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Abstract 
 
A new generalized forced quantitative randomized response 
(GFQRR) model for estimating the population total of a 
sensitive variable is proposed and studied under a unified 
setup. The bias and variance expressions are derived under 
unequal probability sampling design. It is shown that the 
models due to Eichhorn and Hayre (1983), Bar-Lev, 
Bobovitch, and Boukai  (2004), Liu and Chow (1976a, 
1976b), Stem and Steinhorst (1984), and Gjestvang and 
Singh (2005) are special cases of the proposed GFQRR 
model. Numerical illustrations are carried out to show the 
performance of the proposed GFQRR model. 
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1. Introduction 
 
The problem of estimation of the population total of a 
sensitive quantitative variable is well known in survey 
sampling. Warner (1965) was the first to suggest an 
ingenuous method to estimate the proportion of sensitive 
characters like induced abortions, drug used etc., through a 
randomization device like a deck of cards, spinners etc. such 
that the respondents’ privacy should be protected. A rich 
growth of literature can be found in Fox and Tracy (1986), 
and Tracy and Mangat (1996). Mangat and Singh (1990) 
proposed a two-stage randomized response model. 
Leysieffer and Warner (1976), and Lanke (1975, 1976) 
studied different randomized response procedures at equal 
level of protection of the respondents, and later Nayak 
(1994), Bhargava (1996), Zou (1997), Bhargava and Singh 
(2001, 2002) and Moors (1997) found that Mangat and 
Singh (1990) and Warner (1965) models remain equally 
efficient at equal protection. Note that this result is not true 
for all the randomized response models. Bhargava (1996), 
the detail is available in Singh (2003) on page no. 939-941, 
shows that Mangat (1994) model remains more efficient 
than Warner (1965) model at equal protection. Note that 
Mangat (1994) model is a special case of Kuk (1990) model. 
Mangat (1994) model is further improved and studied by 
Gjestvang and Singh (2006). Eichorn and Hayre (1983) 
suggested a multiplicative model to collect information on 
sensitive quantitative variables like income, tax evasion, 
amount of drug used etc. According to them, each 
respondent in the sample is requested to report the scrambled 
response ii SYZ = , where iY  is the real value of the sensitive 
quantitative variable, and S  is the scrambling variable 
whose distribution is assumed to be known. In other words, 

( ) θ=SER  and ( ) 2γ=SVR  are assumed to be known and 
positive.  Then an estimator of the population total 

∑= Ω∈i iYY  under the simple random and with replacement 
(SRSWR) sampling is given by: 
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with variance:  
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where 222 θγγ =C , NYY =  and YC yy σ= . We shall 
now discuss a randomized response model recently studied 
by Bar-Lev, Bobovitch, and Boukai  (2004), which we say 
BBB model hereafter. In BBB model, the distribution of the 
responses is given by: 
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In other words, each respondent is requested to rotate a 
spinner unobserved by the interviewer, and if the spinner 
stops in the shaded area, then the respondent is requested to 
report the real response on the sensitive variable, say iY ; and 
if the spinner stops in the non-shaded area, then the 
respondent is requested to report the scrambled response, say 

SYi , where S  is any scrambling variable and its distribution 
is assumed to be known. Assume that ( ) θ=SE  and 

( ) 2γ=SV  are known. Let p  be the proportion of the shaded 
area of the spinner and ( )p−1  be the non-shaded area of the 
spinner as shown in Figure 1.1. 
 

 
Fig. 1.1. BBB randomized response device. 
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An unbiased estimator of population total Y  is given by: 
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with variance under SRSWR sampling given by: 
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where  
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In the next section, we suggest a new generalized forced 
quantitative randomized response (GFQRR) model.  
 
2. Proposed GFQRR model 
 
Consider a population Ω  consisting of N  units. Let iY  , 

Ni ,...,2,1= , be the value of the ith population unit of the 
sensitive quantitative variable. Our aim is to estimate the 
population total ∑= Ω∈i iYY . Let iπ , Ω∈i  be the probability 
of including the ith unit from the population Ω  in the sample 
s  with probability design )(sp . The ith respondent selected 
in the sample is requested to rotate a spinner having three 
statements: 
 

( i. )  report the real value of the sensitive variable, iY , with 
probability 1p  
( ii.) report the scrambled response iSY , with probability 2p  
( iii.) report the fixed response F , with probability 3p . 
 

where S  is a scrambling variable and its distribution is 
assumed to be known. In other words, if RE  is the expected 
value and RV  is the variance over the randomization device 

used in a survey, then θ=)(ER S and 2
R )(V γ=S  are 

assumed to be positive and known. Conclusively, the 
distribution of the ith response is given by: 
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(2.1) 

Proposed Spinner

 
Fig. 2.1. GFQRR spinner. 

 

Consequently, we have the following theorem. 
 

Theorem 2.1. An unbiased estimator of the population total 
Y  is given by: 
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where 1−= iid π  are called design weights. 
Proof. Let pE  and RE  be the expected values over the 
design p  and the randomization device, say spinner, thus 
we have: 
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which proves the theorem. 
 
Theorem 2.2. The minimum variance of the proposed 
estimator pŶ  is given by: 
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(2.3) 

where )( ijjiij πππ −=Θ . 
Proof. Let RV  and pV   denote the variance over the 
randomization device, say spinner, and over the design, we 
have: 
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On differentiating (2.4) with respect to F  and setting equal 
to zero, we have: 
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On substituting (2.5) into (2.4) we get (2.3), it proves the 
theorem. 
 
In the next section, we show that the BBB, Eichhorn and 
Hayre (1983) and Liu ad Chow (1976a, 1976b) models are 
special cases of the proposed GFQRR model. 
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2.1 Special Cases 
 
Case I. If 01 =p , 12 =p , and 03 =p , the proposed GFQRR 
model reduces to the Eichhorn and Hayre (1983) model. 
Case II. If pp =1 , )1(2 pp −= , and 03 =p , the proposed 
GFQRR model reduces to the BBB model.  
Case III. Note that a quantitative forced alternative 
randomization device, due to Liu and Chow (1976a, 1976b), 
is valid only for estimating the proportion of a sensitive 
attribute in a population unlike the proposed model, which 
estimates the average of a quantitative sensitive variable. 
Interestingly, note that if iX  is a qualitative variable, take 1 
and 0 value for a sensitive and non-sensitive attribute in the 
population, set 0=Z  as forced “no” answer, and set 1=F  
as forced “yes” answer, then the present model is reduced to 
an optimized forced alternative randomizing device 
proposed by Stem and Steinhorst (1984). 
 
2.2.  Relative efficiency 
 
Under simple random and without replacement (SRSWOR) 
sampling, we have Nni =π  and )1()1( −−= NNnnijπ . The 
percent relative efficiency (RE) of the proposed GFQRR 
model under SRSWOR sampling with respect to the BBB 
model under SRSWR sampling design is given by: 
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We observe through simulation that the relative efficiency is 
highly sensitive towards the mean value of the scrambling 
variable θ .  If we consider a very large value of θ , then the 
relative efficiency srswor)ˆ,RE(BBB pY  of the proposed 
estimator with respect to the BBB model converges to 100% 
as the value of the scrambling variable’s coefficient of 
variation also becomes large. Following Cochran (1977), the 
value of the coefficient of variation should be around 10% 
for any consistent and practicable data sets. Thus, we 
decided to choose 000,10=N , 100=n , three values of 

9.0,8.0,7.01 == pp , 3/)1(2 12 pp −=  and )1( 213 ppp −−= .  
If 10=θ  and the values of the coefficient of variations of the 
scrambling variable and sensitive variable were kept same, 
that is, γCC y =  were chosen between 0.01 and 0.60 with a 
step of 0.01. Then, the percent relative efficiency of the 
GFQRR model with respect to the BBB model is shown in 
the Figure 2.2. 
 
 

Fig. 2.2. RE of the GFQRR model w ith
           respect to  the BBB model
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If we change 1=θ , and keep the other parameters at the 
same level, then the results are presented in Figure 2.3. 
 

Fig. 2.3. RE of the proposed GFQRR model
          with respect to the BBB model 
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Figure 2.3 shows that if the mean value θ  of the scrambling 
variable is less than one, then more gain is expected from the 
proposed model at higher values of the coefficient of 
variations of the scrambling variable or sensitive variable.  
Note that for higher value of θ , the proposed GFQRR 
model may perform pitiable than the BBB model, thus the 
proposed model could be more beneficial if it is used with a 
scrambling variable having the mean value θ  close to one as 
used by Gupta, Gupta and Singh (2000). The proposed 
model may perform better for higher value of coefficient of 
variation of the scrambling variable in a situation as shown 
in Figure 2.3.  Singh and Mathur (2005) have considered 
situations where the values of the coefficient of variations of 
the scrambling variable and the sensitive variable can be 
between 0 and 6 with a step of 0.1. 
 
Now the estimator (2.2) depends upon F , which in turn 
depends upon iY  values, and hence it is not practicable 
estimator. To overcome this difficulty, we consider a new 
strategy discussed in the next section. 
 
 
 

 CV of the scrambling or sensitive variable 

CV of the scrambling or sensitive variable 
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3. Practical GFQRR Model 
 
In this case, we suggest to take two independent random 
samples 1s  and 2s  from the population Ω  using the 
sampling designs )( 1sp  and )( 2sp , respectively. In the first 
sample 1s , each respondent selected is requested to 
experience the spinner as shown in Figure 3.1: 

 

Proposed Spinner

 
        Fig. 3.1. GFQRR spinner for the first sample. 

 
Note that the value of 1F  has to be decided before doing the 
survey based on the parameters to be used in the second 
spinner used in the second independent survey. Here, this 
proposed GFQRR model differs from the existing 
randomization devises. In other words, although both 
samples are independent, the devices are dependent. 
Consequently, the distribution of the ith response in the first 
sample 1s  is given by: 
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where 1S  is a scrambling variable such that ( ) 11 θ=SER , 

( ) 2
11 γ=SVR   and 2

1
2
1

2
1

θγγ =C  are assumed to be known. 

In the second independent random sample 2s , each 
respondent selected is requested to experience the spinner as 
shown in Figure 3.2: 

 

Proposed Spinner

 
        Fig. 3.2. GFQRR spinner for the second sample. 

In this case, the distribution of the ith response in the second 
sample 2s  is given by: 
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where 
 

 1326 FpFp =  (3.3) 
 

and 2S  is a scrambling variable such that ( ) 22 θ=SER , 

( ) 2
22 γ=SVR  and 2
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Then we have the following theorem: 
 

Theorem 3.1. An unbiased estimator of the population total 
Y  is given by: 
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where )()( 251241 θθ pppp −+−=∆ and 1
11
−= iid π , 1

22
−= iid π  

are the design weights used in the first and second sample 
respectively; and )( 11 SER=θ  and )( 22 SER=θ  are the 
known means of the scrambling variables 1S  and 2S  used in 
the first and second sample, respectively. 
Proof. Taking expected value on both sides of (3.4) we 
have: 

















∆

∑−∑

=
∈∈ 21

2211
)ˆ( si

ii
si

ii

ff

ZdZd

EYE  

      
















−+−

∑−∑

=
∈∈

)()( 251241

2211
21

θθ pppp

ZdZd

EE si
ii

si
ii

Rp  

       
















−+−

∑ −+−∑ ++
= Ω∈Ω∈

)()(

)()(

251241

2525413121

θθ

θθ

pppp

NFpYppNFpYpp
i

i
i

i  
       YY

i
i =∑=

Ω∈
 

which proves the theorem. 
 
Theorem 3.2. The minimum variance of the proposed 
estimator ffŶ  is given by: 
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Proof. Let RV  and pV  denote the variance over the 
randomization device and over the designs used in the 
independent samples, then: 
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Now we have: 
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Similarly,  
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On substituting (3.7) and (3.8) into equation (3.6) and using 
the relation (3.3) and then setting:  
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(3.9) 
 
The use of (3.9) in (3.6) leads to (3.5), and which proves the 
Theorem 3.2. Under simple random and with replacement 
(SRSWR) sampling the results reduce to Gjestvang and 
Singh (2005). Note that it is not easy to suggest an unbiased 
estimator of variance if the value of 1F  is unknown. 
 
3.1. Relative efficiency 
 
Assuming 221 nnn == , then the percent relative efficiency 
(RE) of the proposed GFQRR model under SRSWOR 
sampling with respect to BBB model under SRSWR 
sampling is given by: 
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(3.1.1) 
 
The relative efficiency expression in (3.1.1) depends upon 
several choices. Thus, to look at the behavior of the 
performance of the proposed GFQRR model with respect to 
BBB model, we considered a situation where 000,10=N , 

100=n , ,500=θ 1001 =θ , 9002 =θ , 8.01 == PP  (equal 
protection in the both GFQRR and BBB models), 

3)1(2 12 PP −= , 2.04 =P , and 3)1(2 45 PP −= . The value of 
the coefficient of variation yC  of the sensitive variable was 
changed between 0.1 and 0.9 with a step of 0.2 as shown in 
Figure 3.3. The values of the coefficient of variation of the 
three scrambling variables were kept same between 0.1 and 
6 with a step of 0.1 by following Singh and Mathur (2005), 
that is 

21 γγγ CCC == . If the value of coefficient of variation 
of the scrambling variable becomes more than 2, then the RE 
becomes almost constant. 
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Fig. 3.3. Relative efficiency of the proposed GFQRR 
model with respect to BBB model
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More gains are expected if the value of coefficient of 
variation of the study variable is high, say 0.9, and the 
value of the coefficient of variation of the scrambling 
variable is near 0.1. In a real survey, the practicable 
values of coefficient of variations of the scrambling and 
sensitive variables are around 0.1 by following Cochran 
(1977). For such situations, the relative efficiency is 
shown in Figures 2.2, 2.3 and 3.3. Thus, for these types of 
practical situations, it is always possible to adjust the 
randomization devices such that the proposed GFQRR 
model performs better than the BBB model.  
 
Summary 
 
The proposed generalized forced quantitative randomized 
response (GFQRR) model has been found to be more 
efficient than the recently developed BBB model. In 
addition to that the proposed GFQRR model could be 
used under more advanced sampling schemes such as: 
Simple random without replacement (SRSWOR) 
sampling, Probability proportional to size and without 
replacement (PPSWOR) sampling, and hence has more 
practical utility than the BBB model. 
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