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Abstract

The standard formula due to Fleiss et al. (1969) for esti-

mating the variance of the estimated Cohen’s kappa, may

be severely biased when using complex survey data, un-

derestimating the variance. A procedure based on Taylor

linearization is presented. The proposed procedure re-

duces to the Fleiss formula under a simple random sam-

ple design. Results from a small simulation study demon-

strate the bias of the standard formula when clustering is

present, and the good performance of the proposed pro-

cedure.

Keywords: Complex Sample, Taylor Linearization, Co-

hen’s kappa, Re-interview.

1 Introduction

The National Survey on Drug Use and Health (NSDUH)

is an annual survey of the civilian, noninstitutionalized,

population of the United States, aged 12 years or older.

It is the nation’s primary source of statistical informa-

tion on the use of illicit drugs. The survey employs a

multistage area probability sample to produce population

estimates of the prevalence of substance use and other

health-related issues. Since 1999, the design was modified

to allow state-level estimates with samples large enough

for direct estimation of key substance abuse measures in

8 states and smaller samples requiring small area estima-

tion procedures to produce state estimates in the other

42 states and the District of Columbia. The NSDUH is

sponsored by the Substance Abuse and Mental Health

Services Administration (SAMHSA). RTI has conducted

the NSDUH since 1988. Prior to 2002, the survey was

known as the National Household Survey on Drug Abuse

(NHSDA).

NSDUH is currently conducting a study to assess the

reliability of respondents’ responses. An interview/re-

interview method is employed where individuals are in-

terviewed on two occasions, T1 and T2. The reliability

of the responses is assessed by comparing the T1 and T2

responses. The anticipated sample size for this study is

approximately 3,100.

To measure the reliability of categorical responses, Co-

hen’s kappa (κ) index of inter-rater reliability is used (Co-

hen, 1960). This measure, κ, is the statistic most-often

used to assess inter-rater reliability of categorical vari-

ables.

The common variance estimation approach is to use

Fleiss et al. (1969) asymptotic variance formula (see also

Agresti, 2002). It assumes an independent sample, with

equal probabilities of inclusion. The NSDUH sample de-

sign is complex, involving clustering and unequal weight-

ing to account for variable probabilities of inclusion and

non-response adjustments. This may have significant ef-

fect on the point estimates of κ and the estimation of its

variance. While correcting the point estimates of κ for the

design is straightforward, the variance estimate is more

involved. We present a Taylor linearization (TL) deriva-

tion, along with simulation results of the TL method and

of the Fleiss et al. (1969) formula, and their assessment.

The results show that failure to account for the clustering

may result in negatively-biased variances (and and hence

too-small standard errors).
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2 The Kappa Parameter and Its

Survey-Weighted Estimate

Let YT1 and YT2 be the responses given to a categori-

cal question which have two levels, 0 and 1. The four

possible combinations of T1 and T2 responses divide the

population into four groups whose proportions are given

in the following table.

YT1 = 0 YT1 = 1

YT2 = 0 p00 p01 p0+

YT2 = 1 p10 p11 p1+

p+0 p+1 p++ = 1

The probability of agreement is pe = p00+p11. This pa-

rameter is a rough measure of agreement between the T1

and T2 responses. Note, however, that agreement could

also occur by chance alone. Assuming independence of

T1 and T2 responses, conditional on the marginal proba-

bilities p0+,p1+,p+0,p+1, the probability of agreement pc

(referred to as the ‘probability of chance agreement’) is

given by pc = p0+ ·p+0+p1+ ·p+1. To correct for a chance

agreement, Cohen (1960) introduced the agreement mea-

sure κ, defined by the formula below.

κ =

∑
i=0,1 pii −

∑
i=0,1 pi+p+i

1−
∑

i=0,1 pi+p+i

=
(p00 + p11)− (p0+ · p+0 + p1+ · p+1)

1− (p0+ · p+0 + p1+ · p+1)
.

Note that −1 ≤ κ ≤ 1. When p00 + p11 = 1, a perfect

agreement between T1 and T2, κ = 1. In the case of a

complete disagreement p01 + p10 = 1, κ ≤ 0. (Note, how-

ever, that the general case of complete disagreement—

p00 + p11 = 0 generally does not imply κ = −1. In

fact,when p01 + p10 = 1 and either p01 or p10 is small

κ ≈ 0.)

The survey-weighted estimate of κ is

κ̂ =
(p̂00 + p̂11)− (p̂0+ · p̂+0 + p̂1+ · p̂+1)

1− (p̂0+ · p̂+0 + p̂1+ · p̂+1)

where p̂ij is the survey-weighted estimate of pij . The

estimate κ̂ is a ratio estimate. Thus it is consistent, albeit

biased.

3 Taylor Linearization Variance Estimation

To simplify notation let us denote a = p̂00, b = p̂01 and

c = p̂10. Note that p̂11 = 1− a− b− c. Also, denote

A = 1− (b + c)

(A is the estimated probability of agreement) and

B = (a + b)(a + c) + (1− a− b)(1− a− c),

the estimated probability of chance agreement.

Note that B = 1 + 2(a + b)(a + c)− (2a + b + c).

Now,

κ̂ = 1−1−A

1−B
= 1− b + c

(2a + b + c)− 2(a + b)(a + c)
= 1−U

where U = (b + c)/[(2a + b + c)− 2(a + b)(a + c)].

Clearly, Var(κ̂) = Var(U) = Var(C/D) where C =

b + c, D = (2a + b + c)− 2(a + b)(a + c) and U = C/D.

The first-order Taylor approximation of U is

∆U ≈ ∂U

∂a
∆a +

∂U

∂b
∆b +

∂U

∂c
∆c,

where the partial derivatives are calculated at g =

(E(a), E(b), E(c))′ ≈ (p00, p01, p10)
′, where ∆a = a −

E[a], ∆b = b − E[b], ∆c = c − E[c], ∆U = U − U0 and

where U0 is the value of U at g:

U0 =
E[b] + E[c]

(2E[a] + E[b] + E[c])− 2(E[a] + E[b])(E[a] + E[c])

≈ E[U ].

Denote the partial derivatives of U with respect to a, b

and c (at g) by F , G and H respectively. Then,

F =
∂U

∂a
=

∂U

∂C
· ∂C

∂a
+

∂U

∂D
· ∂D

∂a
= −2C

D2
[1− (2a + b + c)]

G =
∂U

∂b
=

∂U

∂C
· ∂C

∂b
+

∂U

∂D
· ∂D

∂b
=

1
D
− C

D2
[1− 2(a + c)]

H =
∂U

∂c
=

∂U

∂C
· ∂C

∂c
+

∂U

∂D
· ∂D

∂c
=

1
D
− C

D2
[1− 2(a + b)] .
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We have

∆U ≈ F∆a + G∆b + H∆c. (1)

Define a new variable xi for every individual i in the

population U as follows:

xi = F · I[T1=0,T2=0] + G · I[T1=0,T2=1] + H · I[T1=1,T2=0].

(2)

Denote by the population by U , its size by N , and the

population mean of x by X̄ = N−1
∑

i∈U xi. Then

X̄ = N(Fp00 + Gp01 + Hp10).

An estimate of X̄ is

ˆ̄X = F̂ p̂00 + Ĝp̂01 + Ĥp̂10

= F p̂00 + Gp̂01 + Hp̂10+{
(F̂ − F )p̂00 + (Ĝ−G)p̂01 + (Ĥ −H)p̂10

}
.

Thus,

Var(κ̂) ≈ Var( ˆ̄X). (3)

Note that the expression in ˆ̄X in {·} is asymptotically

zero and thus will be ignored.

3.1 Variance Estimation Under a Simple Ran-

dom Sample Design

Under a simple random sample design (SRS),

var( ˆ̄X) = var(Fa + Gb + Hc)

=
1
n

[
F 2a(1− a) + G2b(1− b) + H2c(1− c)

−2FGab− 2FHac− 2GHbc] (4)

using the variance and covariance formulae for the com-

ponents of a multinomial random variable.

Note: If X is a random variable, and Var(X) is its vari-

ance, var(X) (with lower-case v) will denote an estimate

of Var(X).

Comment: The Fleiss el al. (1969) formula (see also

Agresti, 2002, pp. 434–435) is

var(κ̂) =
1
n

{
A(1−A)
(1−B)2

+
2(1−A)

[
2AB −

∑1
i=0 pii(pi+ + p+i)

]
(1−B)3

+
(1−A)2

[∑1
i=0

∑1
j=0 pij(pj+ + p+i)2 − 4B2

]
(1−B)4

 .

(5)

Equation (4) agrees with (5). Thus, the procedure we

present generalizes Fleiss el al. (1969).

3.2 Variance Estimation Under Complex De-

signs

Assume for the moment that F , G and H are constants

(population values). Let wi be the survey weights, then

ˆ̄X =
1
N

∑
wixi = F p̂00 + Gp̂01 + Hp̂10.

Using (2) and (3), we arrive at the procedure below.

3.3 Procedure

1. Calculate a, b, c and then F , G and H.

2. Calculate a new variable xi for every i ∈ s as in (2).

3. Calculate var( ˆ̄X), the estimated variance of ˆ̄X ac-

counting for the sample’s complex design (e.g., us-

ing proc descript of sudaan©R [Research Triangle

Institute (2004)]).

Then var(κ̂) = var( ˆ̄X).

Comment:: When D = (2a+ b+ c)−2(a+ b)(a+ c) ≈ 0

the method may be unstable.

3.4 The Bias of the Standard Formula Under

Complex Design

Let θ̂ be an estimate of a population parameter θ, Var(θ̂)

and VarSRS(θ̂), respectively its variance under the com-

plex design, and under a simple random design. Then the
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design effect is defined by DEFF = Var(θ̂)/VarSRS(θ̂). In

the case where θ is a sum or a mean of a variable y, the

design effect of a clustered sample is related to the in-

traclass correlation of y, ρ, by DEFF ≈ 1 + (b̄ − 1)ρ,

where b̄ is the average number of elements drawn from

each cluster (see Kish, 1965). Thus,

VarSRS(θ̂)−Var(θ̂)

Var(θ̂)
≈ (b̄− 1)ρ

DEFF

is the relative bias when failing to account for the design.

4 Simulation Study

4.1 Simulation Set-up

As mentioned in the introduction, failure to account for

the clustering in complex survey data may result in nega-

tively biased variance estimates. Subjects within clusters

(primary sampling units) tend to be more alike than ones

in different clusters. In order to generate data with clus-

tering, we first assumed the following model for a con-

tinuous response variable xh,i,j , for subject i in primary

sampling unit (PSU) i, in stratum h.

xh,i,j =
φ

φ2 + 1
εh,i +

1
φ2 + 1

εh,i,j ,

εh,i
iid∼ N(0, 1), εh,i,j

iid∼ N(0, 1), and where the εh,i,js are

independent of the εh′,i′s. The parameter φ determines

the clustering in the data. Clearly, when φ = 0, no clus-

tering is present—the intra cluster correlation (ICC) is

zero. When φ grows, so does the ICC. Next, we created

two discrete variables YT1 and YT2 from x by defining

(YT1, YT2) =



(0, 0) if x < Φ−1(0.4)

(0, 1) if Φ−1(0.4) ≤ x < Φ−1(0.5) = 0

(1, 0) if 0 ≤ x < Φ−1(0.7)

(1, 1) if Φ−1(0.7) ≤ x,

(5)

where Φ is the cumulative function of the standard nor-

mal distribution.

Clearly, as |φ| increases, so do the ICC of the dicretized

variables YT1 and YT2.

We drew our observations from the stratified and clus-

tered infinite population given in (5), using a with-

replacement (WR) at the first stage and a simple random

sample (SRS) in the second stage. The common assump-

tions made in the analysis of the NSDUH data are a WR

selection in the first stage, and an SRS selection in the

second stage1. In the simulation results below, the num-

ber of strata was L = 2, with 8 PSUs drawn from each,

and 10 individuals drawn from each PSU.

4.2 Simulation Results—φ = 1

Figures 1 and 2 show histograms of the variance estimates

from the proposed method (under the title of “TL”) and

those from the standard (Fleiss et al., 1969) formula

(under the title of ASE2) when φ = 1. The empirical

variance (defined as the variance of the 500 simulations:

(500−1)−1
∑500

m=1

(
κ̂m − ¯̂κ

)2) is also shown by a red line.

While the estimates from the proposed method are dis-

tributed around the empirical mean, those from the stan-

dard formula show a clear negative bias.
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Figure 1: Histograms of Taylor Linearization Variance

Estimates—Clustering Effect Present

1This is not the actual design, of course.
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Figure 2: Histograms of Fleiss et al. (1969) Variance

Estimates—Clustering Effect Present

4.3 Simulation Results—φ = 0

Figures 3 and 4 show histograms of the variance esti-

mates from the two methods when φ = 1, along with the

empirical variance. Both sets of estimates are distrib-

uted around the empirical mean. Also evident is that the

estimates from the standard formula are less dispersed.

Thus, when no clustering is present, one can, and in

fact should, ignore the design (as the variance estimation

would then be more efficient).

Figure 5 shows the bias as a function of φ.
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Figure 3: Histograms of Taylor Linearization Variance

Estimates—No Clustering Effect
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Figure 4: Histograms of Fleiss et al. (1969) Variance

Estimates—No Clustering Effect
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