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Abstract 
 

For estimation of parameters of a multi-level model fitted 
to hierarchical survey data, the standard assumptions are 
that the survey weights are available at all sampling 
levels and that the hierarchy of sampling levels coincides 
with the hierarchy used in modeling. Under these two 
assumptions, we propose two bootstrap methods for the 
variance estimation of the estimated parameters in the 
multi-level model. These methods are essentially 
modifications of the well-known survey bootstrap 
methods of Rao and Wu (1988). In a simulation study 
designed according to the Canadian Workplace and 
Employee Survey (CWES), we study and compare the 
properties of these methods, and in turn we compare them 
to the more prevalent Taylor linearization method. 
  
Keywords: Multi-stage design, Informative sampling, 
Survey weights, Variance components, Taylor 
linearization 
 

1. Introduction 
 
There has been an increased interest in fitting the multi-
level models to survey data in recent years. Problems 
related to the use of survey weights in estimation of 
model parameters were addressed by several authors: 
Graubard and Korn (1996), Pfeffermann et al. (1998), 
Korn and Graubard (2003), Kovacevic and Rai (1999, 
2003), Huang and Hidiroglou (2003), You, Rao and 
Kovacevic (2003), Asparouhov (2004, 2006), Grilli and 
Pratesi (2004), to mention only few.  Some of these 
papers also include suggestions for standard error 
estimation. Pfeffermann et al. (1998) consider a robust 
“sandwich” estimator, a variant of the Taylor 
linearization method. Similarly Asparouhov (2004, 2006) 
advocates the use of the “sandwich” estimator. The multi-
level software that can currently handle survey data 
(Mplus and HLM) also favour the linearization method. 
Korn and Graubard (2003) suggest variance estimation 
based on resampling the PSUs, in particular the delete 
one PSU jackknife method. Grilli and Pratesi (2004) 
describe a possible two-stage bootstrap, but use only the 
PSU bootstrap for variance estimation when fitting 
multilevel ordinal and binary models. None of these 
papers, with the exception of Grilli and Pratesi (2004), 
however, studies the properties of any of the resampling 
methods. 

Bootstrapping is a variance estimation technique well 
researched and often applied for bias reduction and 
variance estimation in multi-level models by the model-
based researchers. The variants of the model-based 
bootstrap method used in multi-level inference can be 
categorized as: parametric, residual, and cases bootstrap. 
The parametric bootstrap simulates level-1 and level-2 
residuals from an estimated model distribution. For 
example, for linear models it is a normal distribution with 
a zero mean and an estimated variance (Goldstein, 1995). 
The residual bootstrap resamples the estimated residuals 
at both levels, while keeping the explanatory variable 
fixed (Carpenter et al., 2003). The cases bootstrap 
resamples entire cases of response variables together with 
their explanatory variables. Resampling may occur at 
different levels, separately (only at one level) or jointly 
(resampling at all levels). For a recent review of 
bootstrapping in multilevel models see van der Leeden, 
Meijer and Busing (2005). 
 
In this paper, we focus on design-based variance 
estimation by using the modified rescaled bootstrap 
method of Rao, Wu and Yue (1992). As an alternative, 
we investigate a two-stage rescaled bootstrap method 
(Rao and Wu, 1988, Davison and Hinkley, 1997). Our 
research is motivated by the practical needs of analysts of 
survey data who usually rely on the weights prepared for 
them by survey statisticians. The methods studied allow 
computation of bootstrap weights and make estimation of 
the variance and the bias correction of the estimates of 
model parameters straightforward.   
 
In a limited simulation study motivated by the Canadian 
Workplace and Employees Survey (CWES), and 
designed according to a simulation study presented in 
Pfeffermann et al. (1998), we examine the properties of 
the proposed bootstrap methods with an emphasis on their 
performance for inference about the variance 
components.  We also compare these bootstrap methods 
to the linearized (sandwich) estimator. 
 
The outline of the paper is as follows. In Section 2 we 
recognize that most of data used for multi-level analysis 
are obtained by sample surveys based on multi-stage 
sample designs. We discuss some sample design related 
issues, such as weighting, clustering, intraclass 
correlation and informativeness. Section 3 presents the 
multi-level linear model as a linear mixed model, and in 
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particular, discusses a random intercept model. We 
briefly review some of the methods available for 
estimation of the multi-level model parameters and 
discuss their merits and problems.  We describe the two 
design-based bootstrap methods for resampling of the 
clustered survey data in Section 4.  In Section 5 we 
describe in detail the simulation study conducted to 
compare the performances of the two bootstrap methods 
as well as the performance of the linearization method.  
Our findings are summarized and some limited 
conclusions are derived in the last section of the paper. 
 

2. Multi-Stage Sample Designs 
 
A typical hierarchical data set analysed by fitting multi-
level models is obtained by a survey based on a multi-
stage sample design. Without loss of generality, we will 
consider a two-stage design. The first stage sample, 1s , 
consists of m clusters drawn from a population of M 
clusters with, most likely, unequal probabilities of 
selection: { }1scrobPc ∈=π . Note that the clusters are 
sometimes denoted as primary sampling units (PSU), 
sometimes as groups or level-2 units. These clusters are 
possibly stratified. The probability weights at the first 
stage are simply the inverses of the selection 
probabilities: ccd π/1= . It may also happen, although 
rarely, that the weights at this level are calibrated, i.e., 

cd  becomes cw , so that the calibrated weights add up to 
the total number of clusters in the population: 

Mw
m

c
c =∑

=1
. From a sampled cluster c, containing cN  

individuals (elements, level-1 units), a sample of cn  
individuals is drawn usually with equal probabilities of 
selection, ccci Nn /| =π . The total (unconditional) 

probability of inclusion into the sample of the ith element 
from the cth cluster is ccici πππ |= . The corresponding 

probability weights are ,/1 || cicid π=  and cicid π/1= . 

These probability weights are usually additionally 
modified to adjust for nonresponse, post-stratification, 
calibration, outliers, etc., so that cid transforms into 

ciw , and cid  into ciw . In this paper we assume that 

these adjustments do not affect the cluster weights cw . 
 
Ignoring the weights when fitting a multi-level model to 
survey data leads to biased estimation of the model 
parameters when the sampling is informative, i.e., when 
the distribution of the sampled units, based on the sample 
design, is different from the distribution that would be 
obtained by sampling directly from the model. Also, the 
presence of clustering implies a positive intraclass 
correlation between the elements in the same cluster, and 

has to be accounted for in estimation of standard errors 
and in test procedures. One of the efficient ways of 
accounting for the sample design when analysing survey 
data is to use the design-based approach. 
 
In this paper we assume that the sample design hierarchy 
coincides with the model hierarchy and that the 
probability weights are available at all levels of the model 
hierarchy.  
 

3. Multi-Level Linear Model 
 
A multi-level linear model can be represented as a linear 
mixed model 
 

ccccc evy ++= ZX β , Mc ,...,1=  
 
where cy  is an )1( ×cN  vector of outcome variable, cX  

and cZ  are known )( pNc ×  and )( qNc ×  covariate 

matrices, β  is a )1( ×p  vector of fixed effects, cv  is a 

)1( ×q  vector of random effects:  ))(,0(~ νθν GN
ind

c , 

where )( νθG  is a covariance matrix dependant on up to 

2/)1( +qq  unknown dispersion parameters νθ , and ce  

is an )1( ×cN  vector of within cluster errors 

),0(~ 2
cec Ne Iσ . Here cI denotes the identity matrix. 

Together, },{ 2
eσθθ ν=  are the dispersion parameters. 

 
The random part of the model is: 
 

ccc ev +Z ))(0(~ θcN Σ, , 
 

where ceccc IZGZΣ
2)()( σθθ ν +′= .  

 
In the model-based context, completely ignoring the 
sample design information, the fixed effects  β  are 
estimated by ML (or GLS) as 
 

∑ ′∑ ′= −−−

c
ccc

c
ccc y11

ΣX)XΣX( 1β̂ , 

assuming that )(θcc ΣΣ =  is known. Some known large 

sample properties of β̂  are: i) If θ  is consistently 

estimated by θ̂ , then using )ˆ(θΣ  in the ML (GLS) 

estimator β̂ , results in an asymptotically efficient 

estimate; ii) β̂  is model-unbiased for any well-defined 

working 0Σ , but possibly inefficient. 
 
For estimation of dispersion parameters θ , there are 
several methods available in the literature. Some of them, 
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such as ML, REML, IGLS, RIGLS, are based on 
alternating between estimation of )(θβ and )(βθ . Others 
include the method of moments, the method of fitting the 
constants, etc.  
 
In this paper we focus on the random intercept model, a 
relatively simple two-level model that is prevalent in 
practice,:  

ccccc eujy ++= βX , Mc ,...,1=  (1) 
 

where )1,...,1( ′=cj , ),0(~ 2
uc Nu σ , ),0(~ 2

cece Iσ . 
The variance of the random part of the model is 

  ceccuc σjjσ IΣ
22 +′= . 

Its inverse has a convenient form  

{ } 21 // ecccccc σNjj ′−=− τIΣ , 

where [ ]222 // uceuc σNσσ +=τ . The finite population 

parameters Nβ  can be defined, for example, as the GLS 

estimate of the model parameters β , i.e., as a solution of 
the normal equation: 
 

[ ] 0)(
1

=∑ −−−′
=

M

c
NcccNccc yy βτβ XXX ,  (2) 

where cX  is the matrix of the means of the X variables 

for the cth cluster repeated cN  times (i.e., 

),...,( ′= ccc xxX  ), and cy  is the vector with the mean of 

the response variable repeated cN times (i.e., 

),...,( ′= ccc yyy ). 
 
For a model fitted to survey data, the estimate of β , as 

well as of Nβ  , β̂ is obtained from the weighted normal 
equation (2), and is equal to 

∑∑ ′⎥
⎦

⎤
⎢
⎣

⎡ ′=
−

c
ccc

c
ccc yWDDWX ˆˆˆ

1

β , 

where  cccc XXD ˆˆˆ τ−= , ),...,( 1 ccncc wwdiagW = ,  

( )222 ˆˆ/ˆ/ˆˆ uceuc σNσσ +=τ , ∑=
i

cic wN̂ , and 

)ˆ,...,ˆ(ˆ ′= ccc xxX  is the pnc ×  matrix of estimated cluster 

means of X variables repeated cn times:   

∑∑∑∑
∈∈∈∈

==
ci

cici
ci

ci
ci

cici
ci

cic wXwwXwx //ˆ . 

Similarly,  cŷ , needed for the weighted normal equation,  

is the 1×cn vector containing the cluster mean for the 
response variable,  

∑∑∑∑

∈∈∈∈
==

ci
ci

ci
cici

ci
ci

ci
cicic wywwywy //ˆ  

 

Note that even if 2
uσ  and 2

eσ  are assumed known, the 

estimation of β  still requires knowledge of the within 

cluster weight, ciw , since the calculation of cN̂  requires 

ciw . All other weighting is based on the joint weights 

ciw . An analyst usually has two pieces of sample-design 
information at the element level: the (joint) final weight, 

ciw , and a cluster indicator 1=ciI  if ci ∈ , otherwise 

0=ciI . Having only these two pieces of information one 
can still estimate consistently the fixed parameters 
assuming a working covariance structure with 0=cτ . 

However, any estimation of the dispersion parameters 2
uσ  

and 2
eσ , using only these two pieces of information, can 

be seriously biased.   
 
For estimation of dispersion parameters θ  there are 
several methods proposed in the recent literature. One of 
them, the Probability-Weighted IGLS (Pfeffermann, et 
al., 1998) is the IGLS adapted to complex sample designs 
by the proper weighting. This method iterates between 

estimation of β̂  and θ̂  in two weighted GLS regressions. 
From the first regression, the “raw” residuals 

β̂~
cicici xyy ′−=  are computed. Then, a cross-product 

matrix of yy ′~~ , written in vector form { }yy ′~~ , is 
considered as a response vector in the second GLS 
equation, where θ  is a vector of unknown regression 
coefficients. The procedure alternates between the two 

regressions until convergence. Estimates θ̂  are consistent 
when sample and population sizes mutually increase. A 
reduction of the small-sample bias in estimation of the 
variance components by the PWIGLS method, 

particularly for 2
eσ , was addressed in the paper by 

proposing the scaling of element weights so that the 
scaled weights sum up to the within-cluster sample size 
or to the within-cluster effective sample size. 
  
Other proposed methods for variance components 
estimation include the method of moments (MM) (Korn 
and Graubard, 2003), the Pseudo-BLUP  (Huang and 
Hidiroglou, 2003) with the application of a weighted 
version of Henderson’s method III for estimation of 
variance components, the Pseudo-EBLUP (You and Rao, 
2002) which uses the unweighted Henderson’s method, 
the Iterative Weighted Estimating Equations (You, Rao, 
Kovacevic, 2003) which uses iterative updating of the 
weighted Henderson’s method III, the Multilevel Pseudo 
Maximum Likelihood (MPML) (Asparouhov, 2006) 
which uses the weighted maximum likelihood equations. 
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Based on a chosen estimation method (PWIGLS, PML, 

MM, etc.) the estimates β̂  and θ̂  are ultimately obtained 
as functions (although not in a closed form) of the 
observed  y, x and z variables ( sss ZXy ,, ), and the 

weights at different levels { } { } { }cicci www ,, , i.e., 

{ } { } { }( )ciccisss wwwZXy ,,,,,ˆˆ ββ = , and 

 { } { } { }( )ciccisss wwwZXy ,,,,,ˆˆ θθ = . 

 
4. Variance Estimation 

 
4.1 Bootstrap Procedures  
 
Without loss of generality, we present two bootstrap 
procedures for a simplified situation where there is no 
stratification of the clusters. An extension to a stratified 
population is straightforward.  The original sample has m 
clusters drawn according to a sample design )(1 sp . From 

each sampled cluster c, a subsample cs1 of cn elements is 

drawn by a sample design )(2 sp .  We assume that the 
probability weights are known at different levels: cluster 
weights cd , the within-cluster weights cid , and the joint 

weights cicci ddd = .  Further, we assume that the 

weight adjustments done to the final weights are not 
affected the cluster weights. 
 
Bootstrap Procedure 1 (BS1): The Rescaled Bootstrap 
Method (Rao, Wu, Yue, 1992) modified to suit 
hierarchical data: 
   
A bootstrap replicate b is obtained as follows: 
 
i) A SRSWR of m-1 clusters is drawn. A counter 

)(b
ct counts the number of times that the c-th cluster is 

included in the bootstrap replicate b.  
 
ii) The cluster weights cd are rescaled to obtain the 
cluster bootstrap weights: 

)()(

1
b

cc
b

c t
m

m
dd

−
= . 

If any adjustment was done to cd it should be applied to 
)(b

cd too, in which case )(b
cd becomes )(b

cw .  
 
iii) The unadjusted joint bootstrap weights are calculated 
as  

ci
b

c
b

ci dwd )()( = . 

iv) The adjusted joint bootstrap weights, )(b
ciw , are 

obtained from )(b
cid  by applying all the adjustments made 

in the process of calculating the full sample joint survey 
weights. 
 

v) The within-cluster bootstrap weight, )(b
ci

w , is then 

calculated as: 
)()()( / b

c
b

ci
b
ci

www =  

 
Steps i) - v) are repeated many times to obtain many 
bootstrap replicates.  
 
This bootstrap procedure preserves the exact hierarchical 
structure of the original sample and is relatively simple 
computationally.  If there is no adjustment done to the 
joint bootstrap weights then the within-cluster bootstrap 
weights remain equal to the original full sample within-

cluster weight, cici
b
ci

dww ==)( . That is why this 

procedure may not be very accurate in capturing the 
variability of estimates that are “within-cluster 

dependent”, such as 2ˆeσ , even when the within-cluster 
sample size is large. Also, if the bootstrap procedure is to 
be used for the bias correction, it may not be very 
efficient in removing the bias for these estimates.    
 
Note that this is the same procedure as the original Rao, 
Wu, Yue (1992) with an additional calculation of the 
weights at different levels. 
 
Bootstrap Procedure 2 (BS2): A Two-stage Bootstrap 
for Hierarchical Data. The procedure, originally proposed 
by  Rao and Wu (1988), is modified to suit hierarchical 
data. Note that a similar procedure is given by Davison 
and Hinkley (1997, page 100) in a model-based context 
(thus without weighting). 
 
The first two steps are identical to the steps i) and ii) in 
the Bootstrap Procedure 1.  
 
iii) A SRSWR of 1−cn  elements is drawn from a 
cluster selected in Step i). Independent selections are 
made from the same cluster chosen more than once.  A 

counter )(b
ci

t  counts the total number of times that the i-th 

element is resampled. 
 
iv) The within-cluster probability weights are rescaled 
first to obtain the unadjusted within-cluster bootstrap 
weights as  
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)()()( /
1

b
c

b
ci

c

c
ci

b
ci

tt
n

n
dd

−
=  

 
v) The unadjusted joint bootstrap weights are   

)()()( b
ci

b
c

b
ci dwd = . 

vi) The adjusted joint bootstrap weights, )(b
ciw , are  

obtained from )(b
cid  after applying all the same 

adjustments done in the process of calculating the original 
full sample joint survey weights.  
 
vii) The within-cluster bootstrap weights are then 
calculated as: 
 

)()()( / b
c

b
ci

b
ci

www =  

 
Steps i) -vii) are repeated many times. 
 
This procedure also preserves the hierarchical structure of 
the original sample. It should give approximately the 
same results as the first procedure for the estimates whose 
variability is mainly due to the sampling of clusters. 
However, it should be more accurate in estimating the 
variability of “within-cluster dependent” estimates and 
more efficient in removing their biases. It is important to 
emphasize that it may encounter computational problems 
when within-cluster sample sizes are small, and that it is 
computationally more intense than the first procedure. 
 
From either of the above procedures, an analytic file 
which contains B sets of bootstrap weights at each level 
and the joint bootstrap weights along with the original 
full sample weights and the survey variables is produced: 

sciBreplicate

B
ci

B
c

B
ci

replicate

cicci

samplefull

ciccicicici

wwwwww

wwwzxy

Data

∈⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧ ′′

=
),,,...,,,

,,,,,,(

)()()(

1

)1()1()1(

444 3444 2144 344 21

4434421

 

 
Estimates of ),( ′′′= θβξ  are obtained using the full 
sample weights as well as using the bootstrap weights, 

yielding )ˆ,ˆ(ˆ ′′′= θβξ and 
′
⎟
⎠

⎞
⎜
⎝

⎛ ′′
= )()()( ˆ,ˆˆ bbb θβξ , 

Bb ,...,1= . The bootstrap estimate of the variance matrix 

of estimates of fixed effects β̂  and of dispersion 

parameters θ̂   is 

∑
=

′−−=
B

b

bb
BS BV

1

)()( /)ˆˆ)(ˆˆ()ˆ(ˆ ξξξξξ  

 
4.2 Taylor Linearization 
 
For standard error estimation of both the regression and 
the dispersion parameters, Pfeffermann et al. (1998) 
consider a robust sandwich estimator, a variant of the 
Taylor linearization method. Similarly, Asparouhov 
(2004, 2006) advocates the use of the robust sandwich 
estimator.  This estimator considers only the variation 
among the clusters (level-2) units. Assuming a small 
sample fraction of clusters Mm / , but with m still large 
(more than 50), and when the weights are the probability 
weights, the design-based Taylor linearization variance 

estimator for β̂  proved to be a good estimator 
(Pfeffermann et al., 1998). In the case of the random 
intercept model, the sandwich estimator takes the 
following form:  

1

1

1 ˆ)ˆ(ˆˆˆ)ˆ(ˆ −

=

−

⎭
⎬
⎫

⎩
⎨
⎧
∑ ′−′= JWDJ
m

c
ccccp XyVV ββ  (3) 

where ∑ ′=
=

m

c
ccc

1

ˆˆ DWXJ , cccc XXD ˆˆˆ τ−= , and {}.ˆ
pV  is 

the design-based covariance estimator for the vector of 
totals of the form:  

pk

m

c

n

i

p

j
jjcicikcckcici

c
XyXXw

,...11 1 1
,,, )ˆ)(ˆˆ(

== = = ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
∑ ∑ ∑−− βτ  

Note that in the above expression both β̂  and τ̂  are the 
estimates from the last iteration. 
 

Similarly, the robust sandwich variance estimator for θ̂ , 
following Pfeffermann et al. (1998), is obtained in a 
closed form.  
 
Typically, the “sandwich” estimator (3) underestimates 

the design-based standard errors of β̂  and θ̂  due to the 
plug-in principle for the “nuisance” parameters, and also  
due to a possible ignoring of the stochastic adjustments to 
the weights, such as the unit non-response, 
poststratification, calibration, etc.  
 

5. Simulation Study 
 
In order to make an empirical assessment of the 
properties of the two proposed bootstrap procedures and 
to compare them to the Taylor linearization method, we 
carried out a simulation study. We simulated a model of 
the relationship between the hourly wage and several 
factors associated with employees and employers, 
motivated by a model fitted to data from the 1999 CWES 
as presented in Drolet (2002).  
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The simulated model expresses the logarithm of hourly 
wage (hwg) as a linear function of the employee’s years 
of experience (yexp, continuous variable), the highest 
education (hedu, 3 categories), and the occupation group 
(ocgrp, 3 categories). The model also uses a binary 
variable (nprft) at the level of employer (company) 
indicating whether or not the company is non-profit. The 
model has the  form of a linear random intercept model: 
 

ciccici euhwg +++= µβ0)log( , 
where 

{ } { }
{ } { }21

21

4241

3231

21

=⋅+=⋅+
=⋅+=⋅+

⋅+⋅=

cici

cici

cicci

ocpgrIocpgrI

heduIheduI

xpyenprftµ

ββ
ββ

ββ
 (4) 

 

)05.0,0(~ 2 =uc Nu σ , )1.0,0(~ 2 =eci Ne σ , 

cNiMc ,...,1,,...,1 == . 
 
The variables used in the model were generated using the 
joint distributions and parameters estimated from the 
CWES. 
 
5.1 Simulation of a Two-level Finite Population 
 
First, we generated a finite population of M=1000 clusters 
(level-2 units). The cluster sizes were obtained as a 
function of cluster random effects cu , (see Pfeffermann 
et al., 1998), so that 

[ ])5.2exp(100 cc uIntegerN = , 

where )05.0,0(~ 2 =uc Nu σ . In this way we allowed for 
the possibility of informative sampling since the same 
random effects, cu , will be used for generation of the 
response variable hwg using model (4). The resulting 
cluster sizes took values in the interval (30, 400) with the 
mean size about 140, determining the total size of the 
population of individuals (level-1 units) of approximately 

000,140
1000

1
≈∑

=c
cN .  Then, M values of the cluster-level 

variable nprft were simulated from its distribution 
estimated from the CWES. Thus the population of 
clusters is created as { } Mcccc nprftNu ,....,1,, = . 

 
Next, we generated a population of individuals in the 

following way: (i) ∑=
=

1000

1c
cNN values of X covariates 

were first simulated from their joint distributions 
estimated from the CWES.  Also, we simulated N values 

of e from )1.0,0(~ 2 =eNe σ . (ii) For each c, 

c=1,…,1000, we generated cN values of the response 

variable hwg according to model (4) using the same cu  

that was used to generate the cluster size cN . The 

coefficients ),,,,,,( 42413231210 ββββββββ =  were 
adapted from the estimates obtained by fitting the same 
model to the CWES data, thus we used    

)1.0,4.0,05.0,15.0,01.0,2.0,5.2( −−=β . (iii) In 
addition, we stratified the individuals in each cluster into 
two strata according to the sign of the corresponding 

cie value. This stratification will later allow us to 
oversample from one stratum to reinforce the 
informativeness of the sampling design (see Pfefferman 
et al., 1998). 
 
5.2 Sample Design 
  
We considered a two-stage sample design. Clusters were 
selected with a probability proportional to size ( cN ) 
without replacement using Sampford’s method as 
implemented in SAS procedure Surveyselect. We drew 
clusters into samples of two different sizes, m=50 and 
m=100. The cluster probability weights were adjusted so 
that they added up to the total number of clusters in the 
population. The individuals were selected by simple 
random sampling without replacement from two strata 
within each of the sampled clusters. We used two sample 
sizes: (i) fixed size of 8=cn , and (ii) variable size 

{ }cc Nn 1.0,6max= . The sample of individuals was 
allocated (25%, 75%) in two strata. The resulting total 
sample sizes  were 400 and 800 individuals for the fixed 
within-cluster sample size, and about 700 and 1400 in the 
case of variable within-cluster sample size.  
 
We also imposed a poststratification of individuals into 
four poststrata according to two binary variables that 
were generated along with the variables used in the 
model. These two variables were sex and union 
(membership in trade-union).  The poststratification was 
applied to the joint weights. 
 
The sampling weights were calculated according to the 
sample design and the poststratification. They were 
produced at both levels. In addition to the original 
weights, we calculated the scaled within-cluster weights 
using the scaling method 2 of Pfefferman et al. (1998):  

∑
=

i
ci

c
cici w

n
ww~ . (5) 

For each sample we produced B=200 bootstrap replicates 
using the Bootstrap Method 1 and B=200 bootstrap 
replicates using the Bootstrap Method 2. The resulting 
bootstrap weights were obtained as described in Section 
4.1.  
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5.3 Monte Carlo Setup 
 
Considering the two sizes of cluster sample (50 and 100) 
and two types of within-cluster sample sizes (fixed and 
variable) we had four different sample settings. We 
selected 300 samples from the finite population using 
each of these four settings. From each sample we 
estimated fixed and dispersion model parameters by using 
the PWIGLS method of Pfeffermann et al., 1998. For 
estimation we used the original (unscaled) weights, and 
the scaled weights (5). The standard errors were 
estimated using the two bootstrap methods and the Taylor 
linearization method.  All variance estimation methods 
were applied with the unscaled and scaled weights. All 
programming was done using SAS IML. 
 
5.4 Performance Measures for Variance Estimation 
Methods 
 
The methods were compared with respect to accuracy, 
stability and the coverage properties of the resulting 
interval estimates. The measures used for the 
comparisons are given below.  Here, ξ  is used to 

represent any one of the seven β  regression coefficients 

or the two dispersion parameters, ),( 22
ue σσθ = . 

Naturally, ξ̂  is used to denote an estimate of ξ , in 

general, while kξ̂   denotes the estimate of kξ  based on 
the kth sample. The letter M is used to denote any one of 
the variance estimation methods being compared {BS1, 
BS2, Taylor, BS1_s, BS2_s, Taylor_s}.  Here ‘_s’ 
denotes the use of the scaled weights. Finally, K denotes 
the number of samples being used (K= 300). 
 
The accuracy of method M is assessed by the relative bias 
of the resulting bootstrap variance estimates:  
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The empirical mean square error (EMSE) is calculated 
over the K independent samples as 
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)ˆ( ξξξ .  It is considered as a ‘true’ 

MSE for the comparison of the methods.  The smaller the 
relative bias the more accurate is the method for variance 
estimation.  A negative bias would mean that the method 
underestimates the variance leading to overstated 
precision and significance. 
 
The stability method M is quantified by the Relative Root 
Mean Square Error of the estimated variance: 

∑ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

K

k

kM

EMSE

V

K
rmserel

2

1
)ˆ(

)ˆ(ˆ1
)ˆ(.

ξ
ξξ . 

Certainly, the more stable method will have the smaller 
rel.rmse. 
  
The empirical coverage rates for method M are  computed 
in order to assess the coverage properties of normal-
theory confidence intervals: 
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We report the coverage rates for nominal confidence of 
100(1-α )%=90 percent. In the above expression I{a}=1 
if a is true, and 0 otherwise, and  2/αz  is the upper α/2th 
standard normal percentile. Upper and lower tail error 
rates were also computed but are not reported here. 
 
5.5 Results of Simulation Study 
 
The graphical presentations of the results of the 
comparisons of the three methods for variance estimation, 
using the unscaled and scaled weights, are given in the 
Appendix.  They are given in three charts referring to the 
accuracy (Chart 1), stability (Chart 2) and coverage 
properties (Chart 3) of the resulting variance estimates. 
Each chart has four graphs representing the four different 
arrangements of sample sizes. Each variance method is 
represented by a different color, and one solid and one 
dashed line, and a different symbol. The solid line 
corresponds to the use of original (unscaled) weights 
while the dashed line indicates the use of scaled (5) 
weights. In each graph, the four regression coefficients 
and two dispersion parameters are given along the 
horizontal axis and the value of the measure is on the 
vertical axis. For visual clarity, we omit the intercept and 
the two categories of the ocpgr variable from the 
graphical presentation. We denoted the variables as NP 
(nprft), ED1 and ED2 ( two categories of the hedu, the 
reference category is high education), EXP ( yexp), s2u 

( 2
uσ ) and s2e ( 2

eσ ). 
 

6. Discussion and Conclusion 
 

6.1 Accuracy of Variance Estimation (Chart 1) 
 
We found little difference between BS1 and BS2 with 
respect to the accuracy of the variance estimation of the 
fixed effects. BS1 and BS2 overestimate the variances of 
the fixed effects at level-1, but underestimate the variance 
of the fixed effects at level-2 (variable nprft). The Taylor 
method underestimates the variances of all estimates and 
for all settings.  
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Scaling of weights affects very little the relative bias of 
variance estimates for fixed effects. Scaling of weights 

slightly reduces the bias of all variance estimates for 2ˆ eσ . 
  
The number of clusters in the sample has higher impact 
than the within-cluster sample sizes on the accuracy of 
variance estimates. 
 
6.2 Stability of Variance Estimation (Chart 2) 
 
The Taylor method provides the uniformly most stable 
variance estimates. There is virtually no difference 
between results obtained using unscaled and scaled 
weights.  
 
There is a negligible difference in stability among the 
bootstrap methods for variance estimation of the fixed 
effects.  For all methods the least stable is the variance of 

2ˆ eσ .  
 
For stability of the variance estimates, the number of 
clusters in the sample is more important than the within-
cluster sample sizes. The exception is estimation of the 

variance of 2ˆ eσ  which shows sensitivity on the within-
cluster sample sizes as well. 
 
6.3 Coverage Properties  (Chart 3) 
 
Regardless of sample sizes, all methods yielded similar 
coverage for the fixed effect associated with the cluster-
level variable NP (nprft). For other fixed effects, the 
Taylor method always understated the nominal level and 
the bootstrap methods overstated it. Two bootstrap 
methods performed similarly for the dispersion 
parameters, both significantly overstated the coverage for 

2ˆ eσ .  
 
Scaling of weights improved the coverage properties of 

all methods, especially for estimation of  2ˆ eσ . 
 
The number of clusters affects more the coverage rates 
than the within-cluster sample sizes.  
 
6.4 Conclusion 
 
From our simulation study, it follows that the survey 
bootstrap method BS1 can be applied for variance 
estimation in linear multi-level models under very general 
conditions. Method BS2 with the resampling within 
clusters seems to be a complex undertaking with a 
relatively small gain in accuracy of variance estimation 
for the dispersion parameters. The performance of the 
bootstrap methods depends on both sample sizes, with 

BS2 being slightly more sensitive to the within-cluster 
sample size. Overall there is a gain in both accuracy and 
stability of variance estimation when using the scaled 
weights. The robust “sandwich” variance estimator 
systematically underestimates the design-based variance.   
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Appendix 
 

Chart 1. Relative Bias of the Variance Estimates 
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Chart 2: Relative Root MSE of the Variance Estimates 
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Chart 3: Coverage Rate for the Nominal 90% (Normal) Confidence Interval 
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