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Abstract

Iowa’s State Board of Education conducted a stratified
multi-stage sample survey to study the availability of em-
ployment preparation courses and the degree to which stu-
dents in Iowa’s public high schools enroll in those courses.
The design and estimation options for the survey motivated
a series of research questions, which the authors have ex-
plored through simulation.

Keywords: Generalized variance functions; One PSU per
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1. Introduction

In 2004, representatives of Iowa’s State Board of Education
approached the Center for Survey Statistics and Method-
ology (CSSM) at Iowa State University (ISU) for help in
planning a series of surveys. The purpose of one of the sur-
veys is to study the availability of employment preparation
(EP) courses and the degree to which students in Iowa’s
public high schools enroll in those courses. EP courses
belong to a diverse set of courses including those in in-
formation technology, accounting and business, trades and
professions, and agricultural management (Bradby et al.
1995). A primary concern of the survey is to assess the
degree to which students in Iowa’s public school districts,
which vary greatly in size, community characteristics, and
ruralness, have equal opportunities to prepare in school for
employment, college, and life in general.

The sample survey was designed to produce estimates of
average numbers of EP courses for the State of Iowa and
populations of small (less than 250 students), medium (250
to less than 2500 students), and large (2500 or more stu-
dents) school districts. Districts in Iowa are organized into
twelve area education agencies (AEAs) for the purposes of
administration and support. District size and AEA were
used as stratifying variables. Districts were sampled with
probability proportional to total enrollment size. For polit-
ical reasons, all schools in selected districts were included in
data collection. Only large and one medium school district
in Iowa have more than one high school. Due to their ex-
treme size, all large districts were included with certainty.
A simple random sample of students was selected in each
selected school. The samples were split between grade nine
and grade twelve students, so that one could compare the
first year high school students in 2005 to the ninth grade
records of the seniors in 2005. A stratified three-stage de-
sign was proposed and implemented. Population quantities
of interest, estimators, and estimators of variance are de-
scribed in Section 2.

The design and estimation options for the survey given
the budget restrictions motivated a series of research ques-
tions, which the authors have explored through simulation
(Hewitt and Larsen 2005, 2006; Lu 2005). A population
database of twelfth grade students was created through sim-
ulation. The numbers of EP courses taken by students in
a school were generated as independent Poisson random
variables with a rate for the school. The Poisson rates were
generated independently from a random effects model with
main effects due to school size and AEA, which are the
factors used for the actual stratification. Based on examin-
ing preliminary data, the simulations did a reasonable job
of creating a population database not unlike, in terms of
number of courses taken by students, that being gathered
in the survey. The results presented in this paper are
not actual results from the survey and should not
be interpreted as characterizing schools in the State
of Iowa.

The first research question concerns sampling and the fact
that schools have very different levels of enrollment. Alter-
natives for implementing probability proportional to size
sampling are investigated under two assumptions concern-
ing the number of primary sampling units. Methods of
Murthy, Brewer, and Durbin are reviewed and results us-
ing Horvitz-Thompson and ratio estimators are presented
in Section 3.

Second, data from only a single school were collected in
some strata. Variance estimation using collapsed strata
variance estimators followed by synthetic variance redistri-
bution and generalized variance functions for designs with
one primary sampling unit per stratum are proposed. Re-
sults in Section 4 suggest that it might be possible to pro-
duce reasonable estimates of stratum variance in one-per-
stratum designs in some circumstances.

Third, resources for conducting the survey could be redis-
tributed from small to big schools. This means that the de-
sign is not invariant in the sense of Särndal, Swensson, and
Wretman (1992, page 134). Comparisons of variance esti-
mation for Horvitz-Thompson and ratio estimators in an
invariant (multi-stage) and a non-invariant (multi-phase)
designs which correspond to circumstances with and with-
out resource redistribution are reported in Section 5.

Fourth, future surveys could potentially include more
schools. The trade-off between adding more schools and
reducing the number of students per school in terms of pre-
cision of estimation are presented under different assump-
tions concerning the cost of adding schools to the survey in
Section 6.

Section 7 is a summary, gives recommendations for future
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surveys, and suggests possible future research work.

2. Iowa’s State Board of Education Employment
Preparation Survey

The design of Iowa’s State Board of Education Employ-
ment Preparation (EP) survey was described in general
in Section 1. First, estimators for a stratified three-stage
design with some strata having only one primary sampling
unit (PSU) will be discussed. Second, the process of
redistributing resources will be explicated.

2.1 Stratified Three-Stage Design Estimators

Two kinds of estimators are proposed to estimate the to-
tal number of employment preparation courses taken by
high school students in a stratum. The schools in districts
of a particular size within an AEA are the members of a
stratum. The first estimator used in this paper is the π-
expansion estimator of Horvitz-Thompson (HT; 1952). In
a multi-stage sampling design, the inclusion probability is
a product of probabilities of selection at all stages. In the
EP survey, within strata defined by district size and AEA,
the probability of selecting a student is the product of the
probabilities of selecting districts, schools within districts,
and the student within a school. In a multi-phase sampling,
which is relevant for the non-invariant designs discussed in
the next subsection and Section 5, an adjusted HT estima-
tor, called the π? estimator, in the terminology of Särndal,
Swensson, and Wretman (1992, page 347), is suggested.

The second estimator used in this paper is the ratio estima-
tor (Cochran 1977, chapter 6). Ratio estimation works well
when a convenient and inexpensive auxiliary variable that
is correlated with the response variable is available for all
units in the population. Enrollment is known for all schools
and is positively correlated with the number of enrollments
in EP courses in the school.

The estimates of totals in the whole state, size levels,
and AEAs are the sum of estimates of totals in all strata
contained in those aggregations. The estimates of means
are the estimates of totals divided by the number of
students in the relevant aggregation.

2.2 Survey Resources Redistribution Process

In the planning phase of the actual survey, ISBE informed
CSSM that it would be possible to collect data at sixty
(60) schools. In the design with 60 schools, the 22 schools
in eight large districts in seven AEAs were taken with cer-
tainty. The remaining 38 schools were split evenly between
the medium and small school districts; 19 schools were se-
lected from twelve strata in each size level. That means
in each size level seven strata were assigned two PSUs and
the remaining five strata had only one PSU sampled. The
sample in each school included students from four popu-
lation subgroups defined by two factors: ninth or twelfth
grade and general or special (having Individual Education

Plans, or IEPs) education groups. To sample a total of
12,000 students in 60 schools, 50 students on average were
selected from each group. If the number of students in a
group was substantially larger than 50, then initially 50 stu-
dents were selected from the group. Most schools, however,
had fewer than 50 IEP students total in grades 9 and 12.
This situation allowed redistribution of resources. Specifi-
cally, additional student transcripts were examined in some
groups in some schools up to 200 students total in every se-
lected school. Further, resources from schools with fewer
than 200 students were assigned to other larger schools so
that excess sample was collected in some bigger schools.
This was possible, because it usually was feasible to do more
data collection in large schools. Students within groups in
a sampled school were selected by simple random sampling
(SRS) without replacement. This process of redistribut-
ing survey resources can be applied to other designs with a
different number of schools and students.

3. Unequal Probability Sampling Without
Replacement

Cochran (1977, chapter 9A) discusses methods for prob-
ability proportional to size (PPS) sampling without
replacement (WOR). Murthy’s (1957), Brewer’s (1963),
and Durbin’s (1967) schemes are described below. Simula-
tions reported in this section examine their performances
on the simulated school population with the two estima-
tors of Section 2. Further discussion of methods for PPS
sampling can be found in Särndal, Swensson, and Wretman
(1992, section 3.6) and Brewer and Hanif (1983). When
the sample size equals one, all methods select a unit with
probability proportional to size.

3.1 Murthy’s PPS WOR Scheme

In Murthy’s (1957) PPS WOR procedure, successive units
are drawn with probabilities proportional to size condi-
tioned on the remaining units. It is easy to implement.
Although the first order inclusion probability of individual
units are not exactly proportional to size when n > 1, it
is still a good approximation to an exact PPS WOR de-
sign when the population is large and the units are not
too different in size. Let pi be the probability of select-
ing unit i on the first draw. The probability of selecting
unit j second, unconditional on the selection of the first
unit, is

∑
i 6=j pi

pj

1−pi
. As a function of pj , the derivative of

this formula with respect to pj is Q + 1 − 1
(1−pj)

2 , where
Q ≡

∑
i

pi

1−pi
is a quantity that is a characteristic of the

population and probabilities of selection. Since the deriva-
tive decreases as pj increases, Murthy’s method tends to
oversample smaller PSUs in the second draw compared with
methods that have unconditional probabilities of selection
for the second unit exactly proportional to size. It could be
expected that Murthy’s method tends slightly to lose some
information about the population units of larger size and
would underestimate means and totals in circumstances of
sampling two PSUs per stratum.
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To estimate the total and the variance of the estimated
total, one simple approach is to approximate the sampling
procedure by a PPS with replacement design. The degree
of bias of the approximation depends on the number of
sample units and the variation in unit size. Murthy (1957)
suggested an unbiased estimator and its variance and an
unbiased variance estimator for his specific design (Cochran
1977, section 9A.9).He also proved his estimator has smaller
variance than the ordered estimator suggested by Des Raj
(1956).

3.2 Brewer’s PPS WOR Scheme

Assume pi < 1/2 for all i = 1, · · · , N . When n = 2,
Brewer (1963) draws the first unit i with revised proba-
bilities pi(1−pi)

D(1−2pi)
, where D =

∑N
i=1

pi(1−pi)
1−2pi

, and the second
unit j with probabilities pj

1−pi
. The first order inclusion

probability of unit i in the sample is 2pi. Variance and
variance estimator formulas follow the standard formulas
for the Horvitz-Thompson estimator.

In Brewer’s PPS method, the probability of selection for
the first sample unit is proportional to pi(1−pi)

1−2pi
instead

of proportional to size. The slope of the probability
of selection at pi as the derivative with respect to pi:
(1−pi)

2+p2
i

(1−2pi)
2 is strictly increasing in pi for pi < 1

2 . This
indicates that Brewer’s PPS method tends to oversample
larger PSUs in the first selection when n = 2.

3.3 Durbin’s PPS WOR Scheme

Durbin’s (1967) PPS approach draws the first unit i with
probability pi. Given that unit i is selected first, the prob-
ability that unit j is drawn second is pj

2D

[
1

1−2pi
+ 1

1−2pj

]
,

where D is the same as in Brewer’s method and pi < 1
2 is

assumed for all i in the population. Even though different
sampling procedures are used, both the first and second
order inclusion probabilities of Durbin’s PPS scheme are
exactly the same as Brewer’s, and so are the variances and
variance estimators.

The unconditional probability of selection in Durbin’s
(1967) PPS method is pi for the first draw and, for second
draw,

∑
i 6=j pi

pj

2D

[
1

1−2pi
+ 1

1−2pj

]
= (1+T )

2D pj , which is
proportional to size because T ≡

∑
i

pi

1−2pi
is determined

only by the population and does not depend on the sample
units. Therefore, Durbin’s (1967) PPS scheme has its own
desirable property that the unconditional probability of
drawing a certain unit at either the first or the second
draw is exactly proportional to size.

3.4 Comparison of Methods

In the EP survey, the above three PPS methods were used
to generate 1,000 independent samples from the simulated
school population. Table 1 displays the standard devia-
tion of the total estimators using Murthy’s and Durbin’s
PPS methods for samples of 70 schools. The results us-

ing Brewer’s method are the same as those using Durbin’s,
so they are not included in the table. Using Murthy’s
PPS method, the HT estimator has larger variance than
Murthy’s estimator. The estimator of variance assum-
ing with replacement sampling (the PWR estimator) also
has a significantly larger value than Murthy’s estimator in
medium districts due to large variation in enrollment size
among these districts. The ratio estimator behaves consis-
tently well in the whole state and all size levels. The sam-
pling implementation (Murthy or Durbin) also affects the
variation of the total estimators. Both Horvitz-Thompson
and ratio estimators have smaller standard deviations us-
ing Durbin’s PPS scheme compared to Murthy’s, but the
degree of reduction of variance is different for the two esti-
mators. The standard deviation using the ratio estimator
is a little smaller for Durbin’s method in medium districts
but essentially stays the same at the small level. For the
HT estimator, the standard deviation is about 7% smaller
using Durbin’s method at the medium size level. Based
on these simulations, Durbin’s method and ratio estima-
tion are recommended for situations such as Iowa’s EP high
school survey.

4. One PSU per Stratum Variance Estimation

4.1 One PSU per Stratum

For strata containing only large districts, variance estima-
tion uses formulas for a stratified simple random sampling
(SRS) without replacement design. Among strata involving
medium or small size districts, some contain many districts
and two districts are selected from each of them. In such
a case, variance estimation will follow standard multi-stage
sampling formulas for an invariant sample design and multi-
phase sampling formulas for a non-invariant design. Among
strata involving medium or small size districts with few
districts, due to budget restrictions, only one district can
be sampled. For these strata, there is not enough degrees
of freedom to make direct variance estimation, and thus
standard multi-stage or multi-phase sampling formulas can
not be applied. This is a challenging problem. Standard
approaches, such as the collapsed strata variance estima-
tion (Cochran 1977, section 5A.12), consider estimation of
variances for aggregations of strata, but not for individual
strata. Variance estimators for individual strata and mod-
els of variances are proposed in the next two sections.

4.2 Collapsing Strata Synthetic Variance Estima-
tion for Strata Variances

If no real average cluster difference exists within a stra-
tum, then approximating the variance of the total estimate
within a stratum by a formula for a simple random sam-
ple (SRS) from the population in the stratum would be
fine. Similarly, using a difference estimator as described in
Wolter (1984) for variance estimation in systematic sam-
pling should work well if population units are randomly
associated into clusters. However, if there is strong ho-
mogeneity within strata, then the SRS estimator will (sig-
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nificantly) underestimate the true variance. In most cases,
variance estimators taking the clustering effect into account
are needed.

The collapsed strata estimator (Cochran, 1977, section
5A.12) is a well-known estimator of variance estimation in
one-per-stratum problem. The procedure collapses strata
with one unit per stratum into groups and treats the strata
in a group as independent samples from the combined stra-
tum. In the EP survey, collapsing can be accomplished
separately among the strata containing small and medium
sized districts with one district in the sample. First arrange
the strata in a non-increasing sequence based on total en-
rollment size. Then collapse strata into pairs or groups
sequentially. The variance estimator of a group is given by
(5A.56) in Cochran’s (1977).

After getting the collapsed strata variance estimate for a
group of strata, to produce variance estimates of individual
strata within the group, the authors propose proportional
redistribution of variance based on squared total enrollment
size. The reason for this redistribution is that estimates
of strata within the group are independent, and thus the
variance of the estimate of the group equals the sum of
variances of estimates of strata. If one assumes that strata
in the same group are homogeneous in terms of within
strata variation, then the ratio of variances of two strata
within the group is proportional to the ratio of squared
enrollment sizes, and thus the variance of each strata
is a portion of the variance of the group with a weight
proportional to squared enrollment size. In the EP survey,
total enrollment size instead of enrollment size of twelfth
grade students is suggested for redistribution because the
former is longitudinally more stable. This redistribution,
although not a standard practice, is important in this
application for producing estimates of variance for AEAs
and individual strata. The method can be referred to as
collapsing strata synthetic variance (CSSV) estimation.

4.3 Modeling and Generalized Variance Functions

The standard design-based variance estimator is usually rel-
atively unstable with small sample size. In such a circum-
stance, one may consider using alternative variance estima-
tors based on generalized variance functions. From Valliant
(1987), the derivation of generalized variance functions is
motivated by its simplicity of computation, approximate
unbiasedness, reasonable coverage in confidence intervals,
and greater stability than individual direct estimates of
variance.

In the EP Survey, even though the collapsing strata syn-
thetic estimator works well for the whole state and size
levels, it produces large estimates of variance for small do-
mains. In order to produce better estimates of variance,
one can consider using model-based estimators that could
involve covariate variables to improve the efficiency and sta-
bility of the design-based variance estimators. Generalized
variance functions traditionally model the relationship be-
tween relative variances and expectations of the total esti-

mators for individual strata and predict the strata variances
from the estimated totals through the estimated functions.

Considering that the simulated population of study was
generated from a product of Poisson distributions, it seems
appropriate to use the traditional generalized variance func-
tions suggested in Valliant (1987). The superpopulation
model is

V 2 = α +
β

T
(1)

where V 2 is the relative variance or rel-variance of the total
estimator. The corresponding sample model is then given
by V̂ 2 = m

(
t̂
)
+ ε, where m

(
t̂
)

= α+ β
t̂

is the model mean
function and ε is the error with mean 0 and conditional
variance proportional to the model mean. That is E[ε|t̂] = 0
and V ar[ε|t̂] = m

(
t̂
)
σ2, where σ2 is an unknown constant.

One disadvantage of this model is that it could produce
negative predictions of variance. Wolter (1985, chapter 5)
suggested adding restrictions to the generalized variance
function to assure nonnegative predictions generated from
it.

Assuming that the districts within the same stratum
have the same average number of employment preparation
courses taken by an individual student, it should be appro-
priate to assume that t̂st =

∑
i∈st

t̂i

N̂i
Ni exists, where the

subscript st means stratum. Let Nst =
∑

i∈st Ni. By im-
posing the restriction that V 2

Nst
= 0, which is equivalent to

α = − β
Nst

, a restricted generalized variance function can
be given by

V̂ 2
t = β

(
1
t̂
− 1

N

)
(2)

To estimate the unknown parameter, one can use iteratively
reweighted least squares estimation or maximum likelihood
estimation algorithms such as the Newton-Raphson or
Nelder-Mead algorithms.

4.4 Comparisons of Methods

The first comparison of the collapsing strata synthetic vari-
ance (CSSV) estimation and generalized variance function
(GVF) methods is based on the coefficients of variation
(cve’s) of the variance estimates using these two methods
for the case of 60 sample schools. Results are shown in Ta-
ble 2. Under all three PPS sampling procedures, the cve’s
using the GVF method at medium and small size levels are
consistently smaller than the cve’s using the CSSV tech-
nique, which indicates the GVF method works better for
variance estimation in these groups. For variance estima-
tion in individual strata and AEAs, the GVF method still
performs well. The five strata with one PSU per stratum in
samples from the simulated population occur in AEAs 4, 12,
14, 15, and 16 (AEAs are not numbered consecutively). As
mentioned before, results are based on simulated data and
should not be interpreted as representing Iowa’s schools. In
simulated AEAs 4 and 12, the GVF method produces stan-
dard errors between the true standard deviations and the
standard errors produced by CSSV estimation. In AEA 15,
the GVF method estimates the standard error almost the
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same as the real standard deviation, which is much better
than the standard error obtained by CSSV estimation. In
AEAs 14 and 16, even though both methods overestimate
the standard deviations and the GVF even overestimates a
little bit more, basically they produce very close variance
estimates in these two AEAs.

The second comparison concerns coverage of confidence in-
tervals produced using these two variance estimation meth-
ods. Table 3 shows the coverage rate of the confidence inter-
vals of HT and ratio estimators computed by both methods.
In all five strata with one PSU per stratum, the confidence
intervals computed by the GVF method have significantly
higher coverage rates than those using CSSV estimation
for both estimators. The improvement by using the GVF
method is more prominent for the ratio estimator than for
the HT estimator.

Table 4 displays 2.5%, 25%, 50%, 75%, and 97.5% empir-
ical percentiles of the width of confidence intervals using
ratio estimators over 1,000 simulations. In AEAs 4 and
9, the GVF method produces consistently narrower confi-
dence intervals than CSSV estimation. In AEAs 14 and 16,
even though the medians of the width of confidence inter-
vals by the GVF method are bigger, the third quantiles are
smaller. The empirical inter-quantile ranges are all smaller
using the GVF method in those five strata. This compari-
son indicates that the variance estimates produced by the
GVF method are more stable than the variance estimates
given by CSSV estimation. All the results for strata con-
taining small districts are substantially the same.

In conclusion, numerical results show that the GVF method
produces better variance estimates in terms of consistently
smaller coefficients of variation of variance estimates, a
higher coverage rate for confidence intervals, and more sta-
ble performance for a group of estimators. It is clear, how-
ever, that results vary more by AEA than by method of
estimation. In Section 7, the use of diagnostic plots and
comparison to direct estimators of variance to check on the
performance of GVF is discussed.

5. An Invariant and a Non-Invariant Design

The standard stratified multi-stage design is invariant that
the same subsample design for a PSU is used every time
the PSU is included in a first stage selection. If up to
50 students from the four groups in selected schools are
sampled independently by simple random sampling with no
redistribution in the case of small schools (see Section 2.2),
then the design is a stratified multi-stage design and the
standard formulas for estimators of means and totals and
estimators of variances are applicable. The non-invariant
design is easy to operate. The realized overall number of
students in the sample, however, is not fixed and would
be less than the specified maximum. This will increase
the variance contribution in the terminal stage of sampling
especially for large schools.

On the other hand, if excess sample is redistributed across

districts and schools, the inclusion of certain districts or
schools in the sample affects student selection probabilities
in other clusters. In the terminology of Särndal, Swensson,
and Wretman (1992, page 134), the design is not invariant.
The non-invariant multi-stage design can be thought of as a
multi-phase sample design. In multi-phase sample designs,
the subsample design depends on the entire selected first
phase sample. In the EP survey, if further resource redistri-
bution is planned, then the design is a stratified multi-phase
design and the standard formulas (see Särndal, Swensson,
and Wretman, 1992, chapter 9) for estimating totals and
variances of estimators for a multi-phase design should be
employed. The estimators of both totals and variances are
unbiased. Although the design is more complicated to im-
plement and estimation formulas are more involved, the
non-invariant multi-phase design makes use of all available
resources and tends to decrease the terminal phase varia-
tion due to a larger sample in that phase.

Table 5 shows that the non-invariant design results in
smaller cves using either the HT or the ratio estimator
and estimating variance by either the GVF or the CSSV
estimation method (Section 3). As in Table 3, higher cov-
erage rates were produced by the GVF method than by the
CSSV estimation method in the non-invariant design for all
five strata with one PSU per stratum. Thus, if it possible
to implement, the non-invariant design has some definite
advantages.

6. A Cost Evaluation

Iowa’s State Board of Education decided on 60 schools in-
stead of 70 as was recommended, because it was opera-
tionally feasible in terms of budget, staff, and coordination
with schools. Given that the 70 school design has lower
variances at most levels of aggregation beyond the schools
and districts (assuming fewer students per sampled school),
one can investigate the implied costs of adding schools to
the sample and hope to quantify the implied trade-off be-
tween cost and variance.

Costs in this school board survey generally come from gen-
eral administration, data processing, sampling districts,
and sampling students. Since additional schools will be
from the small and medium districts, each additional dis-
trict adds one school.

If order to examine this issue, it is assumed that all sampled
students cost the same in terms of data collection and pro-
cessing. Call the student cost one cost unit. Also assume
that all sampled schools cost the same. Suppose that an ad-
ditional school ”costs” a cost units each. That is, in order to
spend resources to code a new course catalog and to inter-
act with school administrators, a fewer students across the
whole study have transcripts reviewed. Considering that
the between schools variation plays a significant role in the
variance of total estimates, it is of interest to study with
a fixed overall budget how much one could benefit from
increasing the number of sample schools while correspond-
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ingly reducing the number of sample students overall and
per school.

Based on the numerical results in Table 6, if one samples
65 schools, the variance estimates are reduced about ten
percent on average. Larger costs, at least in the range of
costs and numbers of districts considered, do not seem to
make much of a difference; the number of sample schools is
much more influential. After 65 schools, variance estimates
decrease about five percent for every five schools added.
Besides the decrease in variance, the interquartile range of
variance reductions over 1,000 simulations also decreases as
the number of schools increases to 75 or 80 schools. This
means that there is less variance in variance reductions,
which means that variances are estimated with more sta-
bility. Therefore, it seems that even accounting for higher
costs, adding more schools to the survey would produce
better estimates of total and mean and better estimates of
variance.

7. Summary And Discussion

A survey for which records on transcripts of Iowa public
high school students served as the source of data was used
to motivate five examinations of research questions. First,
using a ratio estimator improves the precision by using aux-
iliary variables a lot over Horvitz-Thompson (HT) estima-
tion. The outcome in the survey for Iowa’s State Board of
Education is the number of employment preparation (EP)
courses and the auxiliary variable is the number of students
in a grade level. In the EP survey application, the ratio es-
timator works better than the HT estimator under all three
versions of PPS sampling in terms of smaller variance and
MSE.

Second, compared to Murthy’s (1957) PPS sampling
method that tends to oversample small PSUs in the second
draw, Durbin’s (1967) method has the desirable property
that the unconditional probability of drawing a certain unit
at either the first draw or the second draw is exactly pro-
portional to size, and hence produces consistently accurate
estimates in situations such as the EP survey. Simulations
confirmed these advantages.

Third, in the situation that a variance estimate is needed
for stratum in which there really are not enough degrees of
freedom to make a direct estimate, using a generalized vari-
ance function and choosing a reasonable estimate based on
some model diagnostics might be possible. The traditional
collapsing strata estimator is widely applied for estimating
the variance of a total for a group of strata. In some other
cases, there are two or more PSUs per strata and an unbi-
ased estimate of variance is possible. A scatter plot of direct
estimates and GVF estimates can sometimes provide some
indication of the quality of the variance modeling. Taking
advantage of auxiliary information to improve the efficiency
of the estimator is encouraged. The numerical results show
that the GVF method produces better variance estimates
in terms of consistently smaller variation, a higher coverage
rate of confidence intervals, and a more stable performance

for a group of estimators than a new collapsed strata syn-
thetic variance estimation method.

Other methods for variance estimation in one-per-stratum
designs will be considered in future work and Iowa educa-
tion surveys. Shapiro, Singh, and Bateman (1980) use a
without replacement estimator under Durbin’s (1967) PPS
scheme. Hansen, Hurwitz and Madow (1953) have another
form of the collapsed strata estimator. Hartley, Rao, and
Kiefer (1969) use a regression estimator with auxiliary vari-
ables. Bayesian approaches, such as Singh and Sedransk’s
(1988), are worth considering as well.

Fourth, in the situation that extra resources can be redis-
tributed across sample clusters, a non-invariant stratified
multi-phase design can be applied. Compared with an in-
variant stratified multi-stage design, the non-invariant de-
sign makes full use of available resources and reduces the
bias and variance of the estimator at a cost of more com-
plicated implementation. Variance estimation using GVFs
might achieve even better estimation in a non-invariant de-
sign due to the improved direct estimators.

Fifth, the numerical results indicate that the between clus-
ter variation might be more influential than the within clus-
ter variation. To reduce the overall variation, it would be
a good idea to increase the number of clusters rather than
sampling a greater number of units within clusters. With
fixed overall cost, the impact on variance estimates of in-
creasing the number of sample schools while assuming the
cost of sampling a district to be in a reasonable interval
was studied. The number of sample schools shows a defi-
nite effect on the variance estimate. The cost of sampling a
district, in the range of alternatives considered, only affects
the variance estimate on a small scale. If practically possi-
ble, it would be strongly advisable to increase the number
of schools in the sample.

Future study related to the EP surveys and other surveys
for Iowa’s Board of Education will include small area es-
timation (Rao 2003), which reduces the variance of tra-
ditional design-based estimators by ”borrowing strength”
cross subsets of the districts, and survey regression cali-
bration methods (Deville and Särndal 1992). Calibration
equations will be used to produce a model-assisted esti-
mator and corresponding calibration variance estimator by
making use of information on auxiliary variables. Better
administrative data for covariates might be available in the
future as well. Additionally, methods for improving the de-
sign to produce good estimators of characteristics in multi-
ple subpopulations (size levels, AEAs, etc.) can be studied.
The actual data analysis and cost evaluations will be made
when the actual data are completely reviewed and made
available for the purpose.
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Table 1: The Standard Deviation of Total Estimators Using
Murthy’s and Durbin’s Sampling Methods for Samples of
70 Schools for Three Aggregations.

Sampling Method and Estimator
Aggre- Murthy Durbin
gation Murthy PWR HT Ratio HT Ratio
State 5157 5390 5461 4805 5112 4772
Medium 4998 5230 5310 4678 4952 4644
Small 1155 1193 1160 961 1154 961
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Table 2: The cve of Variance Estimators Using Collapsing
Strata or GVF Methods for the Ratio Estimator Averaged
over 1,000 Simulations for Three Aggregations.

Collasping Strata Restricted
Synthetic Generalized
Variance Variance

Estimation Function
PPS Scheme: M B D M B D
State 3.35 3.36 3.34 3.25 3.27 3.25
Medium 6.05 6.06 6.05 5.89 5.91 5.90
Small 5.20 5.22 5.18 4.91 4.96 4.92

M = Murthy; B = Brewer; D = Durbin.

Table 3: Number of Confidence Intervals Obtained by Using
Collapsing Strata Synthetic Variance (CSSV) Estimation
and Restricted GVF Estimation out of 1,000 Covering To-
tals for Strata with Medium Size Districts. Two Sampling
Designs and Two Estimators are Used. Data are Simulated.

Esti- Area Education Agencies
Design mator 4 12 14 15 16

Ratio CSSV 983 883 968 751 838
Non- GVF 996 939 1000 834 991
Invar- HT CSSV 983 892 941 691 916
iant GVF 985 942 1000 876 1000

Ratio CSSV 969 882 962 735 823
Invar- GVF 982 927 1000 829 975
iant HT CSSV 972 895 942 744 902

GVF 981 947 999 868 997

Table 4: Empirical Percentiles of the Width of Confidence
Intervals Obtained by Collapsing Strata Synthetic Variance
(CSSV) and Restricted GVF Estimation over 1,000 Simu-
lations for Strata with Medium Size Districts Using the
Non-Invariant Design with the Ratio Estimator.

Area Education Agency
4 12 14 15 16

CSSV
2.5% 423 561 333 113 120
Q1 1485 1969 1169 1166 1243
Median 1989 2638 1565 2343 2498
Q3 3072 4073 2417 4035 4302
97.5% 4165 5523 3277 5953 6347

GVF
2.5% 812 1191 1048 1446 1856
Q1 1240 1949 1643 2605 2804
Median 1565 2487 1986 3608 3475
Q3 2018 3072 2334 4693 4126
97.5% 2792 4473 3164 6510 5450

Table 5: CVEs of Horvitz-Thompson and Ratio Estima-
tors Under Invariant and Non-Invariant Designs Using Col-
lapsing Strata Synthetic Variance (CSSV) and Restricted
GVF Estimation for 60 Sample Schools Using Durbin’s PPS
Method for Three Aggregations.

Esti- Invariant Design Non-Invariant Design
mator CSSV GVF CSSV GVF
HT

State 3.60 3.66 3.55 3.48
Medium 6.46 6.54 6.38 6.26
Small 6.29 6.67 6.21 6.01

Ratio
State 3.42 3.43 3.34 3.25
Medium 6.19 6.19 6.05 5.90
Small 5.27 5.39 5.18 4.92

Table 6: Empirical Percentiles over 1,000 Simulations of the
Relative Decrease in Variance Estimates Due to Adding
More Schools to the Sample with Fixed Total Cost Per
School. Decrease is Relative to a Sample with 60 Schools.
Cost is the Reduction in the Total Number of Students
in the Sample Per Additional School. IQR is the Inter-
Quantile Range of Variance Reductions.

Number Cost Factor Per School
of 200 150 100 50 0

Schools
Students 65 11000 11250 11500 11750 12000
Median 0.118 0.108 0.112 0.105 0.101
IQR 0.315 0.326 0.336 0.344 0.342
Students 70 10000 10500 11000 11500 12000
Median 0.169 0.164 0.160 0.158 0.141
IQR 0.338 0.323 0.308 0.331 0.317
Students 75 9000 9750 10500 11250 12000
Median 0.202 0.212 0.193 0.201 0.196
IQR 0.230 0.213 0.220 0.221 0.236
Students 80 8000 9000 10000 11000 12000
Median 0.238 0.242 0.253 0.252 0.255
IQR 0.192 0.196 0.188 0.189 0.176
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