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Abstract durations typically of 3 years (SIPP User’s Guide 2001).
Attrition over the life of a panel is of the order of 30%:

This paper studies estimators for the bias in estimate@f the 94, 444 persons responding in Wave 1 of SIPP 96,
cross-sectional survey item totals due to attrition nonre14% were lost by Wave 4, and 30% by the end of the
sponse weighting within a longitudinal survey. Adjust- panel, Wave 12.
ments for between-sample longitudinal nonresponse are
made either by adjustment cells or by logistic regressionYhile some aspects of the quality of reported data from a
The bias estimators studied were first proposed by Bailepurvey like SIPP can be judged only by comparing with
(2004) in connection with the Census Bureau’s Survey of €lated data from other sources, the problem of ascer-
Income and Program Participation (SIPP), but are genert@ining and compensating for the biases due to attrition
alized here to include longitudinal survey items, and for-iS largely a matter to be explored through internal con-
mulas and estimators for their design-based variances afdderation of the longitudinal data from the same sur-
given in terms of joint inclusion probabilities. In prac- VeY- This is because the precise demographic and survey-
tice, variance estimates for the bias estimators are obdesign features and incentives associated with attrition
tained, in the SIPP setting where PSU samples are draw@€ likely to be very different for another survey. At first
as balanced half-sample replicates, using either balancetdght. the possibility of assessing nonresponse biases by
replication methods or a formula of Ernst, Huggins and? purely internal statistical examination of survey data

Grill (1986). The methods are illustrated using cross-S€ems counterintuitive. That is especially so in a survey
sectional item data from the SIPP 1996 panel. like SIPP, where the precise variables being measured —

such as marriage and divorce, poverty or changes in em-
Keywords: Adjustment cells, Balanced replicates, Lo- Ployment status for one or more jobs between successive

gistic regression, Longitudinal survey, Nonresponseinstances of followup questioning — will directly affect
Variance estimation, VPLX. the chance of finding a subject at home and willing to

respond to the survey’s followup. However, by examin-
This report is released to inform interested parties of re-INg adjusted estimates of totalswéave lcross-sectional
search and encourage discussion. The views expressé@riables, we separate the modeling of the propensity to
on statistical and methodological issues are those of thé€spond from later changes in surveyed items.

authors and not necessarily those of the Census Burealéailey (2004) studied the bias due to each of a number

of attrition adjustment methods in SIPP by calculating
1. Introduction for specific items the differences between the totals es-
timated at wave 1 versus the totals of the same wave-

One of the persistent problems arising in large longitudi-1 items estimated by nonresponse adjustment of the to-
nal surveys is to compensate through weighting scheméls obtained from the wavesubjects (who responded in
for nonresponse errors due to attrition. This problemwave 1). The approach of Bailey (2004), which we elab-
is perennial for the Census Bureau'’s Survey of Incomedrate formally in Section 2, was restricted to single-wave
and Program Participation (SIPP), which has for many(cross-sectional) gquestionnaire items and was purely de-
years been one of the largest national longitudinal surScriptive in the sense that standard errors for the differ-
veys, measuring many variables related to family, em-ence between the wave-1 and adjusted wave-t totals were
ployment status, insurance, amounts and sources of irfl0t provided. The main methods of attrition nonresponse
come, and indicators of participation in various govern-adjustment he considered were Horvitz-Thompson esti-
ment programs. SIPP’s design follows panels of the ormators (&rndal et al. 1992, pp. 42 with weights de-

der of 30,000-50,000 sampled households over a sudived either from a moderate number (of the order of 100,
cession of staggered waves every four months for totayVithin a survey of more than 30,000 households) of ad-
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justment cells or from a logistic regression model, spec-F(r;) = P(r; = 1) and the corresponding conditional
ified in terms of Wave-1 items. probabilities p;, = P(r; = 1|S) are not known. The

. . target parameter is
In this paper, we broaden Bailey’s (2004) approach to

provide for.mulas and e.stirr)ators' of the standard errors 0 =tyr —t,s = Z (yF —yP),

for the estimators of bias in estimating wave-1 cross- it

sectional item totals using adjusted wave-4 or wave-12 )

data. The estimating formulas given here for biases an¥/n€ré here and in what follows we adopt the standard
standard errors generalize immediately to cover the casgetations that for any attribute;, i € U, the frame-

of bias estimation for longitudinal item totals based onPoPUlationtotalist. =3, z;, and the corresponding
early-wave versus adjusted later-wave data. Horvitz-Thompson estimator i, = >, s zi/m;.

Exact variances of the bias estimators, and unbiased e#? this setup, the reciprocal probabilities; ! are as-
timators for them, require knowledge of joint inclusion sumed to be weights which adjust correctly for first-stage
probabilities which are generally not available when, as(\Wave-1) nonresponse. The quantitig§ are the first-
in SIPP, the wave 1 inclusion weights take into accountstage measured survey variables of interest, usually first-
wave 1 nonresponse and are raked secbnd-stage ad- stage cross-sectional survey data. In actual practife,
justed However, the SIPP 1990 redesign incorporatedvould be the corresponding variables which could be ob-
a feature of two balanced replicate samples within eaciserved at a specified later stage (Wave) of the survey. The
sampled PSU. Using a theoretical formula of Ernst, Hug-target parameter would then be the between-wave change
gins and Grill (1986), we provide and implement closed-in population total of the attribute. However, to avoid
form and balanced repeated replicate (BRR) estimatorsonfounding the true between-wave change with the er-
of variance for the bias estimators we study. rors we introduce due to sampling variability and impre-
cise modelling or estimation of the conditional probabil-
The paper is organized as follows. Section 2 gives forities p,, we follow Bailey (2004) in the artificial choice
mulas from sample survey theory for estimating attri-, & — /5 for all i, making the target parameter= 0
tion nonresponse biases. Section 3 gives variance formuymown, and allowing us to evaluate the effectiveness of

las, in terms of joint inclusion probabilities, of designed adjustments made for later-wave nonresponse.
replicates, and of balanced repeated replicates as imple-

mented in the Census Bureau's VPLX software. SecNow if the conditional probabilitiesp; = E(r;|S) =
tion 4 illustrates and interprets the bias estimators and®(r; = 1|S) wereknown, then the general unbiased
their estimated standard errors for the same eleven SIPgstimator ofd = ¢,» —t,= wouldbe ", s (riy! /pi—

96 (cross-sectional) items studied in Bailey’s (2004) re-y5) /z,. The actual estimatod that we use depends on
port, and the alternative estimators for standard errors argn estimatorp; for p; under a parametric model (two
compared. Finally, tentative conclusions are drawn abougpecific examples of which will be discussed in detail
the magnitudes and significance of SIPP biases due tbelow), within which the random variables;, i € U,
attrition, and about important directions for further re- are assumed to be conditionally independent given
search. with

2. Bias Estimation Formulas pi = P(r;=1|8) = g(z;,8) ieS (1)

Suppose that a sampleéS of subjects is drawn from Where z; is the vector of auxiliary variables observed
sampling framel{, with single inclusion-probabilities for €achi € S, and 3 is a parameter of fixed dimen-
{m:}icu and joint inclusion probabilities{r;;}; jey. ~ SION (much smaller than the frame population sizg).

Suppose that ‘baseline’ observatioris;, y2, r;) are Under model (1), withp; = g(z;, 5) generally derived
recorded for alli € S, wherey” is anitem of interest, from a weighted estimating equation in terms of the data
x; is a vector of auxiliary data, ang; is the indicator of (73, ¢ € §), we obtain

followup response. Suppose also thgt denotes a fol- 1 .

lowup measurement which is potentially defined for all Wave-change Estimatot Z — (ylF = - yf;) (2
population members but which is actually recorded only ies i

for i € S suchthatr; = 1. As s often done in survey

theory, we treat estimated totals in a design-based frameSpecializing further to the case of interest in this pa-
work except that the response indicatersare treated as  per, we fix y” = yZ, in which case the estima-
random variables conditioned ¢hi.e., on all first-stage  tor (2) can be viewed as the difference between the
data. Itcan be assumed that, m;; are known, butthat later-wave nonresponse-adjusted estimatot, ef and
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the first-Wave Horvitz-Thompson estimator of the samej _ y, denoted¥4 — ¢ and defined from (2) with (4)

quantity. Therefore we refer to it simply as the substituted, is easily seen to have the form
Bias Estimator= Y ! (Ti 1) ©) -
= — \ = — JA n n N
ics i \Di V=0 = Z (trﬁij te; /tre; — bre;yr te; /tre;
j=1
We work with two different models of the form (1). —leyr + g yB) (6)
Adjustment Cell ModelLet the framel/ be partitioned L -
into cells C;, j = 1,..., K, with K fixed, andfor ~ ~ 3 ( (e, e —tre, ye) + 2 (fe, —te,)
the parameters € (0,1)%, assume j=1 tre;
s =Prr;=1|ie8S) = 3; whenever: € C;, frg ng- - -
b ( | ) J J _ ;; J (trg_j — tT‘Ej) — e,y + g, yB)
wherei c U, j =1, ..., K. Then the form of estima- 4

tor for p; = 3; for i € C;, which is unbiased for all where =~ means that the expressions on the left- and
inclusion-probabilitiesr;, is theCell Adjustment-Factor  right-hand sides differ by an amount which is negligible

given by in probability as |S| gets largewith the population-
R Y iesno. rem; ! size || much larger still But this last expression is
By = ———— (4) apprOX|mater equal in the same sense to the difference

Ziesmcj T t.a—t.a, where the “attribute”; is defined whenever
i€l by

Logistic Regression ModeRlternatively, for 5 € R? R . . .

a coefficient parameter vector of the same dimension LA te; rouf + bre;yF _ brg; yF te ri —yP (7)

as the covariater;, we could assume that; depends ‘ bre, bre, 2 ’

on individual covariates through the formu}a (1+
e~7#)~1 and then estimatg; = (1+¢~%%)~1, where

- . . . Next, under the logistic-regression model for later-wave
0 is the unigue solution of the weighted score equation 9 g

nonresponse, we find by first-order Taylor expansion of
(5) in 8 around the valued = 3, satisfying

1 @ B
Selln- Y20 |
T i z; Pu

: 1—|—e$15 i
= 1+e®

3. Estimating the Variance of Bias Estimators that

Our next objective is to find general large-sample ap-
proximate expressions and unbiased estimators for theshere

variance of the Wave-Change Estimator (2), and its spe- . xz®2 eib
cialization to the Bias Estimator (3). Under the paramet- I= Z T m
ric model (1), with consistent estimators for 3 and ies “r
estimatorsp; = g(x;,3) close to p; (uniformly over  and

i € S with high probability, when the sample siZé| T eviBu

is large), a principal method for deriving variances is first T= . (ri — m)

tolinearizethe estimators of interest, i.e., to approximate
the centered estimators by linear expressions in centereghd for any vectorv, we define the notationv®2 =
(Horvitz-Thompson) estimatoré. — ¢. of survey-item v/, Then the centered wave- change estimatbr—
totals ¢,. We now proceed to do this for the estima- with & glven by (2) after substitutingp; = (1 +
tor (2), denoted), under the two models considered in e [3) ! for § satisfying (5), is

Section 2.

L ~ - ,
First, in the adjustment cell setting, define the “cgll V" =0 R tyr (etu) T~ beyr (1pem+ou)
attribute ¢;” as the indicator which for individuali

is & = Ijiec;. Then the adjustment-cell version of —t B + typ — t I-'T

reyF e- «'B
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which has asymptotically the same variance as the cerferred to ashalf-PSUs. The variance estimation tech-
tered total-estimatort,. — ¢,. defined in terms of the niques applied to SIPP, beginning with Ernst, Huggins

‘attribute’ and Grill (1986) and Fay (1989), treat these half-PSU’s
I P B as though they were two independently drawn samples,
2= iy (14 e %P — B i i i
i i Yi . a i e.g., as though two independently randomized starting
—t I e (ri—p;)  (8)  indices had been used.h = 1,2 denote half-PSU.

reyf e—='8

Where needed, leS; denote the set of sampled PSU'’s

) . R . within stratum s. Let j be the index for individuals
Thus the variance/ (J) of ) could be found approxi- ,thin a specified combinatiofs, i, ), and S, de-

mately by the Horvitz-Thompson variance estimator  ste the set of individuals sampled within the half-PSU
(s,i,h). For NSR stratuns, let ﬁ'), wés) respectively

foas Tk — TiTk ) ﬁ ) Zi
Vi) = _;S T T Tk ©) denote the inclusion probabilities for the sampled PSU'’s
" in S; respectively labelled = 1 and2, and let )
respectively for z; = 2 given by (7) under the denote the joint inclusion probability for both sampled

adjustment-cell model and for; = z* given by (8) PSU's. (There may be more than two PSU’s in SR strata,
under the logistic regression response model. inclusiotut all of their inclusion probabilities are) Now denote
probabilities are not available at person-level for manythe individual inverse weight or single inclusion prob-
large surveys like SIPP, because even the single incluability by 7 ;) to conform with Section 2, since
sion probabilities w; are constructed by an elaborate individuals now have the quadruple indicés, i, i, j).
raking and trimming process. Therefore, the variancelhen the within-PSU weights for sampled individuals in
formulas (9) are not directly applicable. However, the sampled half-PSU’és, i, h) are 771(3) /W(s,i,h,j)-
linearization idea just described, which is now a stan-

dard method described in textbooks like that afrglal N terms of these notations, the estimator of Ernst, Hug-
etal. (1992), was shown by Woodruff and Causey (1976)ins and Grill (1986) which they show to be slightly up-
to be applicable within any replicate-based variance eswardly biased for the variance of the total-estimator
timation method. That is, they showed that in large samfor an attributez(, ; 5, ;). is

ples, replicate-based variance estimators of totals of the

artificial attributes which make the linearized estimators Veng = Y. bu (@ _ 2512)2 (10)
take a Horvitz-Thompson form would provide accurate SCNSR 7{3) wés)
approximations to the variances of the estimators be- (Zsin — Zs.i2)?

ing linearized. We next show how the SIPP design al- + Z bs,1 Z P P

lows replicate-based estimation &f(J) in terms of the s€8 €S (™)

pseudo-attributes; = 2! or 2! respectively under the

adjustment-cell or logistic regression response models. Where weighted half-PSU and PSU- aggregated totals are

given by
We begin by describing the 1990 redesign of SIPP in
terms similar to those of Rotta_ch (2004), building on P Z () Asiiih.g) g i 7
the standard SIPP documentation (2001). (A more de-“s:&h = i T(ssih) ) st 8,0, H
tailed description along the same lines can also be found JESsin T h=1

in Slud (2006).) SIPP’s complex multistage sampling ;4

design incorporated paired replicate samples within Pri-

mary Sampling Units (PSU’s). At the national level, the PROPNC)
survey is based upostrata— geographic units nested ~ bs,0 = L2
within County and MCD — consisting in 1996 of 112
sglf—representing (SR) strata, subdivided into 37.2 artifi-note that beo > 0 always for the Durbin method, and
cial PSUs all of which were sampled, together with 105 bso = 0, by = 1 whenevers € SR.

nonself-representing (NSR) strata in each of which ex-

actly two were sampled according to the Durbin methodin settings like SIPP, where replicate samples are avail-
with a fixed system of PSU-level probability weights. able within PSU'’s, the Census Bureau often uses a vari-
Within each PSU, a systematic sample of (a fixed num-ance estimation method of Fay (1989) implemented in
ber of) persons was drawn, apparently using a single rarFay’s VPLX software. This method generates a set of
domized starting index, although the sampled individu-distinct multiplicative replicate weight-factorg ; 5, ,

als are alternately indexed into two classes which Rotwhere » = 1,..., R denotes an indexi{ = 160 for
tach (2004) call®alf-sampledut which here will be re-  SIPP 96). The variancé/(ﬁ) for a possibly nonlinear

—1, b1 =max{l—bso, 0}

)
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estimator7 is then estimated as follows. For each repli- studied here, linearized and BRR variances have previ-
cater, the estimator is recalculated with first-order in- ously been compared by Sae-Ung et al. (2004) within
clusion WEightSW(_s}i,hJ) replaced byfs i nr/T(s,ih.j) the SIPP context.
and the result denoted("). In particular, if the estima-

. N ) - . 4. Results for SIPP 96 Data
tor of interest wast,, then ther'th replicate is

9 We summarize the SIPP 96 computed results on wave-
#(r) Z Foir Zb(zs)H 1y 1 minus wave-4 or wave-12 Weighted_totals, along With
he1 ; estimated standard errors. We consider totals and dif-
ferences based only on the 94,444 individuals in SIPP
The Fay-method (1989) balanced repeated replicatgg who had positive wave-1 weights, which were the
(BRR) estimator for the variance af is second-stage weightsgt) recoded by Julie Tsay and
L R L& , ;Js”ed in tr|1e r(eport)of Bailc(jay (20rcl)4)f. IIThroughout, we
’ _ 2 A(r) _ L ~(m) ollow Bailey (2004) in studying the following 11 SIPP
Viay = R Z (T Rmz_:lT ) (12) cross-sectional items: indicators that the individual liv-
- ing in a Household receives (i) Food Stampsddst),
As shown by Fay (1989) and described in greater detaipr (ii) Aid to Families with Dependent Childred¥DC);
by Rottach (2004) and Slud (2006), if the estimator of in-indicators that the individual receives (iii) Medicaid
terest is a Horvitz-Thompson total & ¢.), thenthe Fay  (Mdcd), or (iv) Social Security §ocSec); and indica-
method variance estimator approximaté'gHG and is torsthatthe individual (v) has health insurangeipns),
algebraically identical to it if the number of replicates (Vi) is in poverty @ov), (vii) is employed Emp),
is large enough. (That sufficiently large number, as jus{Viii) is unemployed UnEmp), (ix) is not in the labor
tified in Slud 2006, is 3 times the number of NSR strataforce NILF), (x) is married {AR), or (xi) is divorced
minus twice number of NSR strata with, ; = 0, plus (DIV). The definition of later-wave response used in
the number of SR PSU’s, or 667 in SIPP 96. The num-most longitudinal SIPP studies and also in the present
ber R of replicates used in SIPP 96 was 160.) In a smallpaper is: participation in all waves cumulatively up to
simulation study in Slud (2006)/r., and Vg were  the later wave of interest.

checked to be uniformly close to one another in casesl_h diust t-cell del idered h
where # = ., and, in all models except those with ' "€ adjustment-cell nonresponse model considered here

greatest imbalance between half-PSU’s, also to be clos& standgrd fpr SIPP (Tupe_k 2002), consisting of 149
to the empirical variance. cells dgfmed in terms of region and Wave-1 measures of
education, income-level, employment status, race, eth-
Since joint person-level inclusion probabilities are nothicity, asset types, and numbers of imputed items. All
available for SIPP, we have two available replicate-baseg€lls contained sufficiently many individuals for Waves
methods for estimating the variances of the nonlinea and 12, and weights within a reasonable range, so that
wave-change or bias estimatogs!, I~ : pooling was not necessary. The logistic regression re-
sponse model used the Wave-1 predictor indicator vari-
ables for: Poverty, White Not Hispanic, Black, Renter,
College educated, household ‘reference person’, and two
pairwise interactions (RenteCollege, BlackCollege).
The model is the same one used in Bailey (2004), with
the addition of a Poverty indicator. Poverty was included
in the model because it was highly signifcant in ex-
A third method which initially seems to be also feasible ploratory model fitting, because poverty is used in defin-
— the Fay method applied to the linearized total estimading the standard SIPP set of adjustment cells, and most
tors based on attributes! or z — turns out in both  of all because we want to note the effect on population-
adjustment models to give algebraically the same valugvide bias estimates for a variable which is also a survey
as the ordinary Fay method (1), because of the identitiegem whose total is regularly reported.
94 = 3, cs2 and 9F = 3, o2k for each set of . _
replicate weights. Table 1 presents the estimators for Wave 1 item totals and
. . also the biases in those totals resulting from adjustment
The two estimatord/r,, and Vgpe asin (1)-(2) above between waves 1 and 4, with either the Adjustment-Cell
will be calculated and compared in the next Section for(BiasC) or Logistic RegressionBiasL) method. The
various choices of attributg” = 3/ in SIPP 96. For  wav1 column shows the frame population totalg for
other types of survey estimators, not the bias estimators

r=1

(1) The Fay method varianceVFay for the wave-
change estimatot* given directly by (2).

(2) The Ernst, Huggins and Grill estimatdfz ;¢ ap-
plied to the linearized attributes* or z* given
respectively by (7) or (8).
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Table 1: Wave 1 SIPP 96 item totals and Wave 4 vs. ITable 2: Wave 1 SIPP 96 item totals and Wave 12 vs. 1
bias estimators, given in thousands. Standard errors hav#as estimators, given in thousands. Standard errors were
been used in formingtudentizedias deviateDev., used to formStudentizeddeviatesDev, Dev;,. Cell-
Dev,. HereC indicates Wave 4 adjustment by Cells, based adjustment using Wave 12 responses is indicated
L by Logistic. The asterisk bpoverty recalls its use in  C, Logistic model-based adjustmdnt

Logistic regression model. ) i
Item Wavl BiasC BiasL Dev Dey;,

Item Wavl BiasC BiasL Dey Dey;, Foodst 27268 -1179 261 -3.46 0.63
Foodst 27268 -85.8 4948 -051 277 AFDC 14030 -1452 -459 -498 -1.38
AFDC 14030 -55.3 3384 -0.36 2.10 Mdcd 28173 -397 1169 -1.34 3.26
Mdcd 28173 153.1 778.6 1.13 5.29 SocSec 37087 4142 3844 16.38 13.53
SocSec 37087 699.3 4136 5.62 2.88 Heins 194591 3792 2527 8.30 5.03
Heins 194591 1629.7 12335 7.16 5.22 *Pov 41796 -1528 245 -4.06 3.14
*Pov 41796 -770.3 295 -429 350 Emp 191201 -1449 -2242 -5.08 -6.14
Emp 191201 1894 216.7 1.44 1.32 UnEmp 6406 -744 -811 -5.66 -6.28
UnEmp 6406 -336.7 -375.9 -6.02 -6.50 NILF 66647 2193 3058 793 8.35
NILF 66647 147.3 163.5 1.18 1.01 MAR 114367 5287 2551 13.85 6.61
MAR 114367 1253.2 95.2 6.46 0.52 DIV 18463 -381 -689 -1.82 -3.48
DIV 18463 -206.0 -357.4 -2.03 -3.70

the indicated cr tional items m red in Wav tern is not easy to interpret, because it evidently depends
Re "(;ﬁ E,i tr:: ovs\;s secl ? a Ie , S Ieg\su e | ave J§trongly on the exact choice of the adjustment-cell and
(Recall that the Wave 1 ‘sample” includes only resloon'Iogistic regression models used. We can see this most

ders, with Wave 1 nonresponse taken into account i learly in the tiny logistic-model bias faPov in Table 1,
since Poverty was explicitly chosen as a predictor vari-

the inclusion probabilitiesr;.) Fay-method BRR vari-
ance estimators for these Bias estimators were used t le, and the logistic model with an intercept ensures that

create Standard Errors, and the studentized estimatofz | regressor-weighted summed deviations between re-

(()Buita;{ gl'Ea)bélagez ?Q’fgr:]n Iterleelﬂnaar:;\lgogliumn& The lay- sponse indicators and their model predictors arever
pletely gous. the whole population.

In Table 1, estimated bias tends to be small,.no.morewe should mention that the adjusted estimated totals

than 2% of the Wave 1 total, except thatEmp bias is S ryF /(psmi) of Wave 1 items for Wave 4 and

5% 10 6% downward both in C and L columns, and thewé\e/‘; fzylresglcmijers in Tables 1 and 2 differ slightly
S ) o

logistic-model p|ases fOAFDC’. MdCd are rpughly_ 3%. from the totals reported in these Proceedings by Bai-

The Poverty bias for the logistic model is particularly ley (2006). The differences are due to modifications of

small. The biases for Wave 12 versus Wave 1 adJUSt%i made in Bailey (2006) to reflect second stage adjust-

g?%s;vseuznrr}?erﬁﬁF&Tagii?re[?nziralgllf;gslz tharﬁwents, i.g., the raking of sgmmed weights over certain

have relativ.e Wave 12 e’ldjustmer;t biases’ more than 30; gbdqmalns o demogra}phlc (updated census) totalg and

by both methods, with several greater than 10% tHmming of. resultant Welghts. Such seco.nd stage adjust-
' ' ments are in fact made in SIPP production estimates of

The studentized bias-estimator ratibev: and Dev;, cross-sectional population attributes in later waves.

which should be compared with standard normal per- . ~
P P'We calculated the EHG esﬂmatorB’éffG of standard

centage points, are significant in Wave 4 (Table 1) even _ . .
in some instances where relative biases are small, but ifIrors of for Bias estimators (3), corresponding to all of

. . . x1/2 ;
Wave 12 (Table 2) virtually all the studentized biases ardn€ (Fay-method BRR) standard errois;;;, used in
highly significant. Tables 1 and 2. The results, which we display in Table 3

for Wave 4 and in Table 4 for Wave 12, were very in-
The patterns in relative and studentized bias are similateresting. Within Table 3, the Adjustment-Cell variances
for the two Tables, but not quite for the two adjustment(EHG.C, Fay.C) are generally close, mostly within one
methods. At least it is generally true in Table 1 thator two percent, except for a 7% discrepancydv and

the biases for both adjustment methods have the san9% inUnEmp. However, the differences were remark-
sign whenever both are significantly large; but there areably greater between the Fay and EHG standard errors
several items for which one method but not the otherof the bias in the logistic-regression-based adjustments,
shows a significantly large bias in adjustment. The patnever less than 15-20%, and the ratios inHeéns and
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Table 3: Standard errors calculated for Wave 4 versudable 4: Standard errors calculated for Wave 12 versus
Wave 1 item adjustment biases, respectively via the linWave 1 item adjustment biases, respectively via the lin-
earized EHG versus Fay-BRR methods (EHG vs. Fayearized EHG versus Fay-BRR methods (EHG vs. Fay
prefix), for the Cell-based versus Logistic regression adprefix), for the Cell-based versus Logistic regression ad-
justment methods (C vs. L suffix). All standard errors justment methods (C vs. L suffix). All standard errors
given in thousands. given in thousands.

tem EHG.C Fay.C EHG.L Fay.L tem EHG.C Fay.C EHG.L Fay.L
Foodst 160.6 167.6 260.3 203.0 Foodst 324.6 341.2 566.4 459.1
AFDC 151.1 155.3 190.0 165.9 AFDC 303.0 291.5 408.1 351.6
Mdcd 138.8 135.6 210.5 160.4 Mdcd 300.6 295.7 517.7 411.8
SocSec 127.0 124.3 162.2 143.5 SocSec 266.2 252.8 370.6 284.3
Heins 227.0 2275 574.8 264.5 Heins 469.5 456.3 142.7 584.3
Pov 192.7 1795 300.7 224.2 Pov 384.2 376.6 653.4 472.2
Emp 139.7 1319 567.9 171.4 Emp 283.2 2854 14465 378.6
UnEmp 69.5 56.0 75.2 585 UnEmp 138.2 1314 147.1 130.8
NILF 126.3 1247 230.6 166.9 NILF 268.5 276.6 571.0 375.0
MAR 1917 1941 356.6 188.7 MAR 383.8 418.0 901.9 391.0
DIV 101.7 101.7 116.0 96.6 DIV 200.1 209.3 2224 1974

all, the Fay-method standard erroFay.L) are system-
atically smaller than those&KG.L) estimated from lin-

(1986) using linearized estimators, with the BRR method
Emp cases were greater than 2 and 3 respectively. Oveof Fay (1989) which can be used directly on estimators
which are not linear combinations of Horvitz-Thompson
weighted totals. Since asymptotic statistical theory based

earized attributesz/ by the Ernst, Huggins, and Grill on linearization is ultimately the mathematical justifi-
(1986) formula (10). The pattern of discrepancy betweergation for both methods (Woodruff and Causey 1976,
the two standard error estimators is very similar in Ta-Krewski and Rao 1981), itis very interesting and slightly
ble 4, involving Wave 12 adjustment-biases, to that indjsturbing to find that the results from the two methods
Table 3. disagree meaningfully for many of the SIPP 96 survey
variables and disagree drastically for a few of them. We

5. Conclusions and Further Research Directions propose to study further the reasons for these differences.

Our results suggest that the quality of longitudinal nonre-
sponse adjustment in SIPP 96 is particularly problematic
for late-wave adjustments, with adjustmentsHiins
and UnEmp particularly biased in Wave 4, aritkins,

Acknowledgments

We gratefully acknowledge the help of Mahdi Sundukchi
and John Boies of DSMD and Julie Tsay of SRD in file

SocSec, UnEmp, NILF, andMar especially biased in L . )
Wave 12. However the assessed magnitudes of bia@cqwsmon. Rick Valliant made some helpful comments
’ bout an earlier writeup on SIPP variance estimation.

are highly dependent on the specific adjustment metho@lost helpful of all, Reid Rottach, formerly of DSMD

used. Individual item biases can likely be made small, . ;
gave the first author several extremely clear and patient

like that for Poverty in the logistic method in Table 1, explanations of his 2004 memo and its relation to the
when considered only for the whole population. This ar- )
y Pop VPLX data-structure in the SIPP 96 context.

tificial effect of model-choice disappears when bias sum-

maries are made over selected subdomains. For this rea-
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