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Abstract

This paper develops a method of design-based causal infer-
ence from a sample to a finite population. Causal effects are
defined as finite population parameters based on the causal
structure of the population. Only a non-parametric model for
the joint distribution of the causal structure, which can be ex-
pressed as a directed acyclic graphical model, must be as-
sumed. The finite population causal effects are expressed in
two equivalent forms: (1) as stratified sampling type estima-
tors with the strata determined by the confounders, and (2) as
Horvitz-Thompson type estimators with the selection proba-
bilities replaced by the propensity score. Both forms lead to
sampling estimators that are subtle variations on common es-
timators, and we provide a delta method for computing their
approximate variances.
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1 Introduction: To Model or Not to Model ?

During the 1970’s and 1980’s, the question of whether to
base descriptive population inferences on an assumed super-
population parametric model or not has provoked heated, and
at times, acrimonious debate in the sampling literature. One
of the most cogent articles arguing against assuming a model
as the basis for population inference was written in 1983 by
Hansen, Madow, and Tepping [2]. They showed that even
a slight misspecification in a model can lead to significant
bias in estimating a population parameter, which could be es-
timated without bias using a consistent sampling estimator.
Because the exact specification of any model for a popula-
tion can never be known with certainty, they conclude that
while design decisions may be guided and evaluated by mod-
els, “inferences concerning population characteristics should
be made on the basis of the induced randomization, at least
when samples are reasonably large.” [2, page 776]. Evi-
dence of a rapprochement between the two camps was evi-
dent by 1993 when a staunch advocate of model-dependent
inference, T.M.F. Smith, conceded that due to the uncertainty
in model specification inference based on the randomiza-
tion distribution, “seems particularly appropriate for descrip-
tive inferences in the public domain” [8, page 157]. How-
ever, Smith adamantly maintained that models were essential
for analytic, or causal, inference. Interestingly, even though
Hansen, Madow, and Tepping rejected statistical models for
inference about population parameters, they also seem to ac-
cept the necessity of using statistical models for causal infer-
ence. In fact, they equate drawing causal inferences about a
finite population with postulating a super population model

Hanson

for the “causal system” and estimating the parameters of that
model [2, page 789].

In a recent (2002) review of the design-based vs. model-
dependent inference debate, Graham Kalton also argued that
analytic inferences required the assumption of a parametric
statistical model [4]. This view is particularly surprising from
someone who accepts model-dependent inference grudgingly
and out of necessity:

It is axiomatic that all models are false. The attrac-
tion of the design-base approach to survey inference
for mostdescriptive estimation ... . is its avoidance of
reliance on models. ... My general approach to the
use of model-dependent methods for descriptive es-
timation is to treat the model as a crutch, to be used
only to the extent that the survey data cannot fully
support the desired estimates. [emphasis added] [4,
page 130]

This paper will adopt the same pragmatic philosophy with re-
spect to the use of marginal structural models and other re-
cent model-dependent methods in the causal analysis litera-
ture for the estimation of causal effects. However, we empha-
size both that super-population parametric statistical models
are not required for causal inference and that the parameters
of such models are generally inadequate as estimates of causal
effects. With a reasonably large sample, causal effects defined
as finite population parameters can be consistently estimated
based solely on the randomization distribution induced by the
sampling design. When the sample size is not large enough,
especially in some of the strata, a marginal structural model
or some related method may need to be assumed. However,
the population causal effect being estimated does not change
whether or not any type of model is assumed. Thus, the de-
cision to model or not to model depends only on the same
practical considerations that arise when estimating descriptive
parameters, and the risk of model misspecification bias need
not be incurred to draw causal inferences when the sample is
reasonably large.

Recent research in causal analysis has lead to the develop-
ment of a formal nonparametric theory for evaluating causal
effects using directed acyclic graphical models [5, 3] By re-
lying on that research, in particular the results of Pearl and
Robins, counterfactual causal effects are defined as finite pop-
ulation parameters based on the assumed causal structure of
the population. Given a causal structure, which is also equiv-
alent to specifying a directed acyclic graphical model, the
causal effect of one variable on another can be derived by
applying Pearl’s definition of conditioning (intervening) on
the causal variable. The resulting causal effect is expressed
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as a function of observable finite population parameters, do-
main means and proportions. Even with an assumed complex
time dependent causal structure, Robins non-parametric G-
computation algorithm will yield well defined causal effects
that depend only on observable finite population parameters.
Hence, while a nonparametric model for the causal structure
of the finite population must be assumed, none of the usual
parametric or semi-parametric models need to be assumed.

Given the assumed causal structure, inference about the
population causal effects can be based entirely on the random-
ization distribution induced by the sampling design. Because
the causal assumptions are equivalent to specifying a directed
acyclic graphical model for the variables in the population,
the causal effects will have a much more intuitive definition
than the usual parameters in log-linear or logistic regression
models. We will see that the population causal effects can
be represented as stratified sampling type estimators of do-
main means with the strata weights determined by the distri-
bution of the confounders after conditioning (intervening) on
the causal variable. Equivalently, the population causal effects
can be represented as Horvitz-Thompson type estimators of
domain means with the selection probabilities determined by
the population propensity score—the probability of the causal
variable given the confounders. Furthermore, both representa-
tions of causal effects lead naturally to unbiased sampling esti-
mators, and thus inference about their sampling variability can
be based entirely on the randomization distribution induced by
the sampling design. Hence, probability-sampling methods
are readily applicable to causal inference without parametric
models.

Furthermore, common parametric statistical modes are gen-
erally inadequate to estimate causal effects. Including a con-
founding variable in a parametric model is in general not suf-
ficient to control for the confounding [3]. Only in the simplest
causal structures (for an example, see figure 1) can a param-
eter for the causal variable be interpreted as a causal effect,
and then only when the model is linear in that parameter—i.e.
no intersection terms with the causal variable. If interactions
need to be included, then no single parameter is relevant to es-
timating the causal effect in the population. Furthermore, for
all of the other causal structures considered in this paper, none
of the common parametric models yield unbiased estimates of
causal effects, even when linearity holds [3]. Hence, except
for relatively simple causal structures with additional strong
model-dependent assumptions, the usual parametric statistical
models can not be relied upon to estimate causal effects.

Robins recently proposed a novel marginal structural model
approach to causal inference which relies on weighting the ob-
servations by their propensity score and then fitting a para-
metric model to estimate the causal effect [3]. Without the
modeling, this estimation method is equivalent to the Horvitz-
Thompson type estimators discussed above. Hence, Robins
method can be seen as a hybrid of the probability-sampling ap-
proach and the conventional parametric modeling approach. It
also illustrates how fundamental the probability-sampling ap-
proach is to causal inference.

While marginal structural models may prove useful when
the sample size is not large enough, especially in some strata,

they are still subject to model misspecification bias. Hence,
because of the dangers of model-dependent inference identi-
fied in the Hansen paper and confirmed in our simulations, this
paper will argue for a model free approach to causal inference
whenever possible. However, it must be emphasized that the
fundamental assumption required for valid causal inference—
a correctly specified directed acyclic graphical model—is still
required when dispensing with parametric statistical models.
Even though the model free approach allows finite population
causal effects to be estimated with minimal bias in large sam-
ples, the validity of any causal inferences will still depend on
the actual causal structure of the population.

Thus, it must be emphasized that the randomization distri-
bution is only relevant to assessing the sampling variability
of the estimate of any finite population parameter—including
the causal effects defined above. The randomization allows
us to assess how much an estimate is likely to change if an-
other similar sample was drawn. Thus, if every value in the fi-
nite population where known, the causal effect could be com-
puted without any sampling variability, yet the causal infer-
ence could still be in doubt if the causal assumptions are ques-
tioned. However,if the sample is not large enough or the de-
sign is flawed, the causal inference will be uncertain because
the estimated value of the causal effect is uncertain. With
model-dependent estimation the causal inference can be un-
certain no matter how large the sample if the modeling as-
sumptions are questioned.

In contrast, the model free approach has the virtue of yield-
ing consistent estimates of population parameters with mini-
mal assumptions in reasonably large samples, and consistent
estimates of the finite population parameters are a necessary
condition for causal inference. Hence, while emphasizing that
causal inference always depend on causal assumptions, this
paper will advocate a methodology that defines counterfac-
tual causal effects in terms of finite population parameters and
bases all inferences about those parameters on the randomiza-
tion distribution induced by the sampling design.

2 Finite Population Causal Effects

In this section we rely on recent result in causal analysis to de-
fine counterfactual causal effects as finite population parame-
ters, which can then be estimated using variations of common
sampling estimators.

The N units of the finite population will be denoted
Y1,Y2,---,yn- A sample of n units from the population will
be denoted y1, y2, . . ., yn. As in most of our notation, we will
follow Cochran [1] and denote population parameters by cap-
ital letters and sample estimates of those parameters by lower-
case letters. Hence, the population mean and its sample esti-
mate will be denoted, respectively: Y = ZN y; and g =

Because stratified sampling is central to controlling con-
founding for causal inference, the following notation and its
extensions will be used throughout the remainder of the arti-
cle. The population of Nunits is divided into sub-populations
of N1, Na, ..., Nz units, respectively. These non-overlapping
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sub-populations partition the population, so that N; + Ny +
...+ Nz =N.

The sub-populations are referred to as strata. The suffix z
denotes the stratum and i the unit within the stratum. Thus,
N, denotes the total number of units within stratum z, n, the
total number of sampled units within stratum z, and y;,. the
value of the 5™ unit in stratum z. The following notation refers
to stratum z.

. SR
WZ:W E:E;yz\z

1 & 1 & _
gz:n_z;yi\z Sz2: Nz_lg(yﬂz_}/z)Q

Because we will be identifying causal effects within strata, we
will be comparing means and proportions of sub-populations
within the strata and across the strata. A stratum z of NV, units
is divided into sub-populationsof N, 1, N o, ..., N, x units,
respectively. These non-overlapping sub-populations partition
the stratum, sothat N, ; + N2+ ---+ N, x = N..

These sub-populations extending across the strata are re-
ferred to as domains. Note that if the domains did not extend
across the strata, then they would just create a finer stratifica-
tion and no additional notation would be required. The suffix
z denotes the stratum, = the domain and 7 the unit within the
domain of the stratum. Thus, IV, , denotes the total number
of units within stratum z and domain z, n , the total number
of sampled units within stratum z and domain z, and y;| . . the
value of the 7™ unit in stratum z and domain z. The following
notation all refers to stratum z and domain .

N o N »
_ 1 - 9 1 - _
}/z.,z = NZ@ ; Yi|z,x Sz.,z = m ;(yi\z,w - }/z.,z

In order to think about the causal effect in the population, it
will be helpful to define a joint distribution on all the popula-
tion variables. The population causal effect will be defined in
terms of a new post-intervention distribution of the variables in
the population. In other words, the causal effect of a variable
will be defined in terms of the distribution that would result if
an intervention in the population occurred and all units were
assigned a set value of the causal variable. The properties of
this distribution can be expressed in terms of population pa-
rameters, which will allow causal effects to be expressed in
terms of population parameters.

N
P(Z:z)—WZ*W PiZ=z|X=x)=W,,
N e
EY)=Y =) u E(Y|2)=Yzzﬁzyuz
i=1 7 =1

When considering a graphical model for the joint distribu-
tion of the population, the question of confounding must all
ways be addressed—are all the other relevant causal variables
that are also associated with the treatment properly included
in the population causal diagram? The goal of the study de-
sign is to include a sufficient number of variables in the causal
model for a conclusion of “No unmeasured confounders” to
be plausible.

Given a graphical model, population causal effects will be
derived as stratified sampling type estimators with the strata
determined by the confounders. The strata weights will be
determined by the post-intervention distribution of the con-
founders. Within the strata, there is no longer any confounding
of the causal effect, so the net causal effect will be the average
over all the strata.

Hence, stratification for causal analysis serves to control
for the confounding of the population causal effect, which
is an entirely different purpose than stratification for the pur-
pose of reducing the variance of a sample estimator—a com-
mon reason for stratification in sampling. However, as in-
ference of population causal effects requires non-confounded
and precise estimates of finite population parameters, strati-
fication for both purposes should and will occur. We will,
therefore, demonstrate that the population causal effect does
not change if additional variables that are not confounders are
stratified upon. In other words, while populating causal ef-
fects can be expressed in terms of stratified type estimators,
the causal effect does not depend on the stratification—only
the confounders.

Finally, we will see that population causal effects can also
be expressed equivalently as Horvitz-Thompson type estima-
tors. This form will prove to be a natural link to a new model-
dependent method for causal analysis recently proposed by

)2Robins—marginal structural models [3]. This link could also
be useful when a model is deemed necessary to adjust for non-
response bias in sampling. In fact, all of the myriad model-
dependent methods from causal analysis could be employed
for this purpose. However, the focus of this paper is on the use
of probability-sampling methods in causal inference in order
to avoid the reliance on modeling assumptions.

2.1 Stratified Sampling Type Estimators

Given a distribution for the finite population and an as-
sumed causal structure for the joint distribution, which can
be represented as a directed acyclic graph, causal effects
can be defined as finite population parameters. We will be-
gin with Pearl’s method, and later simply quote Robins’ G-
computation algorithm, which can be used to define causal
effects in longitudinal samples where there are time-varying
confounders.

Using Pearl’s method, causal effects can be derived quite
naturally using a graphical model for the joint distribution of
the population and a new definition of conditioning (interven-
ing) on the causal variable. Perl provides a rigorous justifica-
tion for the following heuristic:

1. Specify a directed acyclic graphical model for the joint
distribution of the relevant population variables.
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2. Derive the joint distribution of the variables using the
graphical structure.

Derive the joint distribution of the other variables after in-
tervening on the causal variables by deleting all the prob-
abilities or conditional probabilities of the causal vari-
ables.

Then, derive the distribution of the response variable after
intervening on the causal variable by integrating out all of
the confounding variables.

Finally, compute the expected value of the response vari-
able using its distribution after intervening on the causal
variables.

We will illustrate the method on the simple example from
the last section. The graphical model is depicted in figure 1.

Figure 1: Z Confounds the Effect of X on Y’

Given this joint distribution, we can derive the causal effect
of x as follows:

P(z,y,2) =P(y | #,2) P(z | 2) P(z)
P(y,z| &) =P(y | =,2)P(2)
z
y|x:ZP (y | z,z) P(z)

Now we can use the distribution of Y after intervening on
X to compute the average causal effect of X on Y as follows:

N:a
z=1 i=1

Now we simple translate this expression back into the fa-
miliar finite population notation using the distribution of the
finite population to yield:

z
E(Y |z)= ZE | z,2z)P :Z
z=1 z=1

Where Y; has the same interpretation as before—the aver-
age value of y in the population if everyone where given x.

If J}’v is not known, an unbiased estimate is provided by
==, Hence, in either case natural sample estimates are, re-

spectively:

z|2

Lo

Both of these estimates are unbiased estimates of the pop-
ulation causal effect. The proofs in the both cases rely on the
fact that, conditional on n, , , ., iS an unbiased estimate
of Y, . for simple or stratified random sampling. When NW
is not known, use the linearity of expectation and focus on
E (7=, %= ), which can be written

nz

E( E(yz T n

X/ nz NZ
[ m20)) = Ve E(7) = Vau

Hence, the finite population causal effect can be estimated
without bias using a slight variation on the common stratified
estimator for a domain mean. In the appendix we will derive
the approximate variances for these estimators.

The causal effect based on the joint distribution represented
by figure 1 can be estimated without confounding by a para-
metric model if the assumption of linearity holds. When there
are interactions there is not a meaningful definition of causal-
ity associated with a single parameter. The situation is anal-
ogous to the problem of interpreting domain means that vary
among the strata. However, model misspecification may be
even more difficult to identify, especially in smaller samples,
which is precisely when models are most relied upon.

Now we will consider the simplest causal structure where
the effect can not be estimated by the usual parametric mod-
els even under the assumption of linearity. This situation is
often referred to as time-varying confounders. In other words,
Z is both a confounder of the effect of X5 and on the causal
pathway of X;. Hence, none of the conventional methods of
control work in this situation. For a thorough discussion see
Robins refHernan00. The graphical model is depicted in fig-

P
R

Figure 2: The Graphical Model for Two Causal Variables

Given this joint distribution, we can derive the causal effect
of z as follows:

P(mlax%yaz) = P(y ‘ 33‘1,1'2,2) P(.%‘g | val) P(Z | 5131)
(

P(y,z | &1,22) = P(y | 21, 22,2) P(2 | x1)

z
ZPy|x1,xQ, 2)P(z | 1)
z=1

P(y | ijl,l'g

Now we can use the distribution of Y after intervening on
X7 and X to compute the average causal effect of X; and X5
onY as follows:

Z
E(Y | #1,8) =Y  E(Y |21,22,2)P(z | 1)
z=1

3099



ASA Section on Survey Research Methods

Now we simple translate this expression back into the fa-
miliar finite population notation using the distribution of the
finite population to yield:

zZ
E(Y | fCl,CCQ Z

Where Yz, &, has the same interpretation as before—the av-
erage value of y in the population if everyone where given x;
and g -

If

}/zml )

Oz, —~—+ is not known, an unbiased estimate is provided

by "n# This follows by observing that, conditioning on
1
Mgy, Nz 2 1S @ hyper-geometric random variable with expected
value = n, ]\][;:1'1 Hence,
nZ.CE 1 NZ x
E(—)= E(E —)) = —==
() = E(Elaa, [ ne) =) =

Depending on whether
estimates are, respectwely

N, —~~L is know or not, natural sample

Z

>

z=1

Z
Nzxy —

Zn

z=1

NZ Ig
Z2,T1,T
Nm 1,42

gil@z = and gil,iz =
T

Both of these estimates are unbiased estimates of the popula-
tion causal effect. The proofs in the both cases rely on the fact
that, conditional on n; 4, 25 + ¥z,4,,2, 1S an unbiased estimate

of Y, @1,25- IN the latter case, the proof also utilizes the fact

that ”; L s an unbiased estimate of J\j L Thus, the finite

populatlon causal effect can be estimated usmg a stratified es-
timator for a domain mean with the strata weights determined
by the post-intervention distribution of the confounder. In the
appendix we will derive the approximate variances for this es-
timator.

Now we will consider the most general causal structure ad-
dressed in this paper. For any type of longitudinal sampling
involving causal inference this is the appropriate model for
causal inference. All the causal variables are denoted by X ;;
all of the confounders are denoted by Z;; and the response
is denoted by Y. Besides the graphical structure, we must
assume that there are no unmeasured confounders. In other
words, all the Z’s that matter are included.

The causal effect for the graphical model depicted in fig-
ure 3 is known as Robin’s G-computation Algorithm [3].
Note that many of the causal arrows have been suppressed
for graphical clarity. Space permitting, there should be an ar-
row from every variable into Y and from every arrow with a
smaller subscript into Z;.

We will follow Robins and use the following notation z;, de-
notes (x1,xa, ..., xx), while the symbol ~ in Zj, still denotes
the causal effect under an intervention on (x1,xa,...,xg).
Robins G-computation algorithm expresses the average value
of Y under an intervention on z; in terms of common finite
population parameters.

E(Y | &) =Y E(Y | &k, 2k) P2k | Zr-1,Th-1)X X

z

Yz,x1,x0

P(Zl

Figure 3: The Graphical Model for Robins G-Computation
Algorithm

This formula could be derived using the method by Pearl just
as for the two previous causal structures considered.

Using the finite population distribution, the causal effect of
Zr on'Y can be written as follows:

Zsz 2

Even when all the

Nzk,ﬂﬂk 1
N=

Zk—1,Tk—1

N.,
N

X eoe X

are unknown then Y can be

Zp—1:Tk—1

estimated without blas by

E : Nz, Te_1
ka,Ik X oeee

Nzp_1,%k-1

M2y

n

X

The proof is similar to proof of unbiasedness for the previ-
ous two causal estimator considered. Conditional on nz, z,,
s,z 1S an unbiased estimate of Yz, ;.. Hence, the proof re-
lies on repeated application of the law of iterated expectation.
After conditioning on nz, z,, we are left with the problem of

computing

“(

We begin by conditioning on nz, , z, ., for then every frac-

tion is constant but the numerator of the first which, for fixed

x, is distributed as a hyper-geometric random variable with
Nepap_q

E(nzk;ik—l | nzk—hik—l) = Mz 1, @ Nzp 2 g Thus,

after conditioning the expectation above is reduced to the fol-

“( )

Hence, now condition on nz, , z, , and repeat the argument
above. Continue until £ = 1.

The same style of computing by successive conditioning
can be used to derive the approximate variance of the G-
computation algorithm estimator, 7;,. The details will be
sketched in the appendix.

In all of the estimators considered in this section, we con-
sidered strata where the weights were unknown. This would
be senseless for non-causal estimates because the estimator
would simply collapse back to the non-stratified form. How-
ever, for causal estimators stratification is essential to control
for confounding, but in the next section we shall see that strat-
jfication on variables that are not confounders will also lead to
causal estimators collapsing.

Nz, @1 NZp_1,T5_2 Nz

- X

Nzp_1,@h—1 Nzp_2,T1_2 n

Nglmik—l
N.

Zk—1,Tk—1

Nzp_1,@k—2 Nap_2,%_3 N2y

Nzp—2,@p—2 Nzx_3,%k_3 n
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2.2 Horvitz-Thompson Type Estimators and Marginal
Structural Models

Now we will give the motivation for the model-dependent
causal estimates. First consider rewriting the causal effect for
the simple causal structure depicted in figure 1 as follows

Z Nz 1 N 1 Z Nza y
. z i|z,x
E(YY | %)= Z Yiea Ny N TN Z N,
z=1 i=1 ZT z i=1 "N,
Z N:a N, Z
_ i Yilz,x _ i Z Yi|z,x
N Z =1 =)z N i—1 = Tl
1 N Yi|
1|1T
N <Z} w)
where 7. = % = P(z | z) is the proportion of unlts

in stratum z that are also in stratum z and 7,|; = Ty|.(;) |
just the same quantity with the dependence on z suppressed
Hence, the population causal effect is in the form of a Hansen-
Hurwitz type estimator, which can be interpreted as the aver-
age value of Y in the population if everyone were assigned x.
Weighting by the reciprocal of the probability of being in stra-
tum x—also know as the propensity score—serves to project
the value of y; | z,z to all of the units in stratum z that are
not also in . For example, if 7. = 1/2 for every x and y,
then each y;, will be counted twice in computing the average
for all those units in stratum z. If X 1 Z then 7, = %
then the formula simply reduces to the domain mean of «, for
in this case 7 is not a confounder.

Notice that we are summing over all the values of y; .. This
is because units with the same value of y; can have different
values of z and hence different propensity scores. Thus, writ-
ing the formula in the form of a Horvitz-Thompson estimator
would have required keeping the double sum because the de-
pendence on z could not have been suppressed within z(7)

The Hansen-Hurwitz type estimator makes it clear that the
causal effect of z; compared to xy can be estimated simply as

N'Il NIO
1 Z yz\wl yl‘wo
N im1 Mol = Twoli

To motivate Robins’ IPWT method, notice that this expres-
sion can be thought of as comparing simple averages in a
counterfactual population that was obtained from the origi-
nal population by inverse-propensity-score weighting. In this
counterfactual population the effect of X on Y is no longer
confounded and so can be considered as a simple difference in
domain averages.

The astute reader will notice that the estimator is not quite in
the right form for a domain mean. Shouldn’t the estimator be
divided by N, not N? We will see that the answer is “No”. In
the counterfactual population the sample size of both domain
xo and x1 is N. Let’ denote the new population, so that we

have

Ny

N =) N, = => N, =2N

Notice that in general, the 2 in the formula above will be
replaced by the number of levels of x—the effect of each level
is estimated as if we were able to intervene and assign that
level to the entire population, which is also why the num-
ber of levels multiplies the sample size. There is one coun-
terfactual population for each level of x. Also, the distribu-
tion of the confounder does not change in this counterfactual
population P(Z" = 2) = P(Z = z) Vz € Z. Further-
more, the distribution of Y | Z, X does not change since

P(Yl—y|ZI—ZXI—x) J\;\?lz.t:]\]]\g;zm
Finally in this new population it is easy to see that there is

no longer confounding since

N, N.,=N.

N —_
ON

1

2

N.
2N,

1

2

P(X') = and PIX'|Z") =

Ironically because there is no confounding in the counter-
factual population, parametric models for that population can
be used for causal inference. This was the great insight be-
hind the marginal structural models approach advocated by
Robins and his colleagues. cite In fact, this insight extends
to any statistical comparison between P(Y'|X’ = ;) and
P(Y’| X’ = 1), but unfortunately the estimation of standard
errors is complicated because even with simple random sam-
pling the counterfactual population has repeat measurements
onall units with 7, | ;) < 1, which is hopefully all units since
otherwise some 7,,.(;y = 0. Robins has proposed a GEE ap-
proach to handling this problem that can be implemented in
most statistical software.

So far we have only discussed the simplest causal structure,
however we can consider more complicated causal estimates
since the Hansen-Hurwitz form derived above can also be de-
rived for Robin’s G-computation algorithm. Hence, the same
approach above applied to figure 3 yields,

NZ

where T2k (i) = P(l‘k | Zk,fkfl) P(Cckfl | Zkfl,fkfg) X
- X P(z1 | 2z1) Thus, marginal structural models fit on these
counterfactual populations will also have a causal interpreta-
tion.
For example, consider a density function fy, then 6 can
be defined as a finite population causal parameter using the
pseudo-log-likelihood

E(Y | #4) = yl‘”

wk\zk

N
i < 1Og f9 yz|x;C )
=1 i=1  "@k|Z()
Where 6 solves w = 0.
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Finally, note that by writing the population causal effect in
this manner, the form of the estimator with any unequal prob-
ability of selection sampling is readily apparent. The sample
estimate would have the identical form except that the propen-
sity score would be multiplied by the probability of selection.

3 Proofs of Approximate Variances

We begin by considering the simplest causal estimators corre-
sponding to figure 1

Z

ZNyzm and gizz

z=1

Ny _
—Yzz
n

In the first equation above we assume that NW is known, which
is the usual case in stratified sampling. If n, , is known then
the variance is straightforward to compute, so we will only
consider the case that n, ,, is unknown. However there are still
two sub-cases to consider. If n, is known then to the order %

we get
()

where . = P(z | 2) = % is the propensity score as be-
fore. Note that 7, .n. is the expected sample size in strata z,
and if 7, = 1 then the formula reduces to the usual formula
52
V(@) ~ (1= )Y W=
2 ;

for stratified sampling.
When n, is not known then to the order
1 - Hx,z
(1 5e)
2T nﬂ'z,z
where 70, . = P(x,2) 2o = N (

i.e. every unit in strata z has x) then the formula reduces to the
formula for the variance of the post-stratification estimator [9,
page 124].

Now we consider a case that does not have a counterpart
in traditional sampling theory—unknown strata weights. It
would be meaningless to estimate the strata weights from the
same sample that the domain means were estimated from be-
cause the estimator would just collapse back to the form for
simple random sampling. In fact that will only happen with
the causal estimator whenever the causal variable x occurs for
every unit in the population, for then there is no counterfactual
estimate necessary and we are just computing the variance of
y Hence, when W, = % is not known, then to the order %

2

we get
S 1—m
~(1- =2 (1
1w > (1 )

nﬂ—m,z
Notice that the formula will collapse to the variance under
simple random sampling precisely when N, , = N..
We will sketch the proof for this last case. Begin by condi-
tioning on n, , Vz € Z and observe that for n, ;, > 0 (which
we assume is a set with probability very close to 1)
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V(7z)

z
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x|z
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Nzx
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2
) (52)
Now integrate over the n, , > 0 ( the variance is zero oth-
erwise) to yield
)-&(

=S (=

We will use a well-known Taylor series approximation to
estimate the first expectation. To begin we condition on n,

V(s | n.aVz€2) =Y (

2 2

Nz,m

nZI

2

n; N,

Nz,m

n,
1—- 2
N,

1N

U Nz,m

))

Nzx

2
z

Nz x

n

and note that then n, ,, has a hyper-geometric distribution with
mean 222 Then we use a second order Taylor series approx-
imation of L to yield
1 N

E .| ~n? ——= -1

() =t G s [ )
Now integrate out the n, to get

N, N N, N, n

E NP === (1= 1)

( ) "NN.. TN, {N ] N
Substituting this expression for the first expectation along with
the following simple approximation for the second expecta-
tion, E (%)2 ~ (NW)2 (1+ 1), into the variance equation
above yields

N.1—f [ N, 1—f
=Tt v () ()]
2 z,w 1_7Tz\z

B f)ng () <1 * 1) )

In the general case , after conditioning on nz, z, to derive
an expression for the variance, we are left with the problem of

computing

2 2 9
(i ) () e )
We will focus on the first two terms in the expectation and
show how to reduce the problem by one term. The method we
use can be repeated until no random terms remain. We will

need the following approximation, to the order n=2,

1

Nzk, T

Nz Tr—1 Nz 1,Tp—2 N2y

Nz 1,Tk—1 Nzp_2,Tr_2 n

1
E |n5k-jk—1 ~
Nzk, T
2
1 Nzkvxkl_’_( 1 ) Ngkvik—l |:Nzk796k1 1}
Nzg,Tr—1 Nik-,fk Nz, T 1 Nik-,fk kayfk

which also holds with & replaced by & — 1, of course.
And we need the simple approximation, also to the order

n72,
| nzklyxk2) ~

1
(G
(ngk—hik—l)Q

2 2
( 1 ) (Nzkl,wkz)
Nzp_1,Zp—2 Ngk—l-jk—l
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Hence, now we are ready to estimate the first two terms in the
expectation above. We begin by conditioningon nz, z, ,, for
then every fraction is constant but the first which, for fixed
x, is distributed as a hyper-geometric random variable with

E(ngk_jk | ngk7jk71) =Nz, Zith . ThUS,

TRl Nzpzp,_y

2
E (nzk;ik—l) |7’L* B ~n. - Nzk;ik—l_i_
Nz, 2, ZksTh—1 2k Th—1 N:, =,
Ngk;ik—l |:Nzk;1k1 _ 1:|
ka@k Nik,ik
Next conditionon nz, , z,_,,and compute
Nzk;ik—l

E(n5k71k71 | ngk—l-jk—l) =Nz 1,Tk—1 N

Zk—1,Tk—1

Thus, by successive conditioning

2
E ( B ~ ) |n2k—17£k71 ~
nzk—lazk—l

1 NE Nik,fk,1
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2
+( 1 ) Nz oz |:Nzk-,1k1 _1:|

Nz Nz
Now we condition on nz,_, z,_, and use the approximations
above to yield

1
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At this point, we are back where we started except that k
has been reduced by one, so if we continue we will be able
to estimate the entire expectation and hence the variance of
any G-computation causal estimator from a stratified or simple
random sample.

We will illustrate the method on the relatively simple causal
estimator for the graphical model depicted in figure 2. \We saw
that a causal estimator in that case was given by

Z
Nzxy

= E n Yz,x1,20

z=1 z1

Hence, in order to approximate the variance we must be able to

2
estimate E( 1 ( ) |nz],wo) realizing that z =

2,2

Nzy,2

nz

Z2, Nz 5o = M, Nz 3, = Ny, and S0 on. Hence making these
substitutions we get

1 N n 1\* N N 1 Nz z, Nz z,
TLle n Nz Nz Nfl NE,J;«Z
1 N \°N:z, [N:z,

QONCAE SR

Substituting into the variance equation yields the following
approximate variance
2
S: 2, (1 N 1
Tzg,zN

Finally, it should be noted that this method of proof will
not work for unequal probability sampling because after con-
ditioning the distribution of the remaining sample sizes and
domain means depends on the sample. Hence, the conditional
variance formula used above no longer holds. Though a Tay-
lor series expansion of the estimator itself could be employed
in the simpler cases, the details are much more complicated
because covariance terms must be estimated as well. How-
ever, for the Horvitz-Thompson type estimators considered in
this paper, we saw that they had equivalent representations as
stratified sampling type estimators. Thus, as long as the sam-
pling method is simple or stratified random sampling and the
sample sizes are large, these approximate variance formulas
can be used for both types of estimators.
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