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Abstract

This paper studies estimators for the bias in estimated
cross-sectional survey item totals due to attrition nonre-
sponse weighting within a longitudinal survey. Adjust-
ments for between-sample longitudinal nonresponse are
made either by adjustment cells or by logistic regression.
The bias estimators studied were first proposed by Bailey
(2004) in connection with the Census Bureau’s Survey of
Income and Program Participation (SIPP), but are gener-
alized here to include longitudinal survey items, and for-
mulas and estimators for their design-based variances are
given in terms of joint inclusion probabilities. In prac-
tice, variance estimates for the bias estimators are ob-
tained, in the SIPP setting where PSU samples are drawn
as balanced half-sample replicates, using either balanced
replication methods or a formula of Ernst, Huggins and
Grill (1986). The methods are illustrated using cross-
sectional item data from the SIPP 1996 panel.

Keywords: Adjustment cells, Balanced replicates, Lo-
gistic regression, Longitudinal survey, Nonresponse,
Variance estimation, VPLX.

This report is released to inform interested parties of re-
search and encourage discussion. The views expressed
on statistical and methodological issues are those of the
authors and not necessarily those of the Census Bureau.

1. Introduction

One of the persistent problems arising in large longitudi-
nal surveys is to compensate through weighting schemes
for nonresponse errors due to attrition. This problem
is perennial for the Census Bureau’s Survey of Income
and Program Participation (SIPP), which has for many
years been one of the largest national longitudinal sur-
veys, measuring many variables related to family, em-
ployment status, insurance, amounts and sources of in-
come, and indicators of participation in various govern-
ment programs. SIPP’s design follows panels of the or-
der of 30,000–50,000 sampled households over a suc-
cession of staggered waves every four months for total

durations typically of 3 years (SIPP User’s Guide 2001).
Attrition over the life of a panel is of the order of 30%:
of the 94, 444 persons responding in Wave 1 of SIPP 96,
14% were lost by Wave 4, and 30% by the end of the
panel, Wave 12.

While some aspects of the quality of reported data from a
survey like SIPP can be judged only by comparing with
related data from other sources, the problem of ascer-
taining and compensating for the biases due to attrition
is largely a matter to be explored through internal con-
sideration of the longitudinal data from the same sur-
vey. This is because the precise demographic and survey-
design features and incentives associated with attrition
are likely to be very different for another survey. At first
sight, the possibility of assessing nonresponse biases by
a purely internal statistical examination of survey data
seems counterintuitive. That is especially so in a survey
like SIPP, where the precise variables being measured —
such as marriage and divorce, poverty or changes in em-
ployment status for one or more jobs between successive
instances of followup questioning — will directly affect
the chance of finding a subject at home and willing to
respond to the survey’s followup. However, by examin-
ing adjusted estimates of totals ofwave 1cross-sectional
variables, we separate the modeling of the propensity to
respond from later changes in surveyed items.

Bailey (2004) studied the bias due to each of a number
of attrition adjustment methods in SIPP by calculating
for specific items the differences between the totals es-
timated at wave 1 versus the totals of the same wave-
1 items estimated by nonresponse adjustment of the to-
tals obtained from the wave-t subjects (who responded in
wave 1). The approach of Bailey (2004), which we elab-
orate formally in Section 2, was restricted to single-wave
(cross-sectional) questionnaire items and was purely de-
scriptive in the sense that standard errors for the differ-
ence between the wave-1 and adjusted wave-t totals were
not provided. The main methods of attrition nonresponse
adjustment he considered were Horvitz-Thompson esti-
mators (S̈arndal et al. 1992, pp. 42ff.) with weights de-
rived either from a moderate number (of the order of 100,
within a survey of more than 30,000 households) of ad-
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justment cells or from a logistic regression model, spec-
ified in terms of Wave-1 items.

In this paper, we broaden Bailey’s (2004) approach to
provide formulas and estimators of the standard errors
for the estimators of bias in estimating wave-1 cross-
sectional item totals using adjusted wave-4 or wave-12
data. The estimating formulas given here for biases and
standard errors generalize immediately to cover the case
of bias estimation for longitudinal item totals based on
early-wave versus adjusted later-wave data.

Exact variances of the bias estimators, and unbiased es-
timators for them, require knowledge of joint inclusion
probabilities which are generally not available when, as
in SIPP, the wave 1 inclusion weights take into account
wave 1 nonresponse and are raked andsecond-stage ad-
justed. However, the SIPP 1990 redesign incorporated
a feature of two balanced replicate samples within each
sampled PSU. Using a theoretical formula of Ernst, Hug-
gins and Grill (1986), we provide and implement closed-
form and balanced repeated replicate (BRR) estimators
of variance for the bias estimators we study.

The paper is organized as follows. Section 2 gives for-
mulas from sample survey theory for estimating attri-
tion nonresponse biases. Section 3 gives variance formu-
las, in terms of joint inclusion probabilities, of designed
replicates, and of balanced repeated replicates as imple-
mented in the Census Bureau’s VPLX software. Sec-
tion 4 illustrates and interprets the bias estimators and
their estimated standard errors for the same eleven SIPP
96 (cross-sectional) items studied in Bailey’s (2004) re-
port, and the alternative estimators for standard errors are
compared. Finally, tentative conclusions are drawn about
the magnitudes and significance of SIPP biases due to
attrition, and about important directions for further re-
search.

2. Bias Estimation Formulas

Suppose that a sampleS of subjects is drawn from
sampling frameU , with single inclusion-probabilities
{πi}i∈U and joint inclusion probabilities{πij}i, j∈U .
Suppose that ‘baseline’ observations(xi, yB

i , ri) are
recorded for alli ∈ S, where yB

i is an item of interest,
xi is a vector of auxiliary data, andri is the indicator of
followup response. Suppose also thatyF

i denotes a fol-
lowup measurement which is potentially defined for all
population members but which is actually recorded only
for i ∈ S such thatri = 1. As is often done in survey
theory, we treat estimated totals in a design-based frame-
work except that the response indicatorsri are treated as
random variables conditioned onS, i.e., on all first-stage
data. It can be assumed thatπi, πij are known, but that

E(ri) = P (ri = 1) and the corresponding conditional
probabilities pi = P (ri = 1 | S) are not known. The
target parameter is

ϑ = tyF − tyB =
∑
i∈U

(yF
i − yB

i ),

where here and in what follows we adopt the standard
notations that for any attributezi, i ∈ U , the frame-
population total istz =

∑
i∈U zi, and the corresponding

Horvitz-Thompson estimator iŝtz =
∑

i∈S zi/πi.

In this setup, the reciprocal probabilitiesπ−1
i are as-

sumed to be weights which adjust correctly for first-stage
(Wave-1) nonresponse. The quantitiesyB

i are the first-
stage measured survey variables of interest, usually first-
stage cross-sectional survey data. In actual practice,yF

i

would be the corresponding variables which could be ob-
served at a specified later stage (Wave) of the survey. The
target parameter would then be the between-wave change
in population total of they attribute. However, to avoid
confounding the true between-wave change with the er-
rors we introduce due to sampling variability and impre-
cise modelling or estimation of the conditional probabil-
ities pi, we follow Bailey (2004) in the artificial choice
yF

i = yB
i for all i, making the target parameterϑ = 0

known, and allowing us to evaluate the effectiveness of
adjustments made for later-wave nonresponse.

Now if the conditional probabilitiespi = E(ri|S) =
P (ri = 1 | S) wereknown, then the general unbiased
estimator ofϑ = tyF −tyB would be

∑
i∈S (riy

F
i /pi−

yB
i )/πi. The actual estimator̂ϑ that we use depends on

an estimatorp̂i for pi under a parametric model (two
specific examples of which will be discussed in detail
below), within which the random variablesri, i ∈ U,
are assumed to be conditionally independent givenS,
with

pi = P (ri = 1 | S) = g(xi, β) , i ∈ S (1)

where xi is the vector of auxiliary variables observed
for each i ∈ S, and β is a parameter of fixed dimen-
sion (much smaller than the frame population size|U|).
Under model (1), withp̂i = g(xi, β̂) generally derived
from a weighted estimating equation in terms of the data
(ri, i ∈ S), we obtain

Wave-change Estimator=
∑
i∈S

1
πi

(
yF

i

ri

p̂i
− yB

i

)
(2)

Specializing further to the case of interest in this pa-
per, we fix yF

i ≡ yB
i , in which case the estima-

tor (2) can be viewed as the difference between the
later-wave nonresponse-adjusted estimator oftyB and
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the first-Wave Horvitz-Thompson estimator of the same
quantity. Therefore we refer to it simply as the

Bias Estimator=
∑
i∈S

yB
i

πi

( ri

p̂i
− 1

)
(3)

We work with two different models of the form (1).

Adjustment Cell Model.Let the frameU be partitioned
into cells Cj , j = 1, . . . , K, with K fixed, and for
the parameterβ ∈ (0, 1)K , assume

pi = Pr(ri = 1 | i ∈ S) = βj whenever i ∈ Cj ,

where i ∈ U , j = 1, . . . , K. Then the form of estima-
tor for pi = βj for i ∈ Cj , which is unbiased for all
inclusion-probabilitiesπi, is theCell Adjustment-Factor
given by

β̂j =

∑
i∈S∩Cj

riπ
−1
i∑

i∈S∩Cj
π−1

i

(4)

Logistic Regression Model.Alternatively, for β ∈ Rd

a coefficient parameter vector of the same dimensiond
as the covariatexi, we could assume thatpi depends
on individual covariates through the formulapi = (1 +
e−x′iβ)−1 and then estimatêpi = (1+e−x′iβ̂)−1, where
β̂ is the unique solution of the weighted score equation

∑
i∈S

xi
1
πi

(
ri −

ex′i β̂

1 + ex′
i
β̂

)
= 0 (5)

3. Estimating the Variance of Bias Estimators

Our next objective is to find general large-sample ap-
proximate expressions and unbiased estimators for the
variance of the Wave-Change Estimator (2), and its spe-
cialization to the Bias Estimator (3). Under the paramet-
ric model (1), with consistent estimatorŝβ for β and
estimators p̂i = g(xi, β̂) close to pi (uniformly over
i ∈ S with high probability, when the sample size|S|
is large), a principal method for deriving variances is first
to linearizethe estimators of interest, i.e., to approximate
the centered estimators by linear expressions in centered
(Horvitz-Thompson) estimatorŝtz − tz of survey-item
totals tz. We now proceed to do this for the estima-
tor (2), denoted̂ϑ, under the two models considered in
Section 2.

First, in the adjustment cell setting, define the “cellj
attribute ξj” as the indicator which for individuali
is ξj,i = I[i∈Cj ]. Then the adjustment-cell version of

ϑ̂ − ϑ, denoted ϑ̂A − ϑ and defined from (2) with (4)
substituted, is easily seen to have the form

ϑ̂A − ϑ =
K∑

j=1

(
t̂r ξj yF t̂ξj

/t̂r ξj
− tr ξj yF tξj

/tr ξj

− t̂ξj yB + tξj yB

)
(6)

≈
K∑

j=1

( t̂ξj

t̂r ξj

(t̂r ξj yF −tr ξj yF ) +
t̂r ξj yF

t̂r ξj

(t̂ξj −tξj )

−
t̂r ξj yF t̂ξj

t̂2r ξj

(t̂r ξj
− tr ξj

) − t̂ξj yB + tξj yB

)
where ≈ means that the expressions on the left- and
right-hand sides differ by an amount which is negligible
in probability as |S| gets large,with the population-
size |U| much larger still. But this last expression is
approximately equal in the same sense to the difference
t̂zA−tzA , where the “attribute”zA

i is defined whenever
i ∈ Cj by

zA
i =

t̂ξj

t̂r ξj

ri yF
i +

t̂r ξj yF

t̂r ξj

−
t̂r ξj yF t̂ξj

t̂2r ξj

ri − yB
i (7)

Next, under the logistic-regression model for later-wave
nonresponse, we find by first-order Taylor expansion of
(5) in β̂ around the valueβ = βU satisfying

∑
i∈U

xi

(
ri −

ex′i βU

1 + ex′
i
βU

)
= 0

that
β̂ − βU ≈ Î−1 T

where

Î =
∑
i∈S

x⊗2
i

πi

ex′iβ̂

(1 + ex′
i
β̂)2

and

T =
∑
i∈S

xi

πi
(ri −

ex′iβU

1 + ex′
i
βU

)

and for any vectorv, we define the notationv⊗2 =
vv′. Then the centered wave-change estimatorϑ̂L − ϑ,
with ϑ̂L given by (2) after substitutingp̂i = (1 +
e−x′iβ̂)−1 for β̂ satisfying (5), is

ϑ̂L − ϑ ≈ t̂r yF (1+e−x′βU ) − tr yF (1+e−x′βU )

− t̂yB + tyB − t̂′
r x yF e−x′β̂ Î−1 T
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which has asymptotically the same variance as the cen-
tered total-estimator̂tzL − tzL defined in terms of the
‘attribute’

zL
i = ri yF

i (1 + e−x′iβ̂) − yB
i

− t̂′
r x yF e−x′β̂ Î−1 xi (ri − p̂i) (8)

Thus the varianceV (ϑ̂) of ϑ̂ could be found approxi-
mately by the Horvitz-Thompson variance estimator

V̂ (ϑ̂) =
∑

i,k∈S

πik − πiπk

πiπk
· zi

πi
· zk

πk
(9)

respectively for zi ≡ zA
i given by (7) under the

adjustment-cell model and forzi ≡ zL
i given by (8)

under the logistic regression response model. inclusion
probabilities are not available at person-level for many
large surveys like SIPP, because even the single inclu-
sion probabilities πi are constructed by an elaborate
raking and trimming process. Therefore, the variance
formulas (9) are not directly applicable. However, the
linearization idea just described, which is now a stan-
dard method described in textbooks like that of Särndal
et al. (1992), was shown by Woodruff and Causey (1976)
to be applicable within any replicate-based variance es-
timation method. That is, they showed that in large sam-
ples, replicate-based variance estimators of totals of the
artificial attributes which make the linearized estimators
take a Horvitz-Thompson form would provide accurate
approximations to the variances of the estimators be-
ing linearized. We next show how the SIPP design al-
lows replicate-based estimation ofV (ϑ̂) in terms of the
pseudo-attributeszi = zA

i or zL
i respectively under the

adjustment-cell or logistic regression response models.

We begin by describing the 1990 redesign of SIPP in
terms similar to those of Rottach (2004), building on
the standard SIPP documentation (2001). (A more de-
tailed description along the same lines can also be found
in Slud (2006).) SIPP’s complex multistage sampling
design incorporated paired replicate samples within Pri-
mary Sampling Units (PSU’s). At the national level, the
survey is based uponstrata — geographic units nested
within County and MCD — consisting in 1996 of 112
self-representing (SR) strata, subdivided into 372 artifi-
cial PSU’s all of which were sampled, together with 105
nonself-representing (NSR) strata in each of which ex-
actly two were sampled according to the Durbin method
with a fixed system of PSU-level probability weights.
Within each PSU, a systematic sample of (a fixed num-
ber of) persons was drawn, apparently using a single ran-
domized starting index, although the sampled individu-
als are alternately indexed into two classes which Rot-
tach (2004) callshalf-samplesbut which here will be re-

ferred to ashalf-PSU’s. The variance estimation tech-
niques applied to SIPP, beginning with Ernst, Huggins
and Grill (1986) and Fay (1989), treat these half-PSU’s
as though they were two independently drawn samples,
e.g., as though two independently randomized starting
indices had been used.h = 1, 2 denote half-PSU.
Where needed, letSs denote the set of sampled PSU’s
within stratum s. Let j be the index for individuals
within a specified combination(s, i, h), and Ss,i,h de-
note the set of individuals sampled within the half-PSU
(s, i, h). For NSR stratums, let π(s)

1 , π
(s)
2 respectively

denote the inclusion probabilities for the sampled PSU’s
in Ss respectively labelledi = 1 and2, and let π

(s)
∗

denote the joint inclusion probability for both sampled
PSU’s. (There may be more than two PSU’s in SR strata,
but all of their inclusion probabilities are1.) Now denote
the individual inverse weight or single inclusion prob-
ability by π(s,i,h,j) to conform with Section 2, since
individuals now have the quadruple indices(s, i, h, j).
Then the within-PSU weights for sampled individuals in
sampled half-PSU’s(s, i, h) are π

(s)
i / π(s,i,h,j).

In terms of these notations, the estimator of Ernst, Hug-
gins and Grill (1986) which they show to be slightly up-
wardly biased for the variance of the total-estimatort̂z
for an attributez(s,i,h,j), is

V̂EHG =
∑

s∈NSR
bs0

(Zs,1

π
(s)
1

− Zs,2

π
(s)
2

)2

(10)

+
∑
s∈S

bs,1

∑
i∈S∫

(Zs,i,1 − Zs,i,2)2

(π(s)
i )2

where weighted half-PSU and PSU- aggregated totals are
given by

Zs,i,h =
∑

j∈Ssih

π
(s)
i

z(s,i,h,j)

π(s,i,h,j)
, Zs,i =

2∑
h=1

Zs,i,H

and

bs,0 =
π

(s)
1 π

(s)
2

π
(s)
∗

− 1 , bs,1 = max{1− bs,0, 0}

Note that bs,0 ≥ 0 always for the Durbin method, and
bs,0 = 0, bs,1 = 1 whenevers ∈ SR.

In settings like SIPP, where replicate samples are avail-
able within PSU’s, the Census Bureau often uses a vari-
ance estimation method of Fay (1989) implemented in
Fay’s VPLX software. This method generates a set of
distinct multiplicative replicate weight-factorsfs,i,h,r

where r = 1, . . . , R denotes an index (R = 160 for
SIPP 96). The varianceV (ϑ̂) for a possibly nonlinear

ASA Section on Survey Research Methods

3716



estimator τ̂ is then estimated as follows. For each repli-
cater, the estimator is recalculated with first-order in-
clusion weightsπ−1

(s,i,h,j) replaced byfs,i,h,r/π(s,i,h,j)

and the result denoted̂τ (r). In particular, if the estima-
tor of interest waŝtz, then ther’th replicate is

τ̂ (r) =
2∑

h=1

fs,i,h,r
Zs,i,H

π
(s)
i

(11)

The Fay-method (1989) balanced repeated replicate
(BRR) estimator for the variance of̂τ is

V̂Fay =
4
R

R∑
r=1

(
τ̂ (r) − 1

R

R∑
m=1

τ̂ (m)
)2

(12)

As shown by Fay (1989) and described in greater detail
by Rottach (2004) and Slud (2006), if the estimator of in-
terest is a Horvitz-Thompson total (τ̂ = t̂z), then the Fay
method variance estimator approximatesV̂EHG and is
algebraically identical to it if the numberR of replicates
is large enough. (That sufficiently large number, as jus-
tified in Slud 2006, is 3 times the number of NSR strata
minus twice number of NSR strata withbs,1 = 0, plus
the number of SR PSU’s, or 667 in SIPP 96. The num-
ber R of replicates used in SIPP 96 was 160.) In a small
simulation study in Slud (2006),̂VFay and V̂EHG were
checked to be uniformly close to one another in cases
where τ̂ = t̂z and, in all models except those with
greatest imbalance between half-PSU’s, also to be close
to the empirical variance.

Since joint person-level inclusion probabilities are not
available for SIPP, we have two available replicate-based
methods for estimating the variances of the nonlinear
wave-change or bias estimatorŝϑA, ϑ̂L :

(1) The Fay method varianceV̂Fay for the wave-
change estimator̂τ given directly by (2).

(2) The Ernst, Huggins and Grill estimator̂VEHG ap-
plied to the linearized attributeszA

i or zL
i given

respectively by (7) or (8).

A third method which initially seems to be also feasible
— the Fay method applied to the linearized total estima-
tors based on attributeszA

i or zL
i — turns out in both

adjustment models to give algebraically the same value
as the ordinary Fay method (1), because of the identities
ϑ̂A =

∑
i∈S zA

i and ϑ̂L =
∑

i∈S zL
i for each set of

replicate weights.

The two estimatorŝVFay and V̂EHG as in (1)-(2) above
will be calculated and compared in the next Section for
various choices of attributeyB

i = yF
i in SIPP 96. For

other types of survey estimators, not the bias estimators

studied here, linearized and BRR variances have previ-
ously been compared by Sae-Ung et al. (2004) within
the SIPP context.

4. Results for SIPP 96 Data

We summarize the SIPP 96 computed results on wave-
1 minus wave-4 or wave-12 weighted totals, along with
estimated standard errors. We consider totals and dif-
ferences based only on the 94,444 individuals in SIPP
96 who had positive wave-1 weights, which were the
second-stage weights (bwgt) recoded by Julie Tsay and
used in the report of Bailey (2004). Throughout, we
follow Bailey (2004) in studying the following 11 SIPP
cross-sectional items: indicators that the individual liv-
ing in a Household receives (i) Food Stamps (Foodst),
or (ii) Aid to Families with Dependent Children (AFDC);
indicators that the individual receives (iii) Medicaid
(Mdcd), or (iv) Social Security (SocSec); and indica-
tors that the individual (v) has health insurance (Heins),
(vi) is in poverty (Pov), (vii) is employed (Emp),
(viii) is unemployed (UnEmp), (ix) is not in the labor
force (NILF), (x) is married (MAR), or (xi) is divorced
(DIV). The definition of later-wave response used in
most longitudinal SIPP studies and also in the present
paper is: participation in all waves cumulatively up to
the later wave of interest.

The adjustment-cell nonresponse model considered here
is standard for SIPP (Tupek 2002), consisting of 149
cells defined in terms of region and Wave-1 measures of
education, income-level, employment status, race, eth-
nicity, asset types, and numbers of imputed items. All
cells contained sufficiently many individuals for Waves
4 and 12, and weights within a reasonable range, so that
pooling was not necessary. The logistic regression re-
sponse model used the Wave-1 predictor indicator vari-
ables for: Poverty, White Not Hispanic, Black, Renter,
College educated, household ‘reference person’, and two
pairwise interactions (Renter∗College, Black∗College).
The model is the same one used in Bailey (2004), with
the addition of a Poverty indicator. Poverty was included
in the model because it was highly signifcant in ex-
ploratory model fitting, because poverty is used in defin-
ing the standard SIPP set of adjustment cells, and most
of all because we want to note the effect on population-
wide bias estimates for a variable which is also a survey
item whose total is regularly reported.

Table 1 presents the estimators for Wave 1 item totals and
also the biases in those totals resulting from adjustment
between waves 1 and 4, with either the Adjustment-Cell
(BiasC) or Logistic Regression (BiasL) method. The
Wav1 column shows the frame population totalŝty for
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Table 1: Wave 1 SIPP 96 item totals and Wave 4 vs. 1
bias estimators, given in thousands. Standard errors have
been used in formingStudentizedbias deviatesDevC ,
DevL. Here C indicates Wave 4 adjustment by Cells,
L by Logistic. The asterisk byPoverty recalls its use in
Logistic regression model.

Item Wav1 BiasC BiasL DevC DevL
Foodst 27268 -85.8 494.8 -0.51 2.77
AFDC 14030 -55.3 338.4 -0.36 2.10
Mdcd 28173 153.1 778.6 1.13 5.29
SocSec 37087 699.3 413.6 5.62 2.88
Heins 194591 1629.7 1233.5 7.16 5.22
∗Pov 41796 -770.3 29.5 -4.29 3.50
Emp 191201 189.4 216.7 1.44 1.32
UnEmp 6406 -336.7 -375.9 -6.02 -6.50
NILF 66647 147.3 163.5 1.18 1.01
MAR 114367 1253.2 95.2 6.46 0.52
DIV 18463 -206.0 -357.4 -2.03 -3.70

the indicated cross-sectional items measured in Wave 1.
(Recall that the Wave 1 ‘sample’ includes only respon-
ders, with Wave 1 nonresponse taken into account in
the inclusion probabilitiesπi.) Fay-method BRR vari-
ance estimators for these Bias estimators were used to
create Standard Errors, and the studentized estimators
(Bias/SE) are given in the final two columns. The lay-
out for Table 2 is completely analogous.

In Table 1, estimated bias tends to be small, no more
than 2% of the Wave 1 total, except thatUnEmp bias is
5% to 6% downward both in C and L columns, and the
logistic-model biases forAFDC, Mdcd are roughly 3%.
The Poverty bias for the logistic model is particularly
small. The biases for Wave 12 versus Wave 1 adjust-
ments, summarized in Table 2, are generally larger than
for Wave 4. ItemsAFDC, SocSec, UnEmp, NILF all
have relative Wave 12 adjustment biases more than 3%
by both methods, with several greater than 10%.

The studentized bias-estimator ratiosDevC and DevL,
which should be compared with standard normal per-
centage points, are significant in Wave 4 (Table 1) even
in some instances where relative biases are small, but in
Wave 12 (Table 2) virtually all the studentized biases are
highly significant.

The patterns in relative and studentized bias are similar
for the two Tables, but not quite for the two adjustment
methods. At least it is generally true in Table 1 that
the biases for both adjustment methods have the same
sign whenever both are significantly large; but there are
several items for which one method but not the other
shows a significantly large bias in adjustment. The pat-

Table 2: Wave 1 SIPP 96 item totals and Wave 12 vs. 1
bias estimators, given in thousands. Standard errors were
used to formStudentizeddeviatesDevC , DevL. Cell-
based adjustment using Wave 12 responses is indicated
C, Logistic model-based adjustmentL .

Item Wav1 BiasC BiasL DevC DevL
Foodst 27268 -1179 261 -3.46 0.63
AFDC 14030 -1452 -459 -4.98 -1.38
Mdcd 28173 -397 1169 -1.34 3.26
SocSec 37087 4142 3844 16.38 13.53
Heins 194591 3792 2527 8.30 5.03
∗Pov 41796 -1528 245 -4.06 3.14
Emp 191201 -1449 -2242 -5.08 -6.14
UnEmp 6406 -744 -811 -5.66 -6.28
NILF 66647 2193 3058 7.93 8.35
MAR 114367 5287 2551 13.85 6.61
DIV 18463 -381 -689 -1.82 -3.48

tern is not easy to interpret, because it evidently depends
strongly on the exact choice of the adjustment-cell and
logistic regression models used. We can see this most
clearly in the tiny logistic-model bias forPov in Table 1,
since Poverty was explicitly chosen as a predictor vari-
able, and the logistic model with an intercept ensures that
the regressor-weighted summed deviations between re-
sponse indicators and their model predictors are0 over
the whole population.

We should mention that the adjusted estimated totals∑
i∈S ri yF

i /(p̂i πi) of Wave 1 items for Wave 4 and
Wave 12 responders in Tables 1 and 2 differ slightly
from the totals reported in these Proceedings by Bai-
ley (2006). The differences are due to modifications of
πi made in Bailey (2006) to reflect second stage adjust-
ments, i.e., the raking of summed weights over certain
subdomains to demographic (updated census) totals and
trimming of resultant weights. Such second stage adjust-
ments are in fact made in SIPP production estimates of
cross-sectional population attributes in later waves.

We calculated the EHG estimatorŝV 1/2
EHG of standard

errors of for Bias estimators (3), corresponding to all of
the (Fay-method BRR) standard errorŝV 1/2

Fay used in
Tables 1 and 2. The results, which we display in Table 3
for Wave 4 and in Table 4 for Wave 12, were very in-
teresting. Within Table 3, the Adjustment-Cell variances
(EHG.C, Fay.C) are generally close, mostly within one
or two percent, except for a 7% discrepancy inPov and
19% inUnEmp. However, the differences were remark-
ably greater between the Fay and EHG standard errors
of the bias in the logistic-regression-based adjustments,
never less than 15-20%, and the ratios in theHeins and
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Table 3: Standard errors calculated for Wave 4 versus
Wave 1 item adjustment biases, respectively via the lin-
earized EHG versus Fay-BRR methods (EHG vs. Fay
prefix), for the Cell-based versus Logistic regression ad-
justment methods (C vs. L suffix). All standard errors
given in thousands.

Item EHG.C Fay.C EHG.L Fay.L
Foodst 160.6 167.6 260.3 203.0
AFDC 151.1 155.3 190.0 165.9
Mdcd 138.8 135.6 210.5 160.4

SocSec 127.0 124.3 162.2 143.5
Heins 227.0 227.5 574.8 264.5

Pov 192.7 179.5 300.7 224.2
Emp 139.7 131.9 567.9 171.4

UnEmp 69.5 56.0 75.2 58.5
NILF 126.3 124.7 230.6 166.9
MAR 191.7 194.1 356.6 188.7
DIV 101.7 101.7 116.0 96.6

Emp cases were greater than 2 and 3 respectively. Over-
all, the Fay-method standard errors (Fay.L) are system-
atically smaller than those (EHG.L) estimated from lin-
earized attributeszL

i by the Ernst, Huggins, and Grill
(1986) formula (10). The pattern of discrepancy between
the two standard error estimators is very similar in Ta-
ble 4, involving Wave 12 adjustment-biases, to that in
Table 3.

5. Conclusions and Further Research Directions

Our results suggest that the quality of longitudinal nonre-
sponse adjustment in SIPP 96 is particularly problematic
for late-wave adjustments, with adjustments toHeins
andUnEmp particularly biased in Wave 4, andHeins,
SocSec, UnEmp, NILF, andMar especially biased in
Wave 12. However the assessed magnitudes of bias
are highly dependent on the specific adjustment method
used. Individual item biases can likely be made small,
like that forPoverty in the logistic method in Table 1,
when considered only for the whole population. This ar-
tificial effect of model-choice disappears when bias sum-
maries are made over selected subdomains. For this rea-
son, we propose in future work to devise combined or
composite bias measures over subdomains and survey
response variables, and to search for effective model-
based adjustment methods by studying the behavior of
such bias measures on actual SIPP data.

As part of our development of variance estimators for
this bias evaluation study, we compared variance esti-
mators based on a formula of Ernst, Huggins, and Grill

Table 4: Standard errors calculated for Wave 12 versus
Wave 1 item adjustment biases, respectively via the lin-
earized EHG versus Fay-BRR methods (EHG vs. Fay
prefix), for the Cell-based versus Logistic regression ad-
justment methods (C vs. L suffix). All standard errors
given in thousands.

Item EHG.C Fay.C EHG.L Fay.L
Foodst 324.6 341.2 566.4 459.1
AFDC 303.0 291.5 408.1 351.6
Mdcd 300.6 295.7 517.7 411.8

SocSec 266.2 252.8 370.6 284.3
Heins 469.5 456.3 142.7 584.3

Pov 384.2 376.6 653.4 472.2
Emp 283.2 285.4 1446.5 378.6

UnEmp 138.2 131.4 147.1 130.8
NILF 268.5 276.6 571.0 375.0
MAR 383.8 418.0 901.9 391.0
DIV 200.1 209.3 222.4 197.4

(1986) using linearized estimators, with the BRR method
of Fay (1989) which can be used directly on estimators
which are not linear combinations of Horvitz-Thompson
weighted totals. Since asymptotic statistical theory based
on linearization is ultimately the mathematical justifi-
cation for both methods (Woodruff and Causey 1976,
Krewski and Rao 1981), it is very interesting and slightly
disturbing to find that the results from the two methods
disagree meaningfully for many of the SIPP 96 survey
variables and disagree drastically for a few of them. We
propose to study further the reasons for these differences.
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