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Abstract 
 
Traffic safety research grantees develop Crash Outcome 
Data Evaluation Systems (CODES) by linking police 
records to medical records. The process is complex 
because most records lack unique identifiers and exhibit 
high levels of misclassification and nonresponse. 
Grantees learn to develop Bayesian models which 
compare quasi-identifiers in order to estimate the 
probability that a record pair is a true link. To help teach 
effective modeling techniques, the CODES program uses 
test databases for which true link status is known.  A data 
generator creates test databases for each grantee by 
simulating crash and medical events. Quasi-identifiers 
specific to each grantee are drawn from multinomial 
distributions. Case duplication, item misclassification, and 
item nonresponse are simulated as Bernoulli events. The 
generator captures clustering of data for vehicle occupants 
that occurs in real life. 
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1. Crash Outcome Data Evaluation Systems 
 
The National Highway Traffic Safety Administration 
(NHTSA) provides grants to traffic safety researchers to 
develop and analyze Crash Outcome Data Evaluation 
Systems (CODES). These state-specific systems link 
police crash reports to medical treatment records, 
typically ambulance run reports from Emergency Medical 
Services, emergency department treatment records from 
hospitals, or inpatient discharge records from hospitals 
(Runge, 2000). Files to be linked typically contain 
between several thousand and a few million records. 
CODES grantees receive commercial record linkage 
software (CODES2000 or LINKSOLV) and training for 
its use from the author (McGlincy, 2004). 
 
CODES researchers develop record linkage models, 
create linked datasets, and conduct outcome studies. In 
CODES linkage models, true link status is treated as a 
latent variable, missing on all candidate record pairs. 
Bayesian analysis is used to estimate the posterior 
probability that each candidate record pair is a true link 
given comparison outcomes for all specified quasi-
identifiers. Quasi-identifiers are included for both events 
and persons because one event can involve many persons 

and one person can be involved in many events. Multiple 
imputation techniques (Schafer, 1997) are used to draw 
and analyze multiple complete sets of linked record pairs. 
Disposition of candidate pairs is determined completely 
automatically through imputation, not through clerical 
review of uncertain pairs. For example, each candidate 
pair with posterior probability of 0.5 is randomly selected 
as a true link in about half of all imputations. Elements of 
Bayesian record linkage for CODES are summarized in 
Section 2. 
 
The process is complex but necessary in order to obtain 
an unbiased representation of the unknown set of true 
linked pairs from all CODES states. Most of the 
administrative datasets available to CODES researchers 
lack unique identifiers. Many quasi-identifiers available 
for the linkage process exhibit high levels of nonresponse 
and misclassification (Greenberg, 1996). Different quasi-
identifiers are available in each state, with different data 
characteristics. In some states, some quasi-identifiers are 
missing by design on crash reports for certain sub-
populations. More information is collected about drivers 
than about passengers or more information about injured 
occupants than about uninjured (as determined on scene 
by police). In all states, records about rare situations such 
as 80-year-old drivers link with higher posterior 
probabilities than records about more common situations 
such as 18-year-old drivers. As consequences of these 
data characteristics, many true matched pairs have low 
posterior probabilities, many true unmatched pairs have 
high probabilities, and sets consisting of only high-
probability pairs are likely to be biased as well as 
incomplete. 
 
Collectively, multiple linkage imputations can provide 
unbiased estimates about the unknown set of true linked 
pairs. They also ensure that uncertainty caused by low-
probability true links and high-probability false links is 
reflected in outcome studies. All CODES states can 
produce unbiased study results using multiple imputation 
techniques. States with strong quasi-identifiers will have 
low between-imputation variances while states with weak 
identifiers will have high variances. No single imputation 
of true link status has these properties, such as might be 
obtained by using only maximum likelihood estimates. 
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Understanding and correctly applying all of the concepts 
of Bayesian record linkage are challenging tasks. New 
linkages for CODES are usually done once each year by 
each grantee after new annual datasets become available. 
For many grantees, this annual linkage project is their 
only opportunity to develop and apply linkage expertise 
with real data. Furthermore, many CODES researchers 
are primarily traffic safety experts rather than record 
linkage experts. Consequently, NHTSA provides training 
sessions so that grantees can improve their skills for 
developing and validating record linkage models. 
 
Choosing data for effective hands-on training has been 
problematic. When each state team trains with its own 
data then important general principles can be obscured by 
state-specific questions and difficulties. Most importantly, 
true link status is unknown for real datasets so that 
trainees cannot easily distinguish correct results from 
mistakes. To help improve training effectiveness, the 
capability to create artificial test datasets for which true 
link status is known for every record pair was added to 
the CODES2000 and LINKSOLV software. Even so, if 
each state team were to train with the same artificial test 
data then many state-specific questions could remain 
unanswered. Consequently, data simulation algorithms 
were designed so that artificial test datasets could be 
tailored to match real datasets for each state in many 
respects. The process for creating artificial data for 
CODES training is described in Section 3. 
 
Three training exercises become straightforward when 
using artificial test datasets. First, trainees can examine 
posterior probabilities for all true links to improve their 
understanding of Bayesian record linkage results. Second, 
trainees can measure the goodness of fit of a linkage 
model to test whether calculated posterior probabilities 
are accurate. Third, trainees can compare goodness of fit 
measures for alternative models to help contrast them. 
Results from hypothetical training exercises are described 
in Section 4. 
 
Section 5 describes open issues related to using artificial 
data for record linkage training. 
 

2. Bayesian Record Linkage 
 

This section summarizes key elements of Bayesian record 
linkage for CODES (McGlincy, 2004). CODES record 
linkage is similar to analyses using mixture models 
described by Larsen (2004), Winkler (1988, 1989, 1993, 
1994), and others but implementation differs in several 
important details. Posterior odds for a true link are 
obtained by applying Bayes’ rule for odds (Gelman et al., 
2004, pg. 9) 
 

Posterior Odds = Prior Odds × Likelihood Ratio. 

 
Prior odds are strongly informative, set equal to the 
number of true links (or matched pairs) divided by the 
number of true non-links (or unmatched pairs), based on 
reported information. For example, police might note on 
their crash reports whenever an injured crash victim is 
transported by ambulance. Or, EMS teams might note on 
their ambulance run reports whenever they respond to a 
motor vehicle crash. 
 
The likelihood ratio is set equal to the test statistic m/u 
defined by Fellegi and Sunter (1969), where m is the 
conditional probability of observing any comparison 
outcome on a true matched pair and u is the conditional 
probability of observing the same comparison outcome on 
a true unmatched pair. The ratio is calculated as the 
product of mk / uk for each comparison field k, 
 

m / u = Πk mk / uk. 
 
Each comparison field (quasi-identifier) can agree on a 
specific value, disagree, or be missing on either file. Each 
mk and uk, is calculated using formulas given by Fellegi 
and Sunter as their Method I. For computational 
convenience, some calculations are done using match 
weights, defined as 
 

Match Weight = log2 (m / u) = Σk log2 (mk / uk). 
 
Method I formulas apply when observations are 
independently drawn from identical distributions, 
comparison outcomes are independent, data values have 
known multinomial distributions, probabilities of item 
nonresponse are known for all quasi-identifiers and are 
independent of data values, and probabilities of 
misclassification are known for all quasi-identifiers and 
are independent of data values. Real datasets seldom 
satisfy all of the conditions for applying their formulas 
exactly as presented by Fellegi and Sunter. However, their 
Method I is still an appropriate starting model for CODES 
linkages because it incorporates nonresponse and 
misclassification explicitly, common occurrences in most 
CODES datasets. 
 
The main difficulty with using Method I for m/u is that 
parameters needed to calculate each mk and uk, are not 
known. Suppose records to be linked are from populations 
A and B. Multinomial distributions for quasi-identifiers in 
A or B can be estimated from reported values, as can 
probabilities of nonresponse. Multinomial distributions 
for quasi-identifiers in true matched pairs (A∩B) and 
probabilities of misclassification cannot. However, the 
latter parameters can be estimated from the set of true 
matched pairs. For CODES, model parameters and true 
link status are drawn simultaneously from their joint 
probability distribution through Markov Chain Monte 

ASA Section on Survey Research Methods

3405



Carlo data augmentation (McGlincy, 2004; Schafer, 
1997). Linkage practitioners supply starting values for all 
model parameters. Given the parameters, the missing true 
link status is imputed for all candidate pairs using Bayes’ 
rule for odds and Method I for m/u. Given the true link 
status, new values for model parameters are drawn from 
their posterior distributions. These are the Imputation or I-
step and Posterior or P-step, respectively (Schafer, 1997, 
pg. 72). The steps are iterated until stationarity 
(convergence in distribution) is achieved. Each linkage 
imputation is drawn from an independent chain.  
 
Another difficulty with using Method I for m/u is that data 
for vehicle occupants are not independent, identically 
distributed observations. Many crashes involve more than 
one vehicle and many vehicles have more than one 
occupant. Everyone in a crash is injured at the same time 
and place. All crash victims are transported to the same 
hospitals near crash locations. In practice, CODES 
researchers apply this heuristic: Method I can be used but 
the amount of information contributed by event quasi-
identifiers must be limited. For example, if there were two 
occupants in each crash then event quasi-identifiers alone 
should give posterior probabilities no greater than 0.5. 
 

3. Creating Artificial Data 
 
3.1 Preparation for Simulation 
 
The data generator program creates artificial test 
databases suitable for each grantee by simulating the 
occurrence and documentation of motor vehicle crash 
events, other types of injury events, and related medical 
treatment events. The data generation process captures 
clustering of data for vehicle occupants that occurs in real 
life. 
 
Monte Carlo simulation algorithms are used to draw a full 
set of typical event-related and person-related quasi-
identifiers from simplified multinomial distributions 
loosely based on real data. To create state-specific 
artificial data, a linkage practitioner specifies the 
simulated duration in days and the average number of 
various classes of injury events per day based on state 
experience. The practitioner also specifies probabilities 
for item misclassification, item nonresponse, and case 
duplication based on state experience. 
 
3.2 Simulate State-Specific Locations 
 
State-specific locations (zip codes, cities, towns, and 
counties) are selected from a master list. The master list is 
created from information about real zip codes from the 
United States Postal Service (USPS). State-specific acute 
care hospitals are selected from a master list. The master 
list is created from information about real hospital 

facilities from the Centers for Medicare and Medicaid 
Services (CMS). The hospital closest to each zip code is 
determined by straight-line distance. 
 
3.3 Simulate Date, Time, and Location of Events 
 
The total number of injury events for each class is set to 
state average experience times the number of days 
simulated. Date and time of each event are randomly 
assigned within the specified horizon. Location of each 
event is randomly drawn from the state-specific list of 
locations. This places more events in urban areas with 
many zip codes than in rural areas with one zip code. 
 
3.4 Simulate Crash Events 
 
For each crash event, the type of collision and the number 
and types of vehicles involved are drawn from 
multinomial distributions loosely based on real data. For 
example, the artificial crash data includes only 4 common 
vehicle body types compared to 20 or more types in a 
typical real crash dataset. For each vehicle, the number of 
occupants is drawn from a multinomial distribution and a 
separate record is created for each person. Seating 
positions are fixed:  the first occupant is always a driver, 
the second occupant is always a passenger in the right-
front seat, etc. For each occupant, the use of safety 
equipment and injury severity are drawn from dependent 
multinomial distributions. 
 
3.5 Simulate EMS Responses 
 
Response by an EMS agency is simulated for each person 
injured in a crash. EMS responses are also simulated for 
other injured persons based on state experience. The delay 
from injury occurrence to EMS call is drawn from a 
normal distribution loosely based on real data. The delay 
from EMS call to arrival on scene is drawn from a normal 
distribution. EMS action (transport or treat only) is 
randomly drawn from a binomial distribution. Transports 
are simulated to the nearest hospital and transport time is 
drawn from a normal distribution. 
 
3.6 Simulate Medical Treatment 
 
Treatment at an acute care facility is simulated for each 
injured person transported by EMS. Treatment is also 
simulated for injured persons arriving at an emergency 
department by other means, based on state experience. 
The delay from arrival to start of treatment is drawn from 
a normal distribution. Treatment duration is drawn from a 
log normal distribution. The delay from start of treatment 
to admission as an inpatient is drawn from a normal 
distribution. 
 
3.7 Simulate Personal Quasi-Identifiers  
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Personal quasi-identifiers are randomly drawn from 
multinomial distributions for each vehicle occupant, 
injured or uninjured, and each person injured in other 
events. True unique identifiers are added to all records so 
that true link status of any record pair can be determined 
by inspection. 
 
3.8 Simulate Common Data Errors 
 
Three common data collection problems are simulated. 
Case duplication, item misclassification, and item 
nonresponse are simulated as Bernoulli events with 
probabilities of occurrence set to match state experience. 
Cases are duplicated before misclassification and 
nonresponse are introduced so that duplicate records 
receive independent errors. Thus, true duplicates may not 
be exact duplicates. 
 

4. Training with Artificial Data 
 
4.1 Hypothetical Training Exercise 
 
Consider a hypothetical training exercise for Nebraska 
researchers. First, a trainee specifies that artificial police 
crash reports and EMS ambulance run reports should be 
created for Nebraska for a 31-day period. Crashes are 
specified to occur at an average rate of 107 per day. EMS 
ambulance runs for other injury events are specified to 
occur at an average rate of 44 per day. Probabilities of 
misreporting and nonresponse are set to 0.02 and 0.05, 
respectively, for each person-related and event-related 
quasi-identifier. Given these specifications, the simulation 
program creates test datasets containing artificial police 
crash report records for 7,701 people in 3,317 crashes and 
EMS run report records for 3,494 injured persons. There 
are 2,130 true links (same person and event) between the 
crash and EMS datasets. 
 
4.2 Starting Linkage Model 
 
Trainees specify a starting linkage model. The model 
tested here compares the seven quasi-identifiers shown in 
Table 1. 
 
Table 1. Quasi-Identifiers in Crash and EMS Datasets 
for Starting Linkage Model 

ID 
Type 

Crash  
Identifier 

EMS 
Identifier 

Information
(Bits) 

Event Crash Date  Call Date 4.9
Event Crash Zip Incident Zip 9.1
Event Collision Type Collision Type 1.7
Person Age Age 6.2
Person Birthday Birthday 8.5
Person Seat Position Seat Position 0.9
Person EMS Action  Disposition 1.0

 
Three quasi-identifiers are event-specific identifiers and 
four are person-specific identifiers. Information entropy is 
shown as a measure of the average contribution from each 
quasi-identifier (Goldman, 1953). 
 
The model includes two match passes:  pass 1 considers 
candidate record pairs which agree on person age and 
pass 2 considers pairs which agree on county of event. 
Passes are run independently with identical parameters 
and results are merged. Only pairs with posterior 
probabilities greater than 0.01 (a low but arbitrary cutoff 
probability) are tabulated. Five parallel Markov chains are 
used to determine posterior probabilities and five 
independent linkage imputations are drawn. 
 
Trainees measure goodness of fit of linkage models as for 
logistic regression models (Hosmer and Lemeshow, 
2000): 
 

1. Sort all tabulated candidate pairs by posterior 
probability and divide the table into deciles. 

2. Determine the actual number of true links in 
each decile by inspection. 

3. Determine the expected number of true links in 
each decile by summing posterior probabilities. 

4. Determine a chi square test statistic by 
comparing actual counts to expected counts. 

 
The analysis is repeated for each imputation and results 
are combined using standard methods (Little and Rubin, 
2002). Cell counts are averaged and the repeated-
imputation p value is Pr(Fk,b > Fc), where k=10 degrees of 
freedom, and b and Fc are derived from the five test 
statistics. Total expected true links are not constrained to 
equal total actual true links. 
 

Table 2. Goodness of Fit of Starting Linkage Model 
P Value < 0.01 

 
Decile 

Pairs In 
Decile 

Actual 
True Links 

Expected 
True Links 

1 312 2.0 5.2 
2 312 5.0 14.1 
3 312 25.4 53.5 
4 312 185.0 252.4 
5 312 307.0 311.4 
6 312 311.6 312.0 
7 312 312.0 312.0 
8 312 312.0 312.0 
9 312 312.0 312.0 

10 312 312.0 312.0 
Totals 3,120 2,084.0 2,196.6 

 
The fit is poor (p value < 0.01) for the starting model. By 
inspecting Table 2, trainees learn that the model produces 
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many false positives in the lower deciles, with about 5% 
excess links overall. The model does not find all true 
links. There are 2,130 – 2,084 = 44 missing links (false 
negatives). 
 
4.3 Improved Linkage Model 
 
The fit is poor for the starting model because the model 
includes too much event information. The test crash 
dataset includes 7,701 people in 3,317 crashes. This 
means that event quasi-identifiers alone can only 
determine the correct link, on average, with probability 
3,317 / 7,701 = 0.43. For the test datasets used here, 
probability = 0.43 is obtained with match weight = 13.2. 
On average, the three event quasi-identifiers contribute 
match weight = 4.9 + 9.1 + 1.7 = 15.7. Trainees improve 
the model by reducing the contribution from event quasi-
identifiers. For example, one could drop event date, 
replace event zip code with county, or reduce calculated 
weights by an appropriate factor. For the results in Table 
3, event weights were multiplied by 13.2 / 15.7 = 0.84. 
 
Table 3. Goodness of Fit of Improved Linkage Model 
P Value > 0.99 

 
Decile 

Pairs In 
Decile 

Actual 
True Links 

Expected 
True Links 

1 235 8.8 6.6 
2 236 132.6 136.0 
3 236 231.4 233.2 
4 236 235.2 235.7 
5 236 236.0 236.0 
6 235 235.0 235.0 
7 236 236.0 236.0 
8 236 236.0 236.0 
9 236 236.0 236.0 

10 236 236.0 236.0 
Totals 2,358 2,023.0 2,026.5 

 
By inspecting Table 3, trainees learn that model fit is 
much improved (p value > 0.99) after correcting for 
excess event information. The average posterior 
probability for actual true links is 0.96. The model does 
not find all true links. There are 2,130 – 2,023 = 107 
missing links (false negatives). Trainees investigate 
possible ways to correct the false negatives. Some false 
negatives could be corrected by adding match passes. 
Others could be corrected by adding or changing quasi-
identifiers. 
 
4.4 Reduced Linkage Model 
 
Trainees investigate the effects of using different sets of 
quasi-identifiers. The reduced linkage model tested here 
includes five quasi-identifiers as shown in Table 4. Many 
CODES datasets do not include dates of birth. Lack of 

this important quasi-identifier makes linkage results more 
uncertain. 
 
Table 4. Quasi-Identifiers in Crash and EMS 
Datasets for Reduced Linkage Model 

ID 
Type 

Crash  
Identifier 

EMS 
Identifier 

Information 
(Bits) 

Event Crash Date  Call Date 4.9
Event Crash Zip Incident Zip 9.1
Person Age Age 6.2
Person Seat Position Seat Position 0.9
Person EMS Action  Disposition 1.0

 
Without correction, the reduced model still includes too 
much event information (4.9 + 9.1 = 14.0). For the results 
in Table 5, match weights for both event quasi-identifiers 
were multiplied by 13.2 / 14.0 = 0.94. 
 

Table 5. Goodness of Fit of Reduced Linkage Model 
P Value = 0.80 

 
Decile 

Pairs In 
Decile 

Actual 
True Links 

Expected 
True Links 

1 514 9.2 4.7 
2 514 11.8 9.0 
3 515 17.6 13.7 
4 514 25.6 20.3 
5 515 38.0 39.6 
6 514 99.0 110.7 
7 514 321.0 339.8 
8 515 492.2 503.7 
9 514 510.0 512.6 

10 515 511.6 514.6 
Totals 5,144 2,036.0 2,068.7 

 
By inspecting Table 5, trainees learn that the reduced 
model also fits the data well (p value = 0.80) but that it 
places over twice as many candidate pairs above the 
cutoff probability. One cannot be as certain which links 
are probably true and which links are probably false with 
less evidence on which to base posterior probabilities. 
The average posterior probability for actual true links is 
now 0.84. The model does not find all true links. There 
are 2,130 – 2,036 = 74 missing links (false negatives). 
 
The reduced model introduces more between-imputation 
variance into typical study results than the improved 
model. As one example, the sample variance of the square 
roots of five by-imputation chi square statistics is used in 
estimating combined p values shown in Tables 3 and 5. 
The variance is 0.3 for the improved model (Table 3) 
compared to 0.8 for the reduced model (Table 5). 
 

5.  Issues 
 
5.1 Do Lessons Learned Apply to Real Data? 
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Training with artificial test datasets can be counter-
productive unless most lessons learned apply to real 
datasets (Winkler, 2005). Clearly, the lessons described in 
Section 4 apply to many real CODES record linkage 
situations. Trainees learn that Bayesian posterior 
probabilities estimated using the CODES record linkage 
methodology can accurately reflect true link status. A 
good linkage model developed for realistic artificial test 
datasets is likely to be a good starting model for linking 
real datasets. Lessons learned linking artificial datasets 
are likely to reduce trial and error methods for arriving at 
effective linkage models. 
 
5.2 Are Quasi-Identifiers Realistic Enough? 
 
The collection of artificial quasi-identifiers produced by 
the simulation program has been expanded and modified 
based on informal feedback after training sessions. Most 
CODES states can now mimic most of their important 
match variables with artificial quasi-identifiers. A more 
systematic effort is needed to identify shortcomings, test 
their effects, and develop solutions. For example, 
simulated locations are drawn from USPS zip codes. 
Omaha contains about 8% of the zip codes in Nebraska 
but about 23% of the people. Real people (and real 
crashes) are more concentrated in urban areas than 
reflected in the artificial quasi-identifiers, crash zip and 
home zip. 
 
Values of some quasi-identifiers which differ by less than 
a specified tolerance (using some appropriate metric) are 
considered agreements. For example, two event times 
which differ by 15 minutes or locations which differ by 5 
miles might be considered agreements. Simulated events 
have realistic proximities in time and place but do not 
include relatively rare events such as helicopter transports 
to distant hospitals. Trainees can use simulated data to 
evaluate different models with different comparison 
tolerances for event proximity. 
 
Quasi-identifiers created by the simulation program have 
fewer dependencies than real quasi-identifiers. For 
example, simulated crash times and locations are 
independent but real crash times and locations might be 
dependent because of rush-hour traffic patterns. 
Dependent quasi-identifiers cause dependent comparison 
outcomes (agreements on unmatched pairs), a violation of 
model assumptions. Trainees cannot yet use simulated 
data to test all realistically dependent agreements for 
statistical significance (chi square p-values), measure 
their strengths (symmetric uncertainty coefficients), and 
correct the linkage models. 
 
5.3 Are Types of Errors Realistic Enough? 
 

All misreporting is simulated as misclassification. True 
values are replaced with other values drawn at random 
from the same multinomial distribution. Some real errors 
are not misclassifications. For example, a person’s name 
might be reported with two letters transposed. As with 
event proximity, real quasi-identifiers which differ by less 
than a specified tolerance (using some appropriate metric) 
might be considered agreements. Trainees cannot yet use 
simulated data to evaluate different models with different 
comparison tolerances for such misreporting. 
 
CODES linkage practitioners investigate and document 
types of errors and their frequencies for each quasi-
identifier when preparing real data for linkage. 
Complicated types of errors have been found to occur for 
person names and street addresses which violate model 
assumptions. For example, common or short names might 
have fewer errors than uncommon or long names. Both 
linkage models and simulation models assume errors are 
equally likely for all data values. This assumption seems 
more plausible for quasi-identifiers in the models 
described here, and many CODES datasets do not include 
names or addresses. 
 
Errors created by the simulation program are independent 
but errors in real data might be dependent. For example, 
age and birthday might have dependent errors if both are 
derived from date of birth. Dependent errors cause 
dependent comparison outcomes (disagreements on 
matched pairs), a violation of model assumptions. 
Trainees cannot yet use simulated data to test all 
realistically dependent disagreements for statistical 
significance (chi square p-values), measure their strengths 
(symmetric uncertainty coefficients), and correct the 
linkage models. 
 
5.4 Are Training Times Practical? 
 
It can take several days or more to prepare realistic 
artificial test datasets and run a linkage project. For 
example, the linkage software evaluates about 10,000,000 
candidate pairs per hour. Additional time is needed to test 
model fit and find improvements. Such time commitments 
compete with preparing real data for linkage or validating 
real linkage results. Training with one year’s artificial 
data can be done but run times will be as long as for the 
real linkage. Training with one month’s artificial data, as 
described here, is much quicker but linkage results will 
not be as realistic. 
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