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Abstract

We analyze body mass index (BMI) data from the
Third National Health and Nutrition Examination Sur-
vey (NHANES III). However, because there are no BMI
values for a considerable number of the children and ado-
lescents we study, there can be serious nonresponse bias in
inference. We construct two hierarchical Bayesian mod-
els, a selection model and a pattern mixture model in-
cluding a spline regression, to analyze poststrati¯ed BMI
data by age, race and sex within county accounting for
these nonrespondents. We predict the ¯nite population
percentile BMI for small domains formed by age, race
and sex in each of thirty ¯ve large counties. We use
Markov chain Monte Carlo methods to ¯t the models,
and a deviance measure to show that the selection model
is better than the pattern mixture model under an appro-
priate transformation of the BMI values. We also study
the goodness of ¯t of the models using a cross-validation
and summarize the posterior predictive distribution of
the ¯nite population percentile of BMI by age, race and
sex within county.

Keywords: Deleted residual; Deviance; Finite popula-
tion percentiles; Logistic regression; Metropolis-Hastings
sampler; Spline regression; Transformation.

1 Introduction

One of the variables in NHANES III is the body mass in-
dex (BMI, body weight in kilograms divided by [(height
in meters)2]) which is currently used as a measure to diag-
nose overweight and obesity in children and adolescents.
Youths with BMIs at least the 95th percentile for age and
sex, are considered obese and referred for in depth med-
ical follow-up to determine underlying diagnoses. Those
with BMIs at least the 85th percentile but less than the
95th percentile are be considered at risk of overweight,
and should be referred to a second-level screen.
The NHANES III data are biased because there are

many nonrespondents among children and adolescents,
and the main issue we address here is that nonresponse
should not be ignored because respondents may di®er
from nonrespondents. The purpose of this work is to
predict the percentile BMI for the ¯nite population of 1

1The opinions expressed in this paper are those of the authors
and do not necessarily represent the views of the National Center
for Health Statistics

children and adolescents, poststrati¯ed by county for
each domain formed by age, race and sex and to inves-
tigate what adjustment needs to be made for nonignor-
able nonresponse. Our approach is to ¯t two hierarchical
Bayesian models to accommodate the nonresponse mech-
anism. Nandram and Choi (2005) develop hierarchical
Bayesian models for obesity. The main contribution in
their paper is Bayesian predictive inference of the ¯nite
population mean using a spline regression model in which
the logarithm of the BMI values are transformed. Our
contributions here are di®erent. First, we make inference
about ¯nite population percentiles. Second, we show that
the logarithmic transformation is the best in a selected
set within the Box-Cox family. Third, we demonstrate
the e®ects of clustering and survey weights.

Nonresponse models can be classi¯ed very broadly
(e.g., see Little and Rubin 1987). Let [x] and [r] denote
respectively the density function of the response variable
x, and the response indicator r, with obvious notations
for the joint and conditional densities. Then the selec-
tion model speci¯es that [x; r] = [r j x][x] and the pat-
tern mixture model speci¯es [x; r] = [x j r][r]. While
the two models have the same joint density, in practice
the components [r j x] and [x] for the selection model,
and [x j r] and [r] for the pattern mixture model are
speci¯ed. Thus, it is not surprising that these models
are di®erent. If [x; r] = [x][r] and the parameters of the
density function [x] are unrelated to those of the mass
function [r], the model is said to be ignorable; otherwise
it is nonignorable. We use both selection and pattern
mixture models in the hierarchical Bayesian framework
for our nonignorable nonresponse problem. Greenlees et.
al (1982) developed a normal-logistic regression model, a
nonignorable nonresponse model within the selection ap-
proach, we extend this model to accommodate clustering
for the NHANES III data, and incorporate a regression
with linear splines to accommodate a dynamic relation
between BMI and age, race, sex, and race sex interac-
tion.

The purpose of this paper is primarily to report on an
innovative Bayesian study of obesity and overweight in
children and adolescents using continuous BMI data ob-
tained for thirty ¯ve counties in NHANES III, accounting
for the nonresponse. The rest of the paper is organized as
follows. In Section 2, we discuss the hierarchical Bayesian
methodology for nonignorable nonresponse through the
selection and the pattern mixture approaches. We also
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describe model ¯tting, selection and assessment including
predictive deviance and a cross-validation. In Section 3
we compare the selection and the pattern mixture mod-
els, and we describe the data analysis and a simulation
study. Finally, Section 4 has a brief discussion about how
to include clustering among the households and survey
weights in our selection model (i.e., the selected model).

2 Hierarchical Bayesian Methodology

In this section we describe two Bayesian models for nonig-
norable nonresponse, model selection and assessment for
the selected model. There are data from ` = 35 counties
and each county has Ni (known) individuals. We assume
a probability sample of ni individuals is taken from the
ith county. Let s denote the set of sampled units and ns
the set of nonsampled units. Let rij for i = 1; 2; :::; ` and
j = 1; 2; :::;Ni be the response indicator for the j

th indi-
vidual within the ith county in the population. Also, let
xij denote the BMI value, possibly transformed (e.g., the
logarithmic transformation). Note that rij and xij are all
observed in the sample s but they are unknown in ns. Let
ri =

Pni
j=1 rij (i.e., ri is the number of sampled individu-

als that responded in the ith county). For convenience, we
express the BMI xij as xi1; xi2; : : : ; xiri ; xiri+1; : : : ; xini
in s and xini+1; : : : ; xiNi

in ns for ith county.

A key point that we note for what follows is that the ri
individuals are not necessarily random respondents from
the ni individuals randomly sampled. This is the nonre-
sponse bias we need to address. It is clear that we need
to predict the BMI value xij for (a) the nonrespondents
in s and (b) the individuals in ns. Thus, for the ¯nite
population of Ni individuals, we need a Bayesian pre-
dictive inference for the 100´; 0 < ´ < 1, percentile of
the ¯nite population of BMI values for each age-race-sex
domain within the ith county. For example, for the ith

county, let xi = (x
(s;r)
i ;x

(s;nr)
i ;x

(ns)
i )0, where x(s;r)i is ob-

served BMI values of the sampled respondents, and both

x
(s;nr)
i , the BMI values of the sampled nonrespondents,

and x
(ns)
i , the nonsampled BMI, are not observed. Then,

the [´Ni]
th percentile ([¢] is the nearest integer to ´Ni)

of the ith county is the [´Ni]
th order statistic among the

Ni components of xi. Because only xi
(s;r) is observed,

we develop a Bayesian selection and a Bayesian pattern
mixture model to predict the ¯nite population percentile
BMI for each domain.

2.1 Competing Models

We describe the selection and the pattern mixture model.
To accommodate the BMI values and the nonresponse
indicators, each model has two parts which are combined
probabilistically.

The single most important predictor of BMI is age,
with race and sex playing a relatively minor role, and
there is a need to understand the relationship between
BMI and age, race and sex. For i = 1; : : : ; `; j =

1; : : : ; Ni, we let zij0 = 1 for an intercept, zij1 = 1 for
non-black and zij1 = 0 for black, zij2 = 1 for male and
zij2 = 0 for female, zij3 = zij1 zij2 for the interaction be-
tween race and sex, and we let z0ij = (zij0; zij1; zij2; zij3).
Also, let aij denote the age of the j

th individual within
the ith county. Generically, letting c+ = 0 if c · 0 and
c+ = c if c > 0, wij1 = 1; wij2 = (aij ¡ 8)+; wij3 =
(aij ¡ 13)+, for a spline regression of BMI on age adjust-
ing for race and sex, we take

xij =
3X
t=1

(z0ij®t+ºti)wijt+eij ; eij j ¾23 iid» N(0; ¾23); (1)

where N stands for normal and the ºti are random e®ects,
and the regression coe±cients, ®01 = (®11; ®12; ®13; ®14),
®02 = (®21; ®22; ®23; ®24), and ®

0
3 = (®31; ®32; ®33; ®34),

are of interest.
To account for variation across counties, note that in

(1) for simplicity we only permit the ®t1 to be random
coe±cients (i.e., the intercept in z0ij®t + ºti is ®t1 + ºti).
A random coe±cients structure is included in (2) below.
First, we describe the selection model. For Part 1 of

this model the response depends on the BMI as follows

rij j xij ; ¯i ind» Bernoulli
©
e¯0i+¯1ixij=(1 + e¯0i+¯1ixij )

ª
;μ

¯0i
¯1i

¶
j − iid» N

½μ
μ0
μ1

¶
;

μ
¾21 ½¾1¾2
½¾1¾2 ¾22

¶¾
(2)

where − = (μ0; μ1; ¾
2
1 ; ¾

2
2 ; ½),

μ » N(μ(0);¢(0)); ¾¡21 ; ¾¡22
iid» G(a=2; a=2)

and ½ » U(¡1; 1);
G stands for Gamma, U stands for Uniform, and a, μ(0)

and ¢(0) are to be speci¯ed. In Part 2 of the selection
model, we start with (1), and we assume that

ºti j ¾2t+3 iid» Normal(0; ¾2t+3); t = 1; 2; 3: (3)

For this part of the model, we use the prior distributions,
for t=1,2,3,

®t
iid» N(®

(0)
t ;¢

(0)
t ) and ¾

¡2
t+3

iid» G(a=2; a=2) ; (4)

where a, ®
(0)
t and ¢

(0)
t ; are to be speci¯ed.

Next, we describe the pattern mixture model. For
Part 1 of this model the response depends on age, race
and sex, and the interaction of race and sex through the
logistic regression, letting Aij = (¯0i + ¯1iaij + ¯2izij1 +
¯3izij2 + ¯4izij3,

rij j ¯i ind» Bernoulli
©
eAij=(1 + eAij )

ª
:

Now, letting ¯i = (¯0i; ¯1i; ¯2i; ¯3i; ¯4i)
0, note that while

the vector ¯i has p = 5 components, the corresponding
vector in (2) has two components. Analogous to (2), we
take

¯i j μ;¢ iid» Normal(μ;¢);
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and for the prior distribution,

μ » Normal(μ(0); ¢(0)) and
¢¡1 »Wishartf(º(0)¤(0))¡1; º(0)g; º(0) > p;

where μ(0), ¢(0), ¤(0) and º(0) are to be speci¯ed. Part
2 of this model for BMI extends (1) to incorporate a
dependence on the response indicators,

xij =
3X
t=1

(z0ij®t + rijºti)wijt + eij ; rij = 0; 1;

eij j ¾23 iid» Normal(0; ¾23): (5)

This pattern mixture model is in the spirit of Rubin
(1977). Note that while in the pattern mixture model
in (5) there are two speci¯cations/patterns for xij (i.e.,
rij = 0 and rij = 1) in the selection model in (1) there is
a single speci¯cation. The prior distributions are exactly
those in Part II of the selection model (i.e., see (3) and
(4)).
We take º(0) = 2p, a value that indicates near vague-

ness, maintains propriety and permits stability in com-
putation. We show how to specify parameters like μ(0),

¢(0), ®
(0)
t , ¢

(0)
t ; t = 1; 2; 3, ¤

(0) in another place. For a
proper di®use prior we choose a to be a value like 0:002.
One can also use a shrinkage prior on ¾¡21 and ¾¡22 (see
Natarajan and Kass 2000 and Daniels 1999); but this
makes little di®erence in our analysis; see Nandram and
Choi (2005) for further details.

2.2 Model Fitting

In this section we describe how to use the Metropolis-
Hastings sampler to ¯t the models. Also a deviance mea-
sure is used to select one of the two models. Then, a
cross-validation analysis is used to assess the goodness
of ¯t of the selected model, and because the same gen-
eral principle applies to both models, we describe model
¯tting for the selection model only.
Thus, we now combine the model for the response

mechanism and the model for the BMI values to ob-
tain the joint posterior density of all the parameters.
The BMI values of the nonrespondents in the sample
(i.e., xij for j = ri + 1; : : : ; ni) are unknown and they
are treated as parameters (i.e., they are latent vari-
ables). We denote these latent variables by x(s;nr) and
the observed data are denoted by x(obs) ´ x(s;r) (dis-
cussed earlier). For the selection model, using Bayes'
theorem and letting − denote the set of parameters
¯; μ; º; ®; ¾23; Ã1; Ã2 and x

(s;nr) where Ã1 = (¾21 ; ¾
2
2; ½)

0

and Ã2 = (¾
2
4 ; ¾

2
5 ; ¾

2
6)
0, the joint posterior density is, let-

ting Q = (¯0i¡μ0¾1
)2 ¡ 2½(¯0i¡μ0¾1

)(¯1i¡μ1¾2
) + (¯1i¡μ1¾2

)2;

p(− j x(s;r); r) /

Ỳ
i=1

niY
j=1

½
¾¡13 e

¡ 1

2¾2
3

fxij¡
P3

t=1
(z0ij®t+ºit)wijtg2

£ erij(¯0i+¯1ixij)=(1 + e¯0i+¯1ixij )
o

£
Ỳ
i=1

f¾¡11 ¾¡12 (1¡ ½2)¡1=2e¡ 1

2(1¡½2)Qg

£e¡ 1
2 (μ¡μ(0))0¢(0)¡1(μ¡μ(0))

3Y
t=1

Ỳ
i=1

f¾¡1t+3e
¡ º2

it
2¾2
t+3 g

£
3Y
t=1

fe¡ 1
2 (®t¡®(0)t )0¢(0)

t

¡1
(®t¡®(0)t )g

£
6Y
k=1

f(¾¡2k )
a
2+1e

¡ a

2¾2
k g: (6)

The posterior density in (6) is complex so that we use
Markov chain Monte Carlo (MCMC) methods to draw
samples from it; see Nandram and Choi (2005) for de-
tails. Speci¯cally, we used the Metropolis-Hastings sam-
pler (see Chib and Greenberg 1995 for a pedagogical dis-
cussion). We also used the trace plots and autocorrela-
tion diagnostics reviewed by Cowles and Carlin (1996) to
study convergence and we used the suggestion of Gelman,
Roberts and Gilks (1996) to monitor the jumping prob-
ability in each Metropolis step in our algorithm. In per-
forming the computation, centering the BMI values help
in achieving convergence (see Gelfand, Sahu and Carlin
1995). We obtained a sample of 1000 iterates which we
used for inference and model checking. Using the trace
plots, we \burn in" 1,000 iterates, and to nullify the e®ect
of autocorrelations, we picked every tenth iterate there-
after. This rule was obtained by trial and error while
tuning the Metropolis steps. We maintain the jumping
probabilities mostly in (.25, .50) (see Gelman et al. 1996).

2.3 Model Selection and Assessment

We used the minimum posterior predictive loss approach
(Gelfand and Ghosh 1998) to select the better model. Un-
der squared error loss the minimum posterior predictive
loss is

Dk = P +
k

k + 1
G with P =

X
ij

V ar(x
(pre)
ij j x(obs))

and G =
X
ij

n
E(x

(pre)
ij j x(obs))¡ x(obs)ij

o2
;

where

f(x
(pre)
ij j x(obs)) =

Z
f(x

(pre)
ij j −)¼(− j x(obs))d−

and x
(pre)
ij are the predicted values and − is the set of all

parameters. This measure extends one obtained earlier
(Laud and Ibrahim 1995), and we have taken k = 100 to
match this earlier version.
In Table 1 we present the deviance measure (D100)

and its associated components, goodness of ¯t (G) and
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Table 1: Comparison of the selection and pattern mixture models using the deviance measure by transformation.
Sel=selection, Pat=pattern mixture, Ide-identity, Log=Logarithm, SqR=Square root, CuR=Cube root, Squ=square,
Cub=Cube, Type=Transformation type

Selection Pattern Mixture

Type P G D P G D

Ide 4023 3475 7498 6197 3115 9312
Log 3827 3275 7102 5877 2949 8826
SqR 3927 3365 7292 6008 3017 9026
CuR 3875 3325 7200 5959 2991 8949
Squ 4271 3772 8043 6718 3390 10108
Cub 4536 4123 8659 7385 3730 11115

NOTE:Identity transformation uses the observed data directly (i.e., no transformation). D100 = G+(
100
100+1 )P where

G0d for goodness of ¯t, Pen for penalty and Dev ´ D100 for deviance. We have selected the selection model with
the logarithm transformation (see Section 2.3).

the penalty (P ) for the selection and the pattern mix-
ture models and six transformations (including the iden-
tity). For each transformation the selection model ¯ts
better (i.e., smaller G); for example, under the logarith-
mic transformation the selection model ¯ts better (true
for all transformations): compare D100 (7102 vs. 8826),
P (3827 vs. 5877) and G (3275 vs. 2949) which, how-
ever, is a bit bigger for the selection model. We select the
best transformation within the set of six transformations
(see Table 1) for the selection model using a probabilistic
argument. We obtain the posterior probability for each
transformation assuming a priori that the six transfor-
mations are equally likely. The logarithm transformation
gives the highest posterior probability, followed by the
square root transformation. Also, we have found that
the 95% credible intervals for the percentiles of popula-
tion BMI values under the logarithmic and square root
transformations are very similar.
We use a Bayesian cross-validation analysis to assess

the goodness of ¯t of the selected model (i.e., the se-
lection model). We do so by using deleted residuals on
the respondents' BMI values. Let (x(ij); r(ij)) denote the

vector of all observations excluding the (ij)th observation
(xij ; rij). Then, the (ij)

th deleted standardized residual
is given by

DRESij =
xij ¡ E

¡
xij j x(ij); r(ij)

¢
STD

¡
xij j x(ij); r(ij)

¢ ;

where we let PRED = E
¡
xij j x(ij); r(ij)

¢
. TheseDRES

values are obtained by performing a weighted importance
sampling on the output of the Metropolis-Hastings sam-
pler. The posterior moments are obtained from

f(xij j x(ij); r(ij)) =
Z
f(xij j −)¼(− j x(ij); r(ij))d−;

where xij j − » NormalfP3
t=1(z

0
ij®t + ºti)wijt; ¾

2
3g

for the selection model (see (1)), and f(xij j −) =P1
rij=0

f(xij j rij ;−)p(rij j −) for the pattern mixture
model (see (5)).

We drew box plots (not shown) of DRES versus the
four levels of race-sex and the thirty ¯ve counties, and
they showed that both models ¯t well. Box plots of DRES
versus the eighteen values (2-19 years) of age also show
acceptable ¯t. We also plotted DRES versus PRED; both
models show good ft, but the selection model appears to
¯t slightly better. Thus, based on the deviance and the
box plots, we have selected the selection model.

3 Analysis, Prediction and Simulation

In this section we perform an analysis on the NHANES
III BMI data for children and adolescents (i.e., 2-19 years
old). We use the selection model, and then as a means
to study sensitivity, we compare inference about the re-
gression parameters from the selection and the pattern
mixture models. We can provide 95% credible intervals
for the ¯nite population percentile for poststrati¯ed do-
mains, but we report a selected set. We also perform a
simulation study to assess the statistical features of the
selection model.

3.1 Analysis

We have compared inference about the regression coe±-
cients of BMI on age for both the selection model and the
pattern mixture model. We present the posterior mean
(PM) and 95% credible intervals (CI) in Table 2. Note
that the CI for both models are small, showing that the
estimates can be reproduced reasonably well. Also, note
that some CIs from the selection model are slightly larger
than those from the pattern mixture model, but the point
estimates PMs are somewhatsimilar.
There are some di®erences between inference in the se-

lection and mixture models. First, while for the selection
model the interval for ®12 (®22 as well) is to the left of
0, for the pattern mixture model the interval contains 0.
The reverse is true for ®33. One important common fea-
ture is that both models show a substantial increase of
BMI with age for children 8-13 years old and have the
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Table 2: Posterior mean-PM, and 95% credible interval-CI for regression coe±cients in spline part of 4 models.

PM CI PM CI

coef. (a) Selection (b) Pat. Mixture

®11 -.767 (-.834,-.699) -.524 (-.584,-.466)
®12 -.084 (-.155,-.011) .047 (-.024, .116)
®13 -.025 (-.108, .060) -.026 (-.108, .052)
®14 .064 (-.044, .163) .074 (-.019, .176)
®21 .345 ( .312, .381) .311 ( .279, .340)
®22 -.021 (-.064,-.022) -.032 (-.071, .007)
®23 -.055 (-.100,-.011) -.065 (-.107,-.024)
®24 .011 (-.049, .069) .027 (-.024, .084)
®31 -.290 (-.367,-.223) -.269 (-.337,-.199)
®32 .049 (-.044, .145) .045 (-.038, .127)
®33 .077 (-.020, .173) .098 ( .008, .182)
®34 -.006 (-.130, .122) -.046 (-.168, .071)

(c) InterClass Corr. (d) Survey Weights

®11 -.807 (-.873,-.737) -.516 (-.911,-.091)
®12 -.081 (-.161,-.001) .014 (-.490, .472)
®13 -.016 (-.099, .063) -.035 (-.559, .463)
®14 .066 (-.039, .168) .050 (-.606, .681)
®21 .339 ( .308, .370) .188 (-.054, .422)
®22 -.029 (-.068, .011) .001 (-.296, .302)
®23 -.070 (-.110,-.031) -.017 (-.344, .299)
®24 .024 (-.032, .076) .010 (-.384, .436)
®31 -.297 ( .365,-.231) -.033 (-.598, .514)
®32 .071 (-.019, .151) -.005 (-.717, .691)
®33 .113 ( .025, .203) -.001 (-.782, .748)
®34 -.035 (-.156, .083) -.005 (-.980, .943)
The components of ®jk correspond to j = 1; 2; 3 for !ij1, !ij2 and !ij3 and to k = 1; 2; 3; 4 for an intercept, race, sex,
and the interaction of race and sex. In the spline model of ith county, we have used (yij ¡ ¹yi)=si for the dependent
variable (BMI) where yij = log(xij), ¹yi =

Pri
j=1 yij=ri, and s

2
i =

Pri
j=1(yij ¡ ¹yi)2=(ri ¡ 1). It is not possible to

provide inference on the original scale for ®1, ®2 and ®3, so the estimates are reported for the centered logarithm of
the BMI values.
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intervals for ®31 to the left of 0, and the intervals for ®14,
®24 and ®34 contain 0. Thus, using the selection model
there is substantial increase of BMI with age for children
8-13 years old, with a smaller increase for white males,
and this increase is reduced signi¯cantly for adolescents
13-19 years old, without substantial adjustment for race
and sex.
We take up the issue of ignorability further under the

selection model. We drew box plots (not shown) of the
posterior densities of the ¯1i, obtained from the iterates
from the Metropolis-Hastings sampler, by county. All the
box plots are above zero. This suggests that the nonre-
sponse mechanism for each county is nonignorable, and
there are varying degrees of nonignorability; several coun-
ties have the medians of the box plots near 1.5 while oth-
ers have them near 2.

3.2 Prediction

We obtain a summary (e.g., an upper percentile) of BMI
values of the ¯nite population (i.e., age-race-sex domain
or a county) by performing a Bayesian predictive infer-
ence. The BMI values of the sampled nonrespondents
are obtained through their conditional posterior densi-
ties included in the Metropolis-Hastings sampler. Thus,
we describe how to predict the nonsampled BMI values.
Suppose we want to predict x(ns) = (xij ; j = ri +

1; : : : ; Ni). Then,

f(x(ns) j x(obs)) =Z
f

NiY
j=ri+1

f(xij j −)g¼(− j x(obs))d−;

where xij j − » NormalfP3
t=1(z

0
ij®t + ºti)wijt; ¾

2
3g

for the selection model (see (1)), and f(xij j −) =P1
rij=0

f(xij j rij ;−)p(rij j −) for the pattern mixture
model (see (5)). Thus, it is straight forward to predict xij
by taking a sample of sizeM from the posterior distribu-
tion, f−(h) : h = 1; : : : ;Mg. (Once the transformed BMI
values are predicted, thay can be easily retransformed to
the original scale.)

Letting x
(h)
i denote the vector of all Ni iterated val-

ues, we order these components to obtain the [100®Ni]
th

value, x
(h)
i ; h = 1; : : : ;M , a \random sample" from

the posterior density of the [100®Ni]
th percentile. In

a similar manner a sample is obtained from the pos-
terior distribution of any small area (e.g., white males
15-19 years old). We present 95% credible intervals for
the ¯nite population percentile (i.e., 85th, 95th) BMI val-
ues. These are obtained using the logarithm transforma-
tion (retransformed) and both the selection and pattern
mixture models for each age-race-sex domain and each
county. The di®erences among the race-sex groups are
small (e.g., about one BMI points). For example, for
county 11 95% credible intervals for the 95th percentile
for age 5-9 corresponding to white males, black males,
white females, black females are (19.2, 20.1),(20.6, 22.2),

(19.2, 20.1),(20.1,21.5). However, there are considerable
di®erences among the counties, and among the thirty-¯ve
counties, there are smaller clusters of counties, with sim-
ilarity within clusters. For example, in Table 3 we haved
selected three counties in which counties 23 and 27 are
similar, but county 11 is di®erent from countis 23 and 27.

3.3 Simulation Study

We assess the predictive performance of the selection
model, and therefore we simulate the entire population
of values rij and xij from the selection model.
In the simulation we ¯x the parameters ®t; t = 1; 2; 3,

¾2k; k = 1; : : : ; 5, ½, μr; r = 0; 1 at their posterior means
under the observed data. We kept the identi¯ers for race
and sex indicators, ni and Ni the same as in the original
data. This design allows us to produce simulated data
that are similar to the original, in particular, with the
same missing data structure.
Then, we generate the rij and the xij according to the

following scheme. First, we generate the ¯i and the ºi
fromμ

¯0i
¯1i

¶
iid
» N

½μ
μ0
μ1

¶
;

μ
¾21 ½¾1¾2
½¾1¾2 ¾22

¶¾

and ºit
iid» Normal(0; ¾23+t); t = 1; 2; 3;

i = 1; : : : ; `. Then we generate the rij and xij by drawing
from

rij j xij ; ¯i iid» Bernoulli(

½
e¯0i+¯1ixij

1 + e¯0i+¯1ixij

¾
and

xij j ºi iid» Normalf
3X
t=1

(z0ij®t + ºit)wijt; ¾
2
3g;

i = 1; : : : ; `; j = 1; : : : ; Ni. We have simulated S = 1000
data sets, and for each data set we ¯t the selection model.

Let x
(s)
ij ; s = 1; : : : ; S; i = 1; : : : ; `; j = 1; : : : ;Ni

denote the simulated BMI values. From these values, we

compute the percentiles, Q
(s)
i , by taking the appropriate

ordered value. When the selection model is ¯t, for each s,

s = 1; : : : ; S, the observed BMI values are x
(s)
ij ´ x(p)ij ; i =

1; : : : ; `; j = 1; : : : ; ri, and the \nonresponse" BMI values

x
(p)
ij ; i = 1; : : : ; `; j = ri+1; : : : ; ni and the \nonsampled"

BMI values x
(p)
ij ; i = 1; : : : ; `; j = ni + 1; : : : ; Ni are to

be predicted. We compute the percentiles, Q
(p)
i , of the

¯nite population, x
(p)
ij ; i = 1; : : : ; `; j = 1; : : : ;Ni, by

taking the appropriate ordered value. Finally, we study
the relative di®erences

R
(s)
i = (Q

(p)
i ¡Q(s)i )=Q(s)i ; s = 1; : : : ; S:

Note that although we describe the simulation for each
county, prediction is done by age, race and sex for each
county and appropriate adjustments to quantities like

Q
(s)
i and Q

(p)
i are made.
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Table 3: 95% credible intervals for 85th and 95th percentiles of white male BMI by age and model for three
counties (cty)

Percentile
cty age 85th 95th

11 5 - 9 (17.5, 18.4) (19.2, 20.1)
10-14 (21.2, 22.7) (23.2, 24.9)
15-19 (23.1, 26.3) (25.3, 28.8)

23 5 - 9 (18.0, 18.9) (20.0, 21.0)
10-14 (22.5, 24.5) (25.0, 27.2)
15-19 (24.8, 29.5) (27.6, 32.7)

27 5 - 9 (18.4, 19.5) (20.6, 21.9)
10-14 (23.6, 25.8) (26.5, 29.0)
15-19 (25.9, 32.1) (29.1, 36.0)

NOTE. The di®erences between the race-sex groups are small. The 95% credible intervals for age 2-4 overlap
considerably on the left of those for age 5-9. The 95% credible intervals for selection model and pattern mixture
model are similar.

We study four quantities in the simulation. First, the

distribution of the R
(s)
i over the S experiments for all

¯ve percentiles we studied is approximately normally dis-
tributed with mean 0:002 and standard deviation 0:027;

the average of the R
(s)
i over the S experiments for all

¯ve percentiles ranges from -0.002 to 0.003 with median
of 0.002. Second, we computed the probability content
of the 95% credible intervals for all age-race-sex domains
by county and these numbers range from 92.2% to 96.8%
with median at 94.9%. Third, we have computed the
average and standard deviation of the quantities P, G
and D in the deviance measure, and these quantities are
3732, 3232 and 6965 with a standard deviation 80, 88 and
159 respectively. Fourth, we have plotted DRES versus
PRED for each of the S experiments, and they all look
similar to the one for the selection model.
Therefore, the selection model can reproduce the BMI

values and the the 95% credible intervals have coverage
close to the nominal value of 95%. Thus, the selection
model has good statistical properties.

4 Clustering and Survey Weights

In this section, we describe how to incorporate into the
original selection model (a) a clustering e®ect among
household members (i.e., intra-class correlation) and (b)
the survey weights, thereby providing two additional
models. For simplicity, we compare these models with
the original selection model via inference about the pa-
rameters ®1, ®2 and ®3 to investigate the in°uence of age,
race and sex on BMI. Design information is not available
for prediction in (a).

4.1 Clustering E®ect

We assess a clustering e®ect among household members
by ¯tting a model which incorporates an intra-class cor-
relation. In the selection model we add the subscript k

to rij , xij , wijt and zij to get rijk, xijk, wijkt and zijk;
i = 1; : : : ; `; j = 1; : : : ; ci, k = 1; : : : ;mij . For example,
xijk is the BMI value for the k

th member of the jth house-
hold within the ith county. Note that

Pci
j=1mij = ni, the

sample size from the ith county.
Then letting dijk =

P3
t=1(z

0
ijk®t + ºti)wijkt, we take

xij j ®; º; ¾23; ° ind» Normal[dij ; ¾
2
3f(1¡ °)Iij + °Jijg];

where 0 · ° · 1 is the intra-class correlation coe±cient,
Iij is an mij£mij identity matrix and Jij is an mij£mij

matrix of ones. It is not possible to have an intra-class
correlation coe±cient for each household because the ma-
jority of households has just a single member (age 2-19).
We can have one intra-cluster correlation coe±cient for
each county. However, we believe that this re¯nement is
not necessary because we need to learn about the impor-
tance of the overall clustering e®ect.
For the response part of the model, we simply replace

(rij ; xij) by (rijk; xijk) keeping all parameters exactly the
same as in the original selection model. All the prior
speci¯cations remain the same with the addition that ° »
Uniform(0; 1):
In Table 2 we can see that di®erences between the

model with intra-class correlation and the selection model
are small. There are no changes in inference about the
®t, although the intra-class correlation ° is not too small
(i.e., a 95% credible interval for ° is (:38; :47)).

4.2 Inclusion of Survey Weights

Let ~¼ij , j = 1; : : : ; ni, i = 1; : : : ; ` (calibrated such thatPni
j=1 ~¼ij = Ni) denote the survey weights which are all

known (i.e., we know the sampling weights for both re-
spondents and nonrespondents in the sample). However,
since we have only the observed BMI values, we need
to impute the BMI values of the nonrespondents. (Note
that, for children and adolescents, the sampling fraction
for the thirty-¯ve counties range from 0.01% to 0.10%.)
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We use the original selection model to impute the BMI
values of the non-respondents (i.e., the posterior means of
the BMI values of the nonrespondents are substituted).
For the selection model, we have, for i = 1; : : : ; `; j =

1; : : : ; Ni;

xij j ®; º; ¾23 ind» Normalf
3X
t=1

(z0ij®t + ºti)wijt¾
2
3g: (7)

Following You and Rao (2003), we start with x¤i =Pni
j=1 ¼ijxij , where ¼ij = ~¼ij=

Pni
j=1 ~¼ij . It follows from

(7) that

x¤i j ®; º; ¾23 iid» Normalf
3X
t=1

(z¤0it®t + w
¤
itºit); ¾

2
3 ¼

¤
i g (8)

where w¤it =
Pni
j=1 ¼ijwijt, z

¤0
it =

Pni
j=1 ¼ijwijtzij and

¼¤i =
Pni
j=1 ¼

2
ij . As a surrogate for x

¤
i , we have used x

¤
i =Pri

j=1 ¼ijxij+
Pni
j=ri+1

¼ij ~xij ; where ~xij are the BMI val-
ues of the nonrespondents (obtained from the original se-
lection moodel) and we assume that ri =

Pni
j=1 rij are

¯xed and known. Our prior distributions are

ºti j ¾2t+3 iid» Normal(0; ¾2t+3); i = 1; : : : ; `;

®t j ¾2t+3 ind» Normal(®
(0)
t ;¢

(0)
t )

and ¾¡2t+3
iid» Gamma(a=2; a=2); t = 1; 2; 3: (9)

We use the same speci¯cation for a, ®
(0)
t and ¢

(0)
t as

in the selection model. Then the model, consisting of (8)
and (9), is easy to ¯t using the Gibbs sampler. Predic-
tion can be done in (7) after samples are taken from the
posterior density obtained from (8) and (9).
In Table 2 we see that inference about ®t under the

model with the survey weights is not so close to the orig-
inal selection model. The loss of e±ciency in estimating
the regression parameters has been recognized by You
and Rao (2003); so they resorted to pseudo hierarchical
Bayes methods. Methods, which use estimating func-
tions, lead to less loss in e±ciency, make approximations,
and the joint distribution of the sample values is still sin-
gular. In our case the large variation in the estimates
is due to ine±cient estimation of ¾23. The 95% credible
interval for ¾23 is (46; 734) for the model with survey
weights compared with (0:69; 0:77) for the original selec-
tion model (i.e., without survey weights). We have done a
similar analysis using household as the unit, and got very
similar results. Finally, we note that Malec, Davis and
Cao (1999) use a pseudo likelihood to include sampling
weights for the prevalence of overweight (binary) among
adults in NHANES III with negligible nonresponse.
We have performed an exploratory data analysis on the

selection probabilities (reciprocal of the sample weights)
and the BMI values. A large majority of the selection
probabilities is very similar: the ¯ve number summaries
are :0000; :0001; :0003; :0006; :0046. A scatter plot of
the BMI values versus the selection probabilities show no

pattern; the correlation between the BMI values and the
selection probabilities is ¡:18. Thus, it appears the selec-
tion probabilities provide little information about BMI.
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