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Abstract1

 
In poststratification, one of the cell collapsing criteria 
is a ratio criterion, where the ratio is the 
poststrafication factor or inverse coverage ratio. Quite 
often, if the ratio for a cell is greater than 2 or less than 
½,   then the cell is collapsed with another cell. 
However, this can introduce bias in a poorly covered 
group. Two censoring (or truncation) ratio approaches 
in collapsing were proposed and implemented in a 
simulation study (Kim, et al, 2005). The simulation 
study showed that the censoring approaches are better 
than the conventional approach mentioned above. In 
this paper, we propose four new collapsing strategies, 
two of which are based on the conditional bias and the 
other on the conditional mean square error. 
 
Keywords: Cell collapsing criteria; coverage ratio;           
censoring; bias; mean square error; poststratification. 
 

1. Introduction 
 
Poststratification typically begins with a set of 
candidate cells that would all be used in estimation if 
the sample meets certain standards based on sizes of 
the sample and weight adjustments. If the standards are 
violated, cells are collapsed together. Although 
collapsing is common in practice, there is a limited 
literature on its effects. Little (1993) addressed cell 
collapsing in a Bayesian predictive modeling 
framework. We consider the problem from the design-
based point-of-view, emphasizing the role of 
poststratification in correcting for undercoverage by 
the sample. 
 
Cell collapsing has traditionally been performed based 
on the minimum raw sample counts for the 
cell/row/column and the ratio factor, i.e., the inverse 
coverage ratio for the cell/row/column. The ratio factor 
is also called the poststrafication factor. Kim, et al 

                                                 
1 Disclaimer: This paper represents the views of the 
author and should not be interpreted as representing 
the views, policies or practices of the Centers for 
Disease Control and Prevention, National Center for 
Health Statistics. 
 

(2005) call the ratio factor the initial adjustment factor 
(IAF). Typically, if IAF is greater than 2 or less than .5 
for a cell, it is collapsed with another cell. The 
traditional collapsing approach combines cells which 
are similar in content. However, Kim (2004) raised a 
potential problem of combining cells which are 
different in coverage ratios. Let if , i=1, 2,  be the IAF 
for cells 1 and 2, i.e., ˆ/i i if NN= , where is the 
control count for cell i and 

iN

 ˆ iN  is the survey estimate 
prior to poststratification.1 if , i = 1, 2, is the coverage 
ratio for cells 1 and 2. Let . Kim (2004) 
showed that when c = 10 and 

2   cN N= 1

1 2/f f  = 4.0, cell 1 will 
lose 73 percent of its own weight to cell 2. For the 
same c, if 1 2/f f  = 0.25, cell 1 will gain additional 214 
percent of its own weight. This additional weight is 
from cell 2. Thus he showed that the current approach 
of cell collapsing can introduce bias, which can be 
large in certain occasions. He proposed methods for 
mitigating the adverse impact of the currently popular 
cell collapsing approaches. Kim, et al (2005) 
implemented in their simulation studies two 
approaches which involve censoring or truncation of 
large IAF’s. One approach adopts hard censoring. That 
is, an IAF for a cell cannot exceed the censoring point. 
The other allows the IAF to go above the censoring 
point. The simulation showed that the latter, the soft 
censoring approach performs better than the former. 
Either one performs better than the most popular 
collapsing approach. 
  
Kim’s (2004) transfer factor, which was later renamed 
the collapsing adjustment factor (CAF) in Kim, et al 
(2005) deals with weight gain or loss. The collapsing 
adjustment factor for cell 1,  is defined as 1CAF
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and the collapsing adjustment factor for cell 2,   is 2CAF
 

 1
2

1 2

(1 )f c
CAF

cf f
+

=
+

. 

 

ASA Section on Survey Research Methods

3237



Gonzalez, et al (2005) also applied a heuristic 
approach to BRFSS data for compensating for small 

if ’s, such as 0.52 to make the final adjustment factor 
of the cell to be somewhere near 0.8. The mean square 
error based on this approach was significantly lower 
than that based on the currently popular approach, or 
the do-nothing approach for revising the low IAF’s. 
This paper treats Gonzalez, et al’s approach in an 
optimal framework. That is, in this paper, we propose 
four new collapsing strategies, which are based on 
minimizing either bias or mean square error. The first 
is based on the conditional local bias, the second on 
the conditional local mean square error, the third on 
the conditional global bias and the last on the 
conditional global mean square error.  In the above, 
“local” refers to the combined cells and “global” to all 
cells of the weighting matrix. These approaches are in 
line with Deville and Sa (1992) in the sense that 
the final weights are developed such that they are 
closest to their initial weights. 

rndal��

 
2. Collapsing Approaches Based on Collapsing 

Adjustment Factors 
 
Suppose we have the following table. We introduce 
some definitions. 
 

Table 1 Notation for estimated counts, control 
counts, initial weighted and initial adjustment 
factors 

 
 Estimated 

counts with  
initial weights 

Control 
Count 

       IAF         

Cell  1       1N̂      1N 1 1
ˆ/ 1f N N=  

Cell  2       2N̂      2N 2 2
ˆ/ 2f N N=

 
We consider a general sample design that may include 
stratification and clustering, although some of the 
subsequent formulas are most easily understood in the 
context of simple random sampling.  
 
There could be many cell collapsing approaches which 
utilize the collapsing adjustment factor (CAF). 
However, here we will concentrate on four approaches 
only, as mentioned above.  
 
2.1 Collapsing Approach Based on Conditional 
Local Bias 
 
Let x be a key characteristic of interest in a survey. 
Then, the estimated mean of the characteristic based 
on the combined cells is 
 

2 1
1 1 1 2 2 2

1 2 1 2 1 2

(1 ) (1 )1 ˆ ˆˆ
c

f c f c
x N f x N f x

N N cf f cf f
⎡ ⎤+ +

= +⎢ ⎥+ + +⎣ ⎦
, 

 
where ˆ

cx  is the combined mean estimate of the 

characteristic and ˆ , 1,ix i = 2  are the estimated cell 
means of the characteristic. The general form of an 
estimated mean is ˆ

i
i k kk s k si

kx w x w
∈ ∈

= ∑ ∑  where 

kx  is the value for unit k, is  is the set of sample units 
for cell i, and  is the (unadjusted) survey weight.. 

Noting that 
kw

ˆ
i i iN f N= , i = 1, 2, ˆ

cx  can be re-expressed 
as follows. 
 

2 1
1 1 2 2

1 2 1 2 1 2

(1 ) (1 )1ˆ
c

f c f c
x N x N x

N N cf f cf f
⎡ ⎤+ +

= +⎢ ⎥+ + +⎣ ⎦
       (1) 

 

As mentioned before, 2

1 2

(1 )f c
cf f

+
+

 in the above is the 

collapsing adjustment factor for cell 1 ( ) and 1CAF

1

1 2

(1 )f c
cf f

+
+

 is the collapsing adjustment factor for cell 2 

( ). 2CAF
 
Note that if no collapsing is needed and two cells stand 
by themselves, the mean of the two cells is 
 

 [ ]1 1 2 2
1 2

1x N x N x
N N

= +
+

. 

 
Assume that ˆ

ix  is approximately design-unbiased, i.e., 

( )ˆ
iE x x� i , where ix  is the population cell mean. As 

mentioned in the papers by Kim (2004) and Kim, et al 
(2005), by combining two cells which have disparate 
coverage ratios, we can artificially shift weights, which 
could introduce bias, sometimes in great amounts.  
 
Suppose cell 1 has a poorer coverage ratio than cell 2. 
In the spirit of Deville and Sa  approach, we can 
readjust  such that the mean of the collapsed cell 
due to a poor coverage ratio is as close as possible to 
that of the mean of the two independent cells. To do 
so, we multiply  by “k.”  To get the k, we 
minimize the following squared conditional bias with 
respect to k. 

rndal's��
1CAF

1CAF
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This is conditional in the sense that if  is treated as 

xed. The above can be expressed as fi
 
    [ ]2

1 1 1 2 2 2 1 1( )k CAF N x CAF N x N x N x+ − +  2 2

ferentiating the above with respect to k and setting 
 resulting expression equal to zero, we get 

 
Dif
the
 

2
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1 1 (1 )
x

k c CAF
CAF x

⎡ ⎤

1 1

= + −⎢ ⎥
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      (2) 

where 

,    

2

1

N
c

N
= .  k can also be e ed as fo

 

xpress llows. 

1 2 2 2 1( )cf x f f

2 1 2(1 ) (1 )
f

k c
f c x f c

+
+ +

,                         

 
Theorem 1

−
= + (3) 

.  If 1 2x x= , 1k = . 
 
Proof.  In equation (2   ), if 1 2x x= , 

duces to
21 (1 )c CAF+ −  

re  1CAF . 
 

Lemma 1. If  2 1x x , then > 2

1

1
x

d
x

= + , where . 

Thus k can be expressed as 

0d >

 

[1 1 (1 )(1k c d CA
CAF

= + + − ]2
1

)F  

 

2
1

1 (1cd CAF
CAF

= + − ) . 

Since ,  k is less than 1. 

emma 2

 
2 1CAF >

L .  If 1 2x x> , then 2

1x
1

x
e= − , where k 

can be expressed as 

0e > . 
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ince > ,  k is greater tha . 

ove sugg  larger mean than 
 then us r for cell 1 than 

 will reduce local bias. Otherwise, using a 

the t
mbined cells should match the control total of 

ose cells. That is, the following should hold. 

S F n 1 2 1CA
 
The ab ests that if cell 1 has a
cell 2, ing a number greate

1

smaller number for cell 1 than 1CAF  will reduce the 
bias. 
 
After collapsing and weighting, otal weights for 
the co

CAF

th
 

2 1 2 1
1 1 2 2 1 2

1 2 1 2 1 2 1 2

(1 ) (1 ) (1 ) (1 )ˆ ˆf c f c f c f c

1 2

f N f N N N
cf f cf f cf f cf f
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+ = +

+ + + +

N N= +

 

 
However, if we multiply  by k, the sum would 

ot be 
1CAF

n 1 2N N+ . That is, 
 

2 1
1

(1 ) (1 )f c f c
k f

cf cf f1 2 2
1 2 1 2

2 1
1 2

1 2 1 2

ˆ ˆ

(1 ) (1 )

N f N
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f c f c
k N N

cf f cf f

+ +
+

+ +
+ +

= +
+ +

 

1 2
1 2

1 2

( )
cf kf

N N
cf f

+
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+
                 (4) 

1 2N N≠ + . 
 
To restore equality in the above, we have to multiply 

quation (4) bye  1 2

1 2cf kf+
That is,  
 

cf f+
. 

2 (1f c
k

cf kf
+ +

+
1 2

1 1 2 2 1
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In other words, the adjustment factor (post 

ratification factor) for cell 1 should be st 1 2

1 2cf kf
(1 )kf f c+
+

and that for cell 2 

 

1 2

1 2

(1 )f f c
cf kf

+
+

. The differen  

formula has a th the numerator and 

denominator only. 
 
Information is collected on many characteristics in a 
survey. It is thus re

ce between

this formula and that for the IAF for cell 1 is that this 
k in bo

denominator, but for cell 2, the formula has a k in the 

commended that k be computed for 
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two or three key characteristics, then any one of them 
is picked or their average is used. 
 
Example 1. 
 
The poststratification factors adjusted for the survey 

on-response rate for Black males aged 18-24 and 25-

     

n
34 for the 2001 BRFSS data (encompassing 44 
counties which border with Mexico) are 10.22 and 
3.86, respectively.  In the following, we will observe 
what happens when the two cells are collapsed. 
 
         Table 2. Weighting Table 
 

     iN       ˆ iN     if  

 18-24 ,654 1.48 .2     43  4,27 10 2
 25-34 ,8  78  86   55 56 14,4 .81 3.  

 
 

 this case, 

.2795 

F  is

In
 
 c = 1
 

1CA , 
 

 (3.85778)(2.2795) .519
(1.2795)(10.2199) 3.85778

=
+

. 

 
What this factor indicates is, by combining the cells, 

e sample units in cell 1 (18-24) will lose th
approximately 48 percent of their own weights (the 
weights they would receive when the cell is not 
combined with the other cell). 
 

2CAF  is 
 

 (10.2199)(2.2795) 1.376
(1.2795)(10.2199) 3.85778

=
+

. 

= 1.376 implies that the units in cell 2 will get 
 additional 37.6 percent of above their own weight 

becau

 
2CAF

an
se of collapsing. The value of k is, 

 

1 2(.519 ) 1 1.2795 (1 1.376
x

k − ⎛
= + −

If 2

1

x
x

 = 1.1, then k = .90743. The adjustment factor for 

cell 1 is  
 

 1 2

1 2

(1 ) (.90743)(10.2199)(3.85778)(2.2795)
(1.2795)(10.2199) (.90743)(3.85778)

kf f c
cf kf

+
=

+ +
 

 
        4.92=  

The adjustment factor for cell 2 is 1 2

1 2

(1 )f f c
cf kf

+
+

= 5.52. 

 

If 2

1

x
x

 = .9, then k = 1.093. The adjustment factor for 

cell 1 is 5.679 and that for cell 2 is 5.198. 
 
Without minimizing the local bias, the initial 
adjustment factor (IAF) for both cells is 5.307. As 
noted above, if the cells are kept separate, the 
adjustments would be 10.22 and 3.86. 
 
In the practical case where there is more than 2 cells, 
the set of cells that are sparse are determined, i.e., the 
set of cells that must be collapsed.  The analysis above 
then applies to a pair formed by a sparse cell and the 
nonsparse cell with which it is collapsed. 
 
2.2 Collapsing Approach Based on Conditional 
Local Mean Square Error 
 
In the case of simple random sampling (SRS), let 2

iσ , i 
= 1,2, be the variance of a survey variable in the cell i 
and  the sample size of cell i. The in if ’s are 
variables. However, we again assume that the if ’s are 
constant to facilitate the derivation of the following 
variance formula.  Under this assumption, 

( ) 2ˆ
i iV x nσ=

1

2

1

)

(1.92678) 1 .4807 .

x

x
x

⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

 

 

i  either under SRS with replacement or 

SRS without replacement with a negligible sampling 
fraction. For a more general design, 2

i inσ  in the 
formulas below would be replaced by the more general 

( )ˆ
iV x . The variance of the mean of cell 1 after 

collapsing is 
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and that for cell 2 is 
 

 

1
2 2

1 2

2 2
21 2
22

21 2
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(1 )
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V V N x

cf f

f c
N

ncf f
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+
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We can derive a formula for a new “k” that minimizes 
the mean square error of the collapsed cell estimator. 
That is,  
 

2 2 1
1 2 1 1 2 2

1 2 1 2

(1 ) (1 )
k

f c f c
Min k V V k N x N x

cf f cf f
⎧ ⎡ + +⎪ + + +⎨ ⎢ + +⎪ ⎣⎩

 

 
             ( ) }2

1 1 2 2N x N x− + ⎤⎦  

 
As in section 2.1, the calculations below are 
conditional in the sense of treating if  as fixed. 
Differentiating the above with respect to k and setting 
it to zero, we get 
 

2 1
1 1 2 2

2
2

2 1
1 1

1 2 1 1

(1 )
(1 )

f fN x N x
f c

k
f c N x
cf f n x

σ

−
+

+
=

⎛ ⎞+
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Using the fact that , k can be expressed as 2N c N= 1

 

2 1 2 1
1 1 2 1 2

2 2
2 2

2 1 2 1
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Dividing both numerator and denominator above by 

1x , we have 
 

2 2 1 1 2
1 2

1 2
2
1

2 2
1 1

( )(( )
(1 )

.
(1 ) 1

)x f f cf fcf f c
x f c

k
f c

n x
σ

− +
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+
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Equation (6) can also be expressed as 

 
( )2

2
1

2
1

1 2
1 1

1 1

1

xc CAF
x

k
CAF

n x
σ

+ −
=

⎛ ⎞
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⎝ ⎠

. 

 
In comparing the above with equation (2), we can note 
that the formula for k based on the mean square error 
has the additional term in the denominator, which 

is
2
1

1 2
1 1

CAF
n x
σ . 

 
Since the above expression is positive, the new k is 
smaller than the one in (2) that minimized the 
conditional local bias. The larger the relvariance of the 
cell 1 estimate, the smaller its adjustment. 
 
As in the section 2.1, the adjustment factors (post 
stratification factors) for cells should be further 
modified to ensure that the total weights of the 
combined cell match its control total. 
 
2.3 Collapsing Approach Based on Conditional 
Global Bias 
 
This time we assume the overall weighted sample 
mean without collapsing is the population mean.  
Suppose only two cells need to be collapsed, which are 
not adjacent. For simplicity, we assume those two cells 
are cell 1 and cell 3. We also assume cell 1 is collapsed 
with cell 2, and cell 3 with cell 4. 
 
Define 
 

 2 1
1

1 1 2

(1 )f c
c f f

β
+

=
+

, where , 1 2 /c N N= 1

 

 1 1
2

1 1 2

(1 )f c
c f f
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+
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+

, 

 

 4 2
3

2 3 4

(1 )f c
c f f

β
+

=
+

, where , 2 4 /c N N= 3

 

 3 2
4

2 3 4

(1 )f c
c f f

β
+

=
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, 

and 
 

 
1

L

i
i

N N
=

=∑ . 

 
Note that ii CAF= , i = 1, 2, 3, 4 in the above. β
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Suppose there are L cells. Then the conditional global 
bias is, 

 

1 1 1 2 2 2 3 3 3 4 4 4
5 1

L L

i i i i
i i

N x N x N x N x N x N x

N

β β β β
= =

+ + + +
−

∑ ∑
N

 
 
Note in the above, we assume that cells 1 and 3 have 
low coverage rates and thus lose weights when they 
are collapsed with cells 2 and 4, respectively. To 
alleviate the amount of lost weights in cell collapsing, 

 is multiplied by  and  by  as follows. 1CAF 1k 3CAF 2k
 

1 1 1 1 2 2 2 2 3 3 3 4 4 4
5

L

i i
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k N x N x k N x N x N x

N

β β β β
=

+ + + + ∑
 

1

L

i i
i

N x

N
=−
∑

. 

 
Since there are common terms in the above equation, it 
can be simplified as follows. 
 

4

1 1 1 1 2 2 2 2 3 3 3 4 4 4
1

i i
i

k N x N x k N x N x N x

N

β β β β
=

+ + + − ∑
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To obtain , i = 1, 2, which minimize the squared 
conditional global bias, we have 

ik

 

1 2

24

1 1 1 1 2 2 2 2 3 3 3 4 4 4, 1
i ik k i

Min k N x N x k N x N x N xβ β β β
=

⎡ ⎤+ + + −⎢ ⎥
⎣

∑
⎦

                 (7) 
 
Partially differentiating the above equation with 
respect to  and , respectively, and setting the 
results to 0, we obtain, 

1k 2k

 
4

2 2 2 2 3 3 3 4 4 4
1

1
1 1 1

i i
i

N x N x k N x N x
k

N x

β β β

β
=

− − −
=
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and 
 

4

1 1 1 1 2 2 2 4 4 4
1

2
3 3 3

i i
i

N x k N x N x N x
k

N x

β β β

β
=

− − −
=

∑
          (9) 

 

 
Note the above two equations are derived from the 
same (one) equation. Thus  and  can not be 
uniquely solved by using equations (8) and (9) alone. 
Equation (2) can help. Note that, if there is only one 
cell which needs to be collapsed, that is, there is only 
one k to solve for, then k can be found, but if more 
than 3 cells need to be collapsed, this approach cannot 
provide the solutions. However, an iterative approach 
can be used in this situation. Suppose p cells need to be 
collapsed, that is, we have p unknown k’s ( , , . . . .  
, 

1k 2k

1k 2k

pk ) to solve for. We will solve for one k each time 
and repeat the process until the solutions are reached. 
More specifically,  
 
Iteration 1. 
 
Collapse with another the first cell which violates the 
collapsing criteria. Leave the other cells not-collapsed. 
Solve for . Collapse the next cell with another and 
solve for  given . Repeat until 

1k

2k 1k pk given , .  .  1k 2k

1pk −  is solved. 
 
Iteration 2. 
 
Using , , . . . . . , 2k 3k pk , solve for . Solve for  
given , , . . . . . , 

1k 2k

1k 3k pk . Repeat this process until the 
solution for pk given , , . . . . . ,1k 2k 1pk −  is found. 
 
If respective k’s in Iteration 1 and Iteration 2 do not 
differ more than a specified tolerance, stop. Otherwise, 
repeat Iteration 2 until successive solutions are near 
identical. 
 
Note that in the above case we don’t have unique 
solutions for k’s. 
 
As before, for the two other approaches, the 
adjustment factors (post stratification factors) for cells 
1 and 2 should be further modified to ensure that the 
total weights of the combined cell match its control 
total. 
 
2.4 Collapsing Approach Based on Conditional 
Global Mean Square Error 
 
In general, we have a number of sparse cells that are 
collapsed with different nonsparse cells. The CAFs for 
the sparse cells can be adjusted in such a way that the 
overall mean square of an estimated mean or total is 
minimized. The technique described in this section is a 
generalization of the one presented in section 2.2. 
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First, define the following: 
 

spS  = the set of spL  sparse cells; 

spS  = the set of spL  nonsparse cells; 

( 1, ,
sp

T

sp Lk k=k … )  = the vector of adjustments for 

the spL  sparse cells; 

( )( )ˆ  sp idiag V x i S= ∈V sp ; 

( )( )ˆ  isp sdiag V x i S= ∈V p ; 

( ) ,  sp i spz i S= ∈z  with i i iz N ixβ= ; and 

( ) ,  isp sz i S= ∈z p  
 

If the weights of each unit in sparse cell i are adjusted 
by  while the weights in the nonsparse cells are 
unadjusted, then the bias of the full sample estimator 
of a total is 

ik

 

1sp sp

L
i i i i ii S i S i

T T
sp sp sp

k z z N x

t

∈ ∈ =

+

+ −

+ −

∑ ∑ ∑
k z 1 z

=
 

 
where 

1

L
i ii

t N+ =
= ∑ x  and 1 is a vector of spL  1’s.  The 

values of , i = 1, 2 can be found by minimizing the 
following mean square error: 

ik

 

( 2
T T T T
sp sp sp spsp sp sp t+Φ = + + + −k V k 1 V 1 k z 1 z ) (10) 

 
The derivative of (10) with respect to spk  is  
 

(T T T ) T
sp sp sp spsp sp t+∂Φ ∂ ∝ + + −k k V k z 1 z z sp  (11) 

 
Equating (11) to 0 and solving leads to  
 

( ) ( ) 1T T T T
sp sp sp sp spspt

−

+= − +k 1 z z V z z . 

 
As for the other three approaches, the adjustment 
factors (poststratification factors) should be further 
modified to ensure that the total of weights after 
collapsing match the grand total of all control counts.  
In particular, this can be accomplished by using 
 

( )T t∗
+=k k k u , 

 

where ( ),T T T
sp=k k 1  and ( ),sp sp=u u u with 

( )sp iu=u , spi S∈ , ( )sp iu=u , spi S∈ , and iu Ni iβ= . 
 
3. Concluding Remarks  
 
Indiscriminately collapsing cells of a weighting matrix 
can introduce bias. Kim (2004), Kim, et al (2005) and 
Gonzalez, et al (2005) suggested how to correct this 
problem. Gonzalez, et al (2005) used a heuristic 
approach. This paper introduces four optimal 
approaches by which the adverse impact of the cell 
collapsing can be mitigated. The first is based on the 
conditional local bias, the second on the conditional 
local mean square error, the third on the conditional 
global bias and the last on the conditional global mean 
square error. The first approach has been implemented 
in Gonzalez, et al (2006) on BRFSS data. In terms of  
both bias and mean square error, the new approach 
proved to be significantly better than the traditional 
approach. The three other methods are yet to be tested 
empirically. 
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