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Abstract

We discovered there is a choice of weights that builds a
bridge between the GREG proposed by Deville and Sarndal
(1992) and the linear regression estimator due to Hansen,
Hurwitz, and Madow (1953) while using one auxiliary
variable. It gives the same result as given in Singh (2003,
2004, 2006a, 2006b) and Stearns and Singh (2005) for
unequal probability sampling by using two calibration
constraints in the presence of one auxiliary variable. Thus,
these approaches can be considered as alternative to each
other while considering use of one auxiliary variable. The
bridge developed here reconfirms that the sum of the
calibrated weights should be equal to the sum of the design
weights in a given sample. The approach by Singh (2003,
2004, 2006a, 2006b), and Stearns and Singh (2005) seems
simple while using multiauxiliary information.

Keywords: Calibration; Linear regression estimator; GREG;
Estimation of total and variance.

1. Introduction

The problem of calibration of design weights is well known
in the literature of survey sampling. Deville and Sarndal
(1992) used the method of calibration of estimators using
auxiliary information. Their calibration method provides a
class of estimators. Some of the well-known estimators such
as classical ratio estimator belong to this class. Several
authors including Singh (2003, 2004, 2006a, 2006b), Farrell
and Singh (2002, 2005), Wu and Sitter (2001), Sitter and Wu
(2002), Wu (2003), Estevao and Sérndal (2003), Kott (2003,
2006) and Montanari and Ronalli (2005) among others
considered the Deville and Sirndal (1992) method and
derived important calibrated estimators. But, so far
derivation of the traditional linear regression estimator from
the class of calibrated estimators derived by Deville and
Sérndal (1992) method has not been found in the literature.
Here we have considered a subclass of the class of calibrated
estimators provided by Deville and Sérndal (1992). In this
proposed subclass, the sum of calibrated weights remains
equal to the sum of design weights as pointed out by Singh
(2003, 2004, 2006a, 2006b). The traditional regression
estimator is found to belong to the proposed sub class.

Consider a finite population Q={1,2,..,i,., Njof N units,
from which a probability sample s(scQ) of fixed size gggig

drawn with probability p(s) according to a given sampling
design p. The inclusion probabilities 7; = Pr(ices) and
7 € Pr(i# jes) are assumed to be strictly positive and
known. Let y; be the value of the variable of interest, y,

for the i unit of the population, with which is also
associated an auxiliary variable x;. For the element ies, we
observe (y;, x;). The population total of the auxiliary
variable x, X =3,;,.qx; , is assumed to be known. The
objective is to estimate the population total Y =3, ;.

Deville and Séarndal (1992) proposed the calibrated

estimator:
);ds = 'ZW,‘)/,' (1~1)
IES
for the Horvitz and Thompson (1952) estimator:
);HT = Z&: 24y (1.2)

ies 7T ies
where d; =1/z; and the calibrated weights w;, ies are
obtained by minimizing chi-square type distance function:

A
ies  did;
subject to the calibration constraint:
Swix;=X (1.4)

ies
Here ¢q;, ies are suitably chosen weights. In many
situations the value of ¢; =1. The form of the estimator
(1.1) depends upon the choice of g;. Minimization of (1.3)
subject to calibration equation (1.4), leads to the calibrated

weights:
+M(X— Zdixl-]
Zdiqixiz ies
Substitution of the value of w; from (1.5) in (1.1) leads to
the generalized regression (GREG) estimator of the
population total Y as:

YoreG = Ldi; +ﬁd{X_ Zdixij (1.6)

ies ies

w; =d;

(1.5)

where

,éds = [Zvdiqixiyij/[zdiqixizj

An approximate variance of the calibrated estimator YgrpG

(1.7)

for a large sample size provided by Deville and Sirndal
(1992) as:
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5 1
VDS(YGREG):EZ > Dy-ﬂg(diEi—djEj)z
i#jeQ

(1.8)

2
where Dl] = (7[1'7[] - 7Tjj )/7[11 , B= ZiGQq,-xiy,-/Zl-Equ-x,- and
Ei = yi - B}Ci .

A consistent and approximate unbiased estimator of variance
proposed by them is:

(1.9)

N N 1 5
VDS(GREG) == Z Z Djj(wie; —wje;)
2 ies jes o
with e; = y; — By -
2. Linear regression estimator using calibration

Deville and Séarndal (1992) imposed the constraint
Yicswix;i = X under the assumption that the value of the

calibrated estimator Ygq = ¥;. w;y; for the total Y should be
equal to the known total X if y, is replaced by X; . In this

section we find how one can derive the ordinary linear
regression estimator using the calibrating weights derived by
Deville and Sarndal (1992).

Let us substitute:

*
Yd,q;

ies

1

des
Xdigix; N

1es

q; = q; 2.0

in the expression (1.5). The substitution yields:

Wi = Wi

di‘l;'k[xi Sdiq; - Zdiq:xij
s ies | ies [ Yoy d[x,J 22)

2 .
% * ¥ ies
['Zdiqz‘ xizj[idiql’ ]—[Zdﬂi xi]
les 1es les

Finally putting W, = w,; in the equation (1.1), we get:

Yas =Y = Ypur +Iéols(X_)%HT) (2.3)

* * * *
( >diq; J[ xd;q; xiJ’iJ —[ >d;q; yiJ[ Yd;q; xij
lES 1es l1ES 1es
2
* * 2 *
[ > d;q; j[ 2d;q; xj j—[ >Yd;q; xz}
I1ES I1ES 1ES

It should be worth noting that the calibrated weights w,,,

with

Bols =

i € s satisfy the constraints:

Zwixp =X (2.4)
les

and
Tw;=Xd; (2.5)
les les

Note that the condition (2.5) is due to Singh (2003, 2004,
2006a, 2006b). It builds a bridge between the GREG due to
Deville and Sarndal (1992) and the linear regression
estimator due to Hansen, Hurwitz and Madow (I%ééb

Asymptotic properties of the estimator (2.3) are studied by
Sampath and Chandra (1990). It reconfirms that there is a
strong need to set constraint (2.5) into all the statistical
packages like GES, SUDDAN etc. while doing calibration
of design weights. Caution: Choice of weights ¢; in (2.1)

may lead to a negative chi-square distance due to Deville
and Sarndal (1992).

Note that for simple random and without replacement
(SRSWOR) sampling, the Wu and Sitter (2001), and the
Estevao and Sarndal (2003) calibration constraint is also a
special case of (2.5) for d; = N/n .

For SRSWOR, 7; =n/N and the estimator (2.3) reduces to:
?LR = N[ﬁs + Bols ()? — X )] (2.6)
where ¥, =Y y;/n, Xg=Xx;/n, and X=3Xx;/N.

ies ies ies

In particular q;k =1, 3, reduces to Sxy / s)% and we get:

~ N —
YLR = N7 +—5-(X - %)

Sx

2.7)

1 — _ . .
where sy, = (n—1)" ¥ (x; ~¥)y; - ¥). The estimator (2.7) is
i=
the famous traditional linear regression estimator due to
Hansen, Hurwitz and Madow (1953) in the presence of a
single auxiliary variable.

3. Variance estimation

Following Singh, Horn and Yu (1998), a calibrated estimator
of the variance of the linear regression estimator Y;z in
(2.3) is given by:

. . 1
Vs(YLR) =5 2 Dji®;(s)

i#jes

3.1)

where @ (s) = (wioér —w joéj- )> and é; can be obtained by:
min. Zdl-q;-kéjz
ies
estimator of variance of the linear regression as:
s s 1
Vss(YLR) =3 2 2Q; ()P (s)

i£jes

. Further, we consider a new calibrated

(3.2)

where Q;;(s) are weights such that the chi-square distance:
Q;i(s)—Dj;
D= lz 3 M
2 i#jes DijQij(S)
is minimum subject to a calibration constraint, given by:

1 ~
5 X ZQU‘(S)5U =Vyg (Xmr)

i#jes

(3.3)

(3.4)

1 . .
where Vsyg =E > > Dij”ijéij and é,/ = (djx; _djxj)z .

i#jeQ
Obviously, for the minimization of (3.3) subject to (3.4), the
Lagrange function is given by:

LM:l z ZM—;: 1

> Y Q)8 ~ Veyg (XHT)
i#jes

3.5
D;jj0ij () 2izjes G2



ASA Section on Survey Research Methods

with  as a Lagrange multiplier. On setting oLM/60;; (s) =0,

we have:
Dy 0;i (s)
Qi (s)= Dy +u [%Ja,-j (3.6)

On using (3.4) in (3.6) we have:
1= 4 e () Py Xy )}/.z. L0050 (37
i#jes :

and noting I}Syg(f(HT) =% Y XD;;5; denotes the Sen (1953)
izjes =

and Yates and Grundy (1953) form of the estimator of

variance. On substituting (3.7) into (3.2), we obtain a new

calibrated estimator of variance of the linear regression

estimator Y g in (2.3) as:

B

[ > ZDU'Qg/(S)5g/q)y'(S)][ X XDyg; (S)]—[ )
B _ i#jes i#jes i

Ves(ILR) = Vs (Y LR) + Ba [ayg (X 1) — Veyo (XT) (3.8)
where
2 2D 0 ()6 P s (s)
A i#jes
By = > (3.9)
S 3 D;0; ()5
i#jes
Now choosing:
2 XDjjq;(s)
* i#jes
0;i()=0;;()=q;;)| —c—————— (3.10)
Y Y T 2 £Dya(9)8; oy
i#jes
with 4 (s) as a suitable weight we get:
2Dy ()5 }[Z ZDzy'%j(S)‘Di/(S)@jJ (.11
l¢j €S l¢j €S

2
[ ) ZDl'qu'j(s)é‘;%][ > ZD;']'Q;']'(S)]_[ z ZDI_'jqij(S)gy‘]
i#jes i#jes i#jes

The choice of Q;(s) in (3.10) satisfies constraints:

% T Q)8 =V, [Furr) (3.12)
i#jes
and
z X Q?}(s): 2 X Dy (3.13)

i# jes I# jes

Again note that the condition (3.13) is due to Singh (2003,
2004, 2006a, 2006b). Thus it builds a bridge between the
estimator of variance due to Singh, Horn and Yu (1998) and

Singh (2003, 2004, 2006a).

Remark: Note carefully if w; =d; and e; =y;, then the
estimator Y{ g =Ygy, and by following Singh, Horn,

Chowdhury and Yu (1999), the ratio V(% g )/ (N2(1 - £)/n}
becomes a traditional linear regression estimator of finite

N _
population variance, 0'; =N (Y -Y )2, under SRSWOR
i=l

sampling given by:

63 =53+ Br(ST-s7) (3-19)

where (1 - 1)S§ = (i -7 . B = (s — fiaofeon)/ Gitoa — i)

i=1

N _ R _ _\S

(V12 = 3007 and o= = S5 -7
= les

which was obtained by Das and Tripathi (1978). Note that

the estimator (3.14) has also independently studied by

Srivastava and Jhajj (1980) and Isaki (1983).

Now the question arises of how the calibration can be done
if there are two or more auxiliary variables. To answer this

question we have the following section:
3691

4. Use of Multi-Auxiliary Information
4.1. GREG with two auxiliary variables

Suppose X; and X, are the known totals of two auxiliary
characters Xj; and X»;, for i=1,2,.., N. The minimization
of the chi-square distance function:

D= 'Z(Wi ~d; ) (d;q;)"

les

@.1.1)

where ¢; are suitably chosen constants such that the

estimator depends upon its choice, subject to the two linear
calibration constraints given by:

Zwix; =X (4.1.2)
IES

and
Zwixy; =X,
ies

In this case the Lagrange function L is given by:

L= (w—d;(dig;)"! —Zﬂl[iwﬂu _Xl:l - Ziz[iwﬂfzi —Xz:l

ies ies ies

4.1.3)

(4.1.4)
On differentiating (4.1.4) with respect to w; and equating to

zero we have:

Wi = d; + A1digix; + Aod;gixo, (4.1.5)

On substituting (4.1.5) in (4.1.2) and (4.1.3), respectively we
have:

€S les

ﬂ“l(zdﬂixlzij + 12( Zdif]ixnxzi] = [Xl - ZdixliJ (4.1.6)

and
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ﬂl(idiqixlixzi}r /12( 'Zdiqix%i] = (Xz - 'zdiXZi] (4.1.7)
JISAY

lES 1ES

The system of equations given by (4.1.6) and (4.1.7) can be
written as:

2

Sdigixii,  Xdigixxo; X - Xdx;

les les — l1Ees (4.1.8)
2

T digix Xy, Xdiqix) Xy = Xdixy;

les les les

Solving the above system of equations for 4, and 4, and
on substituting these values in (4.1.5) we obtain the optimal
weights given by:

di‘]ixli|:( Xi-X dixliJ 3 digixd;- (Xr_Z dixZi]_z diqixliXZi:|

ies ies ies ies

2
2 2
( Xd;g;xi; j( X diqixzij - ( ) diqz‘xliXZiJ
1ES 1ES U=

diqixziHXr ZdixZi]zdiqixlzi_ [X - zdixlisziqixliXZi:|

ies ies ies ies

2
[Zdiqixlzi J[ Z di%x%i] - [ZdiQixlixZi]
€S 1ES 1€8

i i

(4.1.9)
On inserting this value of w; in the GREG estimator:
yG = Twiyi (4.1.10)
les

We obtain the GREG with two auxiliary variables as:

G = 'Zdiyi‘hél(dg)(X] —)Afl)+,é2(ds)()(2 _)}2) (4.1.11)
les
where )?_j = S dpxji, j=12,

ies

2
Ldigixiyi X diqixd; — 1diqixiyi diqixixg;

ies ies ies ies
2
2 2
[.Z diqixli]{ z diqix2i] - [ z diqixlix2i]
1es 1ES 1es

2
Ldigqixoiyi ¥ digixii — 2diqix1iy; Ldiqixixoi

ies i€s ies ies

2
2 2
[.Z di‘]ixli]( z diqix2i] - [ z diqixlix2i]
les lES 1es

4.2 Linear regression with two auxiliary variables

Bias) = (4.1.12)

and

Poias) = (4.1.13)

Now let us consider the additional constraint:

>wi=xd;

ies ies

4.2.1)

then the Lagrange’s function becomes:

L = Z(Wi_di)z(di%)l_250|: Z(Wi_di):|

ies ies

(4.2.2)

—251[ Zwixy; —Xl}wz[_iwl'm —Xz}

ies ies

3692

where 5y, §; and §, are called Lagrange’s multipliers. On
setting oL/ow; =0, we get:

wi =d; +00d;q; +01d;q;x); +02d;q;xp;  (4.2.3)
The values of &y, §; and &, are obtained by solving a
system of equations given by:

A3,303x1 = D3y

where
Xdigqi,  Zdigixy,  Xdigixg;
les €S JASAY
2
A3z = _Zdiq[xli, z diq;xy;, _Zd[qixwm ’
les 1es 1es
2
Tdiqixai,  Xdiqixixais X diqixy;
Lies ies ies |
o 0
(X1 - Xdigixii)
93x1 =| 01 | and D3y = <

(Xp - Xdig;xy;)
é‘2 ies

The linear regression estimator with two auxiliary variables
X; and X, is given by:

Vreg(2) = Tdiyi + Bi(ols)(X1 = X))+ Pooisy (X2 — X2)  (4.2.4)
1ES

where

. 1
Bi(ols) =XH[ Zd;qjx; ][ vzdiqixliXZij*[.Zdiq,‘xli ][Z dl-q,-xi.]}[ de,-qui]
1es les les 1es les
2
2
+ ( Zdi‘]ij( Zdiqix2ij_[ zdiinZij [ zdiqixliyiJ
ies ies ies ies

+ {( 2d;gix; J[ z diinZi] - ( z d[%’][ 2diqixxi ]}[ z d[QiXZiJ’i]:|
les les les les les

(4.2.5)
and

, 1
Baols) :XH[ Tdigixi ][ _Zdiqixlixzij_(_Zdi‘Iixzi J(Z di‘Iixlzi ]}[ _Zdiqui]
IES IES 1ES 1ES IES
+ {[ 2diqixy; j( z diqix2i] - [AZ diq; j( z diqz‘xlixzi]}{ z di‘]ixliyij
1S I1ES €S 1ES €8

2
+ (Zdiqz'j[Z di‘]ixlziJ—{ZdiQixli] [Zdi‘]ixZiyij
ies ies ies ies

(4.2.6)
with A = det(43,3 ).

Now it is not easy to find ¢; such that /él(ds) reduces to

Bioisy and fpas) reduces to S, -
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