500 young adults that began in 1989 and has
continued for the past 15 years. The original project had its gen-
esis in the rural ”farm crisis” of the late 1980s. One of its central
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objectives was to document the effects of family adversity on the
physical, emotional and behavioral health of adolescents. Publica-
tions based on this data set include Conger et al (1990), Lorenz et al
(1991), Wickrama, Conger, and Lorenz (1995), and Conger, Lorenz
and Wickrama (2004). Missing data in this data set decrease its
power for detecting significant statistical relationships. The relative
performances of different imputation methods are compared.

This article is organized as follows. In section 2, the properties of
several imputation methods that are related to fractional regression
imputation are discussed. In section 3, fractional regression
imputation is described and the problem of estimating the variance
of the estimator is addressed briefly. In section 4, fractional
regression nearest neighbor imputation is defined and studied.
A simulation study in section 5 evaluates fractional regression
imputation, fractional regression nearest neighbor imputation, and
other imputation methods with regards to efficiency of a point
estimator. In section 6, the imputation methods described in this
paper are implemented for a subset of the IFTP data. A summary
and discussion of future work are given in section 7.

2. Imputation methods

2.1 Nearest Neighbor Imputation

Nearest neighbor imputation (NNI) selects the respondent clos-
est to the non-respondent by minimizing a specified ’distance’
(Kalton 1983, Lessler and Kalsbeek 1992, Rancourt 1999, Ran-
court, S̈arndal, and Lee 1994, Chen and Shao 2000 and 2001) and its
value is substituted for the nonrespondent. Chen and Shao (2000)
summarize some of the advantages of the NNI method. First, the
missing items are replaced by the observed units so that the im-
puted values are actually observed values, not constructed values.
Second, since the NNI method used the information of the auxil-
iary variables, the NNI method may be more efficient than other
hot deck imputation schemes. Third, it makes no distributional as-
sumptions in comparison to the explicit models such as regression
imputation using a normal linear regression model. Chen and Shao
(2000) prove that the nearest neighbor approach estimates distribu-
tions correctly under some conditions, but produces bias if these
conditions are not met. In particular, a skew distribution can lead to
bias.

NNI can be criticized, however, because it imputes only a single
value for each missing value. Therefore, it cannot represent uncer-
tainty due to imputation without special variance estimation formu-
las, such as those in Chen and Shao (2000, 2001).

The estimate of the mean of a variableY is the sample mean of the
observed plus imputed values. The estimate of a regression slope
for a prediction of a variableY from a variableX is the standard
least squares regression estimate using the(x, y) pairs, where some
y-values are observed and the others are imputed.

2.2 Stochastic Regression Imputation

Another classical method for imputing missing data is (stochastic)
regression imputation. In this method, a missing value is replaced
by a value predicted by regression imputation plus a residual, drawn
to reflect uncertainty in the predicted value. This residual can be ob-
tained by two alternative ways: i) by drawing from a normal distri-
bution with mean zero and and estimated standard deviation, or ii)
by selecting randomly from the set of empirical residuals. Method
ii) is preferred when some assumptions of the regression model are
not reasonable. In ii), if few values are missing, then sampling of
residuals can be done without replacement. If, however, a relatively
large fraction of values are missing, then sampling can be done with
replacement from the observed residuals.

Stochastic regression imputation maintains the distribution of the
variables in the sense of maintaining the observed relationship be-
tween a variableY and its predictor variables and allows for the
estimation of distributional quantities (Kalton and Kasprzyk 1982,
Kalton 1983, Nordholt 1998). However, such a parametric approach
is potentially more sensitive to model violations than methods based
on implicit models. If the regression model is not a good fit, then
the predictive power of the model might be poor (Little and Rubin
2002). In addition, the imputed value is the predicted value plus a
residual, which is not an actually occurring values. In case of cer-
tain types of variables such as earnings and income variables, that
fact could be a problem. Further, single imputation cannot represent
uncertainty due to imputation unless special formulas, such as those
of Rao and Shao (1992; see also Rao 1996) are used.

Estimates of the mean ofY and of a regression coefficient are
computed as they were with NNI.

2.3 Fractional Imputation

The method of fractional imputation (FI) was originally suggested
as a method for improving the efficiency of the imputed point esti-
mator by eliminating variance (conditional on an observed sample)
due to imputation. FI, suggested by Kalton and Kish (1984) and
studied by Kim and Fuller (2004), selects multiple donors for each
missing observation and assigns a weight equal to a fraction of the
original survey weight for each donor. In a cell mean model (equal
mean within a cell), donors are selected from within the cell.

Fully efficient fractional imputation (FEFI) uses all observed cases
within a cell as donors for the missing cases. Kim and Fuller (2004)
found for the cell mean model that FI and their variance estimator
are superior to multiple imputation (MI; Rubin 1978; see also Rubin
1987, 1996) estimators using a parametric model based on the same
number of multiple donors. The improvement can be explained by
the fact that MI adds additional variability due to the drawing of
parameters from their posterior distribution to the variance of the
imputation-based estimator.
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Durrant (2005) mentioned that one potential advantage of FI is that
multiple data sets may not need to be stored which could make the
data handling under FI under certain circumstances easier than un-
der MI whereM completed data files need to be stored and ana-
lyzed. Under fractional hot deck imputation, it is enough to store
only the replication weights that indicate how often a donor has
been used for imputation to carry out further analysis (Kim and
Fuller 2004).

The estimator of the mean ofY from the fractionally imputed
sample is

∑
i∈sR

∑
j∈s yiw

∗
ij , wherew∗

ij = M−1dij is the fraction
of the weight allocated to donori for recipientj, M is the number
of imputations for a missingy-value,sR is the set of indices of the
respondents, ands is the set of indices for the full sample. In the
above formula, if unitj is observed (j ∈ sR), djj = 1 anddij = 0
for i 6= j. The estimator of the slope coefficient in a simple linear
regression is

∑
i∈sR

∑
j∈s(xj − x̄)(yi − ȳI)w∗

ij/
∑

j∈s(xj − x̄)2,
whereȳI is the weighted mean of the imputed sample. That is, the
regression slope estimator is the weighted least squares estimator.

3. Fractional Regression Imputation

The method of fractional regression imputation (Kim 2003) is a
composite method defined by combining ideas from fractional im-
putation and regression imputation. The reason for utilizing a re-
gression imputation method is to preserve the correlation structure
between an outcome variable and predictor variables. Hot deck im-
putation, at least under the cell means models, ignores quantitative
auxiliary predictor variables.

The fractional regression estimator is as follows. First, compute
the regression ofy on x by classical least squares using the pairs
(x, y) with an observedy-value and estimate the missingy-values
by the estimated regression function. Second, compute the residu-
als for the observedy-values. Randomly drawM residuals without
replacement sampling for each missing value. Third, insert the pre-
dicted value plusM residuals for each missing value and assign a
weight M−1 to each of the imputed values. Fourth, the estimator
of the mean ofy and the regression coefficient for the regression of
y onx are computed as described previously for fractional imputa-
tion. That is, for the slope, weighted least squares is used.

In order to decrease the impact of the standard normal linear re-
gression assumptions on imputations, one can choose residuals ran-
domly within imputation cells. One method of defining imputation
cells that should be responsive to some deviations from standard
assumptions, such as heterogeneous error variances and slight cur-
vature of theX − Y relationship, is to define imputation cells by
intervals of theX variable. In practice, this can be accomplished
by dividing theX-range intoG intervals. In the simulation, the
intervals are defined by equally spaced quantiles because the dis-
tribution used forX is quite skew. In the case of ten intervals in
the simulation, if one cell had no observed values, then the pool of

donors was expanded to include observed cases from neighboring
cells. In other applications, one could use equally spaced intervals
or a customised interval construction.

Kim (2003) studied the properties of point estimators computed
with imputations generated with fractional regression imputation.
The estimators are unbiased for the marginal mean ofY under mod-
els and response mechanisms considered in Kim (2003). Fractional
regression imputation is a variation on stochastic regression impu-
tation that uses fractional imputation to reduce the variance due to
imputation. It does this by selecting multiple residuals randomly
from the set of empirical residuals.

Kim (2003) suggested a replication variance estimation method.
This suggested variance method is not desirable to use in prac-
tice because the variance is calculated by fully efficient estimator
in which all respondent residuals are used as donated residuals for
each missing value. Since the imputed value resulting from frac-
tional regression imputation is not actually an observed value, the
replication variance method suggested by Kim and Fuller (2003)
does not work for variance estimation. The method of Kim and
Fuller (2003) uses the idea of replication weights to produce a vari-
ance estimate; these require the use of only observed values.

It is possible to modify a jackknife variance estimation technique
for variance estimation under fractional regression imputation. This
approach does not appear to have been explored yet. That subject
will be a topic of future research. In simulations reported in this
paper, we simply use the replication variance method suggested by
Kim and Fuller (2003) through considering the respondent which
gives a residual to the recipient as a donor. That is, the jackknife is
applied to units rather than values.

4. Fractional Regression Nearest Neighbor Imputation

Fractional regression nearest neighbor imputation is developed in
this paper to achieve the advantages of both a nearest neighbor
method and a regression model using fractional imputation. In or-
der to combine both methods using fractional imputation, a natural
starting place is to find the nearest neighbour donors which preserve
the correlation structure. First, compute the regression ofy onx by
classical least squares and estimate the missingy-values by the es-
timated regression function. Draw a residual randomly without re-
placement for each missing value. Second, let the pseudo imputed
value be the predicted value plus the residual for each missing value.
Third, compute the distance from all respondents to the pseudo im-
puted value. The missing values is replaced by the value that has the
minimum distance to the imputed point. The process repeatedM
times for each missing value to createdM imputations. Estimation
based on the fractional imputed data set is performed analogously
to the method with fractional regression imputation. As such, the
resulting procedure and estimator can be viewed as a specific case
of a replicated nearest neighbor estimator.
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Fractional regression nearest neighbor imputation is similar in spirit
to predictive mean matching (Little 1988) and a regression-based
nearest neighbor hot deck procedure (Laaksonen 2000). The inno-
vation with the method of this paper is to combine the ideas with
fractional imputation to reduce variance due to imputation.

Fuller and Kim (2005) studied the model and estimator properties
of replicated nearest neighbor imputation and outlined a replication
variance estimator closely related to that of Kim and Fuller (2004).
The variance estimator changes the fractional replicate weights of
the naive variance estimator to produce a consistent estimator of
the variance. Their variance estimation procedure should be usable
with this new version of nearest neighbor fractional imputation.

In detail, to getM donors, the procedure for fractional regression
nearest neighbor imputation as follows.

1. STEP1 Compute the regression line and observed residuals.

(a) Compute the regression ofY on X using least squares
estimation based on the observed data pairs(x, y): Ŷ =
β̂0 + β̂1X.

(b) Compute predicted values for all points in the sample:
ŷi = β̂0 + β̂1xi.

(c) Compute residuals for all points in the sample with ob-
servedy-values:êi = yi − ŷi.

2. STEP2 For each observation with a missing value ofy, com-
pute a pseudo imputed valuey∗i = ŷi + ê∗ as follows:

(a) Randomly select a residualê∗ from the set of observed
residuals:{êj = yj − ŷj ; j ∈ sR}.

(b) Lety∗i = ŷi + ê∗.

3. STEP3 Find the donory∗∗i for the missing casei.

(a) Compute the distance betweeny∗i and all points with ob-
servedy-values:| yj − y∗i |.

(b) Select the casej that produces the minimum distance:
minj∈AR

| yj − y∗i |.
(c) Let the imputed value for casei bey∗∗i = yj , wherej is

determined by the previous step.

4. STEP4 Repeat steps 2-3M times andM different donors are
chosen for each missing value.

5. Monte Carlo Study

A simulation study was conducted to evaluate fractional regression
nearest imputation and other imputation methods with regards to
efficiency of a point estimator. Two variables were generated. Inde-
pendent variableXi was generated from a chi-squared distribution
with one degrees of freedom. Response variableYi was generated

asYi = 2 + 0.5X + ei, whereei ∼ N(0, 1) independent from
Xi. The correlation betweenX andY is 0.58. The response indi-
cator variableRi is generated from a Bernoulli distribution with the
response ratep = 0.65. That is, the data are missing completely
at random in this simulation. Future simulations will consider other
probability mechanisms for missing data. We generatedB = 10000
replicate samples of sizen = 100.

Imputation cells for fractional regression imputation are formed us-
ing the values on theX variable. Cells were formed based on
equally-spaced quantiles ofX. The impact of the number of cells
was studied. That is, the data in each sample were divided into
G = 1, 3, 5, or 10 cells for separate analyses.

The following methods are compared in the simulation.

1. CC Complete cases analysis.

2. NN Nearest neighbor matching onX.

3. SR Single imputation stochastic regression. Method 1 (SR1)
draws residuals from an estimated distribution. Method 2
(SR2) randomly selects empirical residuals.

4. MI Multiple imputation with (M = 5) imputations under
the normal linear regression model with a prior distribution
proportional to the inverse of the regression error variance; i.e.,
the standard noninformative prior distribution (Gelman et al
2004; section 14.2).

5. FRI Fractional regression imputation with(M = 5) impu-
tations. The imputation cells are formed by using similarX-
values. The number of cells is denoted as FRI1, FRI3, FRI5,
and FRI10.

6. FNNI Fractional nearest neighbor imputation with(M = 5)
imputations. TheM respondents closest to the value of a miss-
ing X are selected as donors.

7. MRNNI Multiple regression nearest neighbor imputation
with (M = 5) imputations. The imputation cells for cre-
ating pseudo-imputations are formed by using similarX-
values. The number of cells is denoted as MRNNI1, MRNNI3,
MRNNI5, and MRNNI10. Instead of weighting donors, values
are multiply imputed and MI combination formulas are used.

8. FRNNI Fractional regression nearest neighbor imputation
with (M = 5) imputations. The imputation cells for cre-
ating pseudo-imputations are formed by using similarX-
values. The number of cells is denoted as FRNNI1, FRNNI3,
FRNNI5, and FRNNI10.

Results are reported for point estimators of the mean ofY and for
the slope of the regression ofY on X. Future work will complete
evaluation of these methods and also study estimation of variances.
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Table 1: Monte Carlo means and standard deviations of point esti-
mators of the mean of the outcome variable and of the linear regres-
sion slope based on 10000 replications. VariableX is chisquared(1)
andn = 100.

Mean ofY Slope
Method Mean SD Mean SD
CC 2.501 0.151 0.501 0.098
NN 2.495 0.156 0.483 0.111
SR1 2.501 0.154 0.501 0.108
SR2 2.501 0.153 0.501 0.108
MI 2.501 0.145 0.501 0.102
FRI1 2.501 0.144 0.501 0.100
FRI3 2.501 0.144 0.501 0.101
FRI5 2.501 0.145 0.501 0.102
FRI10 2.501 0.147 0.501 0.102
FNNI 2.484 0.144 0.460 0.104
MRNNI1 2.500 0.144 0.487 0.099
MRNNI3 2.496 0.145 0.487 0.099
MRNNI5 2.497 0.145 0.487 0.099
MRNNI10 2.497 0.146 0.489 0.100
FRNNI1 2.494 0.144 0.477 0.097

The mean of variance of the point estimators of the response vari-
able grand mean and the regression slope coefficient were calcu-
lated based onB = 10000 simulations. Table 1 shows the means
and standard deviations of the point estimators under various meth-
ods. Methods CC, SR, MI, and FRI were unbiased for the slope and
the mean ofY , but those that rely on picking nearest neighbors (NN,
FNNI, MRNNI, FRNNI) were not. These methods tend to underes-
timate the slope and mean ofY . The principle cause of this bias is
that the distribution used to generate thex-values: chi-square with
one degree of freedom. When ay-value is missing and a nearest
neighbor in theX-dimension is chosen, slightly more than half the
time (53% in simulations) the nearest neighbor is below the actual
x-value. Since there is a positive correlation ofX with Y , the do-
natedy-values then are slightly less on average than the real values.
This depresses the estimated mean ofY and the estimated regres-
sion slope. In FRNNI, which matches onY , the nearest neighbors
in theY -dimension also slightly more than half the time are below
the actualy-value. The effect is not large, but it is noticeable.

The Monte Carlo standard deviation of Table 1 shows that meth-
ods based on imputing multiple values and taking the average (MI,
FRI, FNNI, MRNNI, FRNNI) produce smaller variation in point es-
timates than complete case analysis (CC) and methods imputing a
single value (NN, SR). The number of classes in FRI (and, we be-
lieve, in FRNNI) do not make much difference, but the standard de-
viation of point estimates increases slightly as the number of classes
increases. The apparent bias also seems to decrease slightly as the
number of classes increases. Single imputation methods add vari-
ability above that of the complete case analysis; this is variability

Table 2: Monte Carlo means and standard deviations of point esti-
mators of the mean of the outcome variable and of the linear regres-
sion slope based on 10000 replications. VariableX is normal and
n = 100.

Mean ofY Slope
Method Mean SD Mean SD
CC 2.501 0.153 0.501 0.091
NN 2.501 0.157 0.495 0.101
SR1 2.501 0.156 0.501 0.100
SR2 2.501 0.155 0.502 0.099
MI 2.501 0.146 0.502 0.094
FRI1 2.500 0.145 0.501 0.093
FRI3 2.501 0.146 0.501 0.093
FRI5 2.500 0.146 0.501 0.093
FRI10 2.501 0.148 0.502 0.094
FNNI 2.501 0.146 0.484 0.090
MRNNI1 2.501 0.145 0.496 0.091
MRNNI3 2.500 0.145 0.497 0.092
MRNNI5 2.501 0.146 0.498 0.092
MRNNI10 2.500 0.148 0.499 0.093
FRNNI1 2.501 0.145 0.495 0.090

due to imputation.

A second simulation was conducted with values ofX generated
from a normal distribution with mean 1 and variance 2, which match
those of the chisquare distribution with one degree of freedom. The
correlation ofX with Y is 0.58 as before. In the second simulation,
the effect of nearest neighbor matching is reduced, but not totally
eliminated. MatchingX-values tend to be more in the center of the
X-distribution, so donatedY values tend to be closer to the mean.
This does not cause bias in the estimate of the mean ofY , but it
does depress the apparent slope in the regression relationship. That
is, large values ofX are matched more often than 1/2 with values
that are closer to the mean ofX, which tend to have smallery-
values than the real values that are missing. Similarly, small values
of X also are matched more often than 1/2 with values that are
closer to the mean ofX, which tend to have largery-values than
the real values that are missing. Other patterns of results, which
are presented in Table 2, are similar as those in the first simulation.
The standard deviations of slope point estimates are lower in Table
2 than in Table 1 due to the influence of the skewness ofX for Table
1 and symmetry in Table 2.

A third simulation was run to study the effect of sample size. Vari-
ableX was again generated from a chisquare(1) distribution, but
sample size was increased ton = 200. As seen in Table 3, the
biases of the mean and slope estimators are reduced, but not elimi-
nated. Other results are the same as before.
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Table 3: Monte Carlo means and standard deviations of point esti-
mators of the mean of the outcome variable and of the linear regres-
sion slope based on 10000 replications. VariableX is chisquare(1)
andn = 200.

Mean ofY Slope
Method Mean SD Mean SD
CC 2.499 0.108 0.500 0.065
NN 2.497 0.111 0.489 0.075
SR1 2.500 0.118 0.500 0.078
SR2 2.500 0.109 0.500 0.072
MI 2.500 0.106 0.500 0.070
FRI1 2.500 0.103 0.500 0.066
FRI3 2.500 0.103 0.500 0.067
FRI5 2.500 0.103 0.500 0.067
FRI10 2.500 0.104 0.500 0.067
FNNI 2.491 0.103 0.474 0.071
MRNNI1 2.500 0.103 0.491 0.066
MRNNI3 2.500 0.102 0.491 0.067
MRNNI5 2.500 0.103 0.491 0.067
MRNNI10 2.500 0.104 0.492 0.067
FRNNI1 2.494 0.144 0.477 0.097

6. Performance of the Methods on the IFTP Data

The dataset used to study imputation methods is based on the Iowa
Youth and Family Project (IYFP) and the Iowa Single Parent Project
(ISSP). These studies are part of a long-term sociology project,
which started in the 1990s, after the farm crisis of the late 1980s
in rural Iowa. The aim was to observe and analyze the changing
dynamics of families due to the financial hardships suffered, and
the result on the relationships between the different members of
the family. This data set is chosen, because item missing data and
drop-out over time reduce the statistical power of statistical analy-
ses. The ultimate goal is to be able to recommend general missing
data methods for use in this data set so that various analyses can be
conducted utlizing all available information, including cases with
complete and parital response.

One subject that the sociologists and psychologists involved in the
project wanted to study is the impact of economic hardship on the
self-esteem (SE) of the subjects. Economic hardship is viewed as a
latent variable. Therefore, the researchers designed a list of ques-
tions that helped them quantify and observe three other variables,
namely financial strain (FINSTR), making ends meet (ENDS) and
financial cutbacks (CUT), which in turn estimated the economic
hardship suffered by the subject family. Substantive analyses uti-
lize structural equation models based on four waves of data (1991,
1992, 1994, and 2001).

In the present work, we study the impact of missing data methods
on estimates of the relationship between financial strain (QFFIN-
STR; theX variable) and self esteem (QFSE; theY variable) and

Table 4: Monte Carlo means and standard deviations of point esti-
mators of the mean of the outcome variable and of the linear regres-
sion slope based on 10000 replications. VariableX is QFFINSTR,
Y is QFSE,n = 100, and the missing data mechanism is MCAR.

Mean ofY Slope
Method Mean SD Mean SD
Full data 4.000 -0.2410
CC 4.000 0.0549 -0.2419 0.0816
NN 4.003 0.0604 -0.2099 0.0833
SR1 4.000 0.0600 -0.2420 0.0889
SR2 3.999 0.0599 -0.2422 0.0886
MI 4.000 0.0621 -0.2418 0.0845
FRI1 3.999 0.0548 -0.2417 0.0832
FRI3 4.000 0.0549 -0.2446 0.0822
FRI5 4.000 0.0553 -0.2411 0.0827
FRI10 4.000 0.0562 -0.2424 0.0854
FNNI 4.001 0.0558 -0.2333 0.0809
MRNNI1 4.007 0.0567 -0.2107 0.0714
MRNNI3 4.008 0.0564 -0.2133 0.0701
MRNNI5 4.008 0.0562 -0.2130 0.0709
MRNNI10 4.009 0.0570 -0.2163 0.0728
FRNNI1 3.999 0.0543 -0.2385 0.0818
FRNNI3 4.000 0.0542 -0.2386 0.0814
FRNNI5 4.000 0.0544 -0.2387 0.0816

the mean of QFSE in 1991. The particular interest of this study is
a comparison of fractional regression nearest neighbor imputation
and other imputation methods with regards to efficiency of a point
estimator under different missing data mechanisms. Missing data
mechanisms are discussed below.

The data available haven = 391 observations. In simulations, a
sample of 100 individuals were selected. Some of these individuals
were deleted and it was pretended that they were missing. The re-
spondents (fory) are selected in three different ways with response
ratep = 0.65.

1. MCAR Missing completely at random: a uniform response
mechanism.

2. MAR Missing at random: the missing values are randomly
drawn by without replacement sampling within each class. The
classes are formed using thex values. As financial stress in-
creases, the chance of being missing increases.

3. NMAR Not missing at random: the missing values are ran-
domly drawn by without replacement sampling within each
class. The classes are formed using they values. As self es-
teem decreases, the chance of being missing increases.

When the data are missing completely at random (MCAR), re-
sults of 10,000 simulations (sample size 100, 65 observed cases)
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are presented in Table 4. The estimator of the mean is unbi-
ased using all methods. Nearest neighbor methods (NN, FNNI, ,
MRNNI, FRNNI) tend to depress the magnitude of the slope esti-
mate. FRNNI, which used without replacement sampling, had less
bias than MRNNI, which used with replacement sampling.

When the data are missing at random (MAR), results of 10,000 sim-
ulations (sample size 100, 65 observed cases) are presented in Table
5. The MAR mechanisms was implemented by random selecting
48 (71%) of the smallest 68x-values to be observed, but only 17
(53%) of the largest 32 to be observed. This is a relatively mild
case of MAR. This choice of mechanism was made because 68% of
the probability for a chisquare random variable with one degree of
freedom is below its mean, and future simulations will investigate
MAR cases for this distribution. Results are generally the same as
before, but the methods CC and NN produce bias in point estimator
of the mean of QFSE (Y ). The other methods impute missingy-
values using, in one way or another, based on the regression model
and correct this bias. Further discussion of this phenomenon can be
found in Little and Rubin (2002). The standard deviations of regres-
sion slope point estimates are larger than their counterparts in Table
4.

Table 6 presents results when data are missing not at random
(NMAR). The NMAR mechanisms was implemented by random
selecting 48 (71%) of thelargest68 y-values to be observed, but
only 17 (53%) of thesmallest32 to be observed. Thus, small values
of self-esteem are less likely to be observed. This is a relatively mild
case of NMAR. All methods exhibit bias for the mean ofY and
for the regresion slope. Standard deviations of point estimates are
smaller than their MCAR and MAR counterparts. Nearest neigh-
bor methods still exhibit more bias for the slope than other methods.

7. Summary and Discussion

Fractional regression nearest neighbor imputation was defined and
studied through simulation. It was found that the distribution of
the predictor values can have an effect on the performance of this
and other nearest neighbor algorithms. Future work will investigate
modifications of nearest neighbor matching algorithms to address
this issue. Future simulations will consider additional populations
and population regression models.

Methods were applied to data from the Iowa Family Transitions
Project. It was demonstrated that the when the data are missing
not at random (NMAR) that the missing data methods considered
do not remove bias in the estimate of a mean or a regression slope.
Future work will consider nearest neighbor methods to adjust for a
suspected bias.

Future work also will consider variance estimation and the coverage
of confidence intervals based on the methods in this paper.

Table 5: Monte Carlo means and standard deviations of point esti-
mators of the mean of the outcome variable and of the linear regres-
sion slope based on 10000 replications. VariableX is QFFINSTR,
Y is QFSE,n = 100, and the missing data mechanism is MAR.

Mean ofY Slope
Method Mean SD Mean SD
Full data 4.000 -0.2410
CC 4.015 0.0541 -0.2497 0.0861
NN 4.008 0.0607 -0.2031 0.0856
SR1 3.997 0.0603 -0.2495 0.0939
SR2 3.997 0.0600 -0.2497 0.0933
MI 3.997 0.0634 -0.2495 0.0900
FRI1 3.997 0.0553 -0.2498 0.0874
FRI3 3.997 0.0557 -0.2508 0.0868
FRI5 3.999 0.0562 -0.2432 0.0880
FRI10 3.999 0.0570 -0.2445 0.0910
FNNI 4.000 0.0568 -0.2318 0.0847
MRNNI1 4.011 0.0570 -0.2095 0.07315
MRNNI3 4.012 0.0570 -0.2107 0.0715
MRNNI5 4.013 0.0568 -0.2078 0.0729
MRNNI10 4.013 0.0571 -0.2105 0.0749
FRNNI1 3.996 0.0545 -0.2296 0.0800
FRNNI3 4.001 0.0548 -0.2380 0.0787
FRNNI5 3.998 0.0565 -0.2407 0.0850

Table 6: Monte Carlo means and standard deviations of point esti-
mators of the mean of the outcome variable and of the linear regres-
sion slope based on 10000 replications. VariableX is QFFINSTR,
Y is QFSE,n = 100, and the missing data mechanism is NMAR.

Mean ofY Slope
Method Mean SD Mean SD
Full data 4.000 -0.2410
CC 4.044 0.0485 -0.2321 0.0815
NN 4.042 0.0554 -0.1949 0.0809
SR1 4.036 0.0555 -0.2322 0.0890
SR2 4.036 0.0549 -0.2324 0.0886
MI 4.036 0.0579 -0.2322 0.0840
FRI1 4.036 0.0504 -0.2321 0.0829
FRI3 4.036 0.0505 -0.2336 0.0817
FRI5 4.037 0.0508 -0.2285 0.0826
FRI10 4.037 0.0516 -0.2296 0.0849
FNNI 4.039 0.0510 -0.2184 0.0797
MRNNI1 4.048 0.0514 -0.1997 0.0705
MRNNI3 4.049 0.0504 -0.2001 0.0690
MRNNI5 4.049 0.0509 -0.1998 0.0695
MRNNI10 4.049 0.0516 -0.2010 0.0715
FRNNI1 3.971 0.0533 -0.2337 0.0811
FRNNI3 3.973 0.0532 -0.2407 0.0801
FRNNI5 3.973 0.0536 -0.2357 0.0803
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