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Abstract 
 
In business surveys, data typically are skewed and 
the standard approach for small area estimation 
(SAE) based on linear mixed models lead to 
inefficient estimates. In this paper, we discuss SAE 
techniques for skewed data that are linear following 
a suitable transformation. In this context, 
implementation of the empirical best linear unbiased 
prediction (EBLUP) approach under transformation 
to a linear mixed model is complicated. However, 
this is not the case with the model-based direct 
(MBD) approach (Chambers and Chandra, 2006), 
which is based on weighted linear estimators. We 
extend the MBD approach to skewed data using 
sample weights derived via model calibration based 
on a log transform model with random area effects. 
Our results show this estimator is both efficient and 
robust with respect to the distribution of these 
random effects. An application to real data 
demonstrates the satisfactory performance of the 
method. 
 
Keywords: Small areas, Skewed data, MBD, Model 
Calibration, Expected value model. 
 

1. Introduction 
 
The standard methods for SAE assume a linear 
mixed model can be used to characterize the small 
areas of interest. However, it happens (typically for 
skewed data) that the variable of interest Y is linear 
on some transformed scale (e.g. in business surveys, 
often variables are linear on log scale). In this 
context, estimation based on linear model for Y leads 
to inefficient estimates. In such situation, an 
appropriate technique for SAE should essentially be 
based on a linear mixed model for a transformed 
variable. In this paper we explore transform variable 
based estimation in context of SAE for skewed data, 
focussing on the widely used log transformation. In 
this paper we extend the MBD approach of 
Chambers and Chandra (2006) to SAE for skewed 
data. In particular, we consider the use of sample 
weights derived via model calibration (Wu and 
Sitter, 2001) based on a log transform model with 
random area effects.  
 
In the following section we summarize the model 
calibration approach for estimation of population 
quantities. In section 3 we then discuss the expected 
value model derived from a transform linear mixed 

model for SAE of skewed data. Section 4 introduces 
the survey weights based on expected value model 
derived from a transform linear mixed model and 
describes the MBD estimator for SAE in this case.  
In section 5 we provide illustrative empirical results. 
Finally, in section 6 some concluding remarks are 
made.  

 
2. Model Calibration for Population Estimation 

 
In this section we briefly review model calibration 
for estimation of population level quantities. To 
start, we fix our notation. Let Y denote an N-vector 
of population values of a characteristic of interest, 
and suppose that our primary aim is estimation of 
the total yT  of the values in Y (or their mean). In 

order to assist us in this objective, we shall assume 
that we have ‘access’ to X, an N × p matrix of values 
of p auxiliary variables that are related, in some 
sense, to the values in Y. In particular, we assume 
that the individual sample values in X are known. 
The non-sample values in X may not be individually 
known, but are assumed known at some aggregate 
level. At a minimum, we know the population totals 

xT  of the columns of X. Given this set up, Deville 
and Särndal (1992) introduced the notation of a 
calibration estimator of population total of Y as 

ŷ j jj s
T w y∈=∑ , where the calibration weights jw ’s 

are chosen to minimise their average distance, from 
the basic design weights, subject to the calibration 
constraint 

1

N

j j j xj s j
w x x T∈ == =∑ ∑ . There is an 

implicit underlying assumption that Y and X are 
linearly related that makes this a valid argument. If 
the underlying model is non-linear then the 
calibrated estimator derived under a linearity 
assumption cannot be very efficient. Let us assume 
the relationship between Y and X can be described 
by a super population model  
        ( | ) ( ; )E Y X h Xξ η=  and ( | )V Y Xξ = Ω         (1) 

where η  typically vector-valued model parameter, 
and the mean function ( ; )h X η  is a known function 
of X  and η , the variance Ω  is a function of X  
and ( ; )h X η . Here Eξ andVξ denotes the expectation 

and variance with respect to model.  The model (1) 
is quite general and includes linear, non-linear, and 
generalized linear models as special cases. In this 
context, Wu and Sitter, (2001) proposed the use of 
sample weights derived via model calibration. They 
defined the calibration estimator for population 
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mean of Y as 1ˆ
c j jj s

Y N w y−
∈= ∑  with weights sought 

to minimize the distance measure under the 

constraints: jj s
w N∈ =∑  and 

1
ˆ ˆN

j j jj s j
w h h∈ ==∑ ∑ ,  

where η̂  is a design consistent estimator forη . 
Provided the model (1) is a reasonable one, jy  is 

then (at least approximately) a linear function of its 
‘fitted values’ ˆ( ; )jh x η  under this model. The basic 

idea of this approach is then we can carry out linear 
estimation using these ‘fitted or expected values’ as 
auxiliary variables. That is calibration is performed 
with respect to the population mean of the ‘fitted 

values’ ˆ ˆ( ; )j jh h x η=  of ( ; )jh x η . 

 
The above discussion represents what might be 
referred to the design-based interpretation of model 
calibration. A model-based perspective on model 
calibration can be described as follows. We assume 
that Y  and ( ; )h X η  are related by the linear model 
of the form 

Y Jα ε= +           (2) 
where J denotes the ‘design matrix’ for the linear 
model (3) linking Y  and ( ; )h X η , 0 1( , )α α α ′=  is a 

vector of unknown parameters, ε  denotes a N-
vector of random variables with ( ) 0Eξ ε =  and 

( ) [ ]jkVξ ε ω= Ω = . We called model (2) the ‘expected 

value’ or ‘fitted value’ model defined by (1). For 

0 0α =  in model (2) we refer as ratio specification of 
this model, otherwise regression specification. The 
model (2) can have either ratio or regression 
specification. Without loss of generality, we arrange 
the vector Y  so that the first n elements correspond 
to the sample units, and partition Y , J and Ω  
according to sample and non-sample units. Where 

sJ  denoted the n ×1 vector of ‘fitted values’ of the 

auxiliary variables and ssΩ is the n× n covariance 
matrix associated with the n sample units that make 
up the n×1 sample vector sY . A subscript of r is 
used to denote corresponding quantities defined by 
the N n−  non-sample units, with rsΩ  denoting the 

( )N n n− ×  matrix defined by ( , )r sCov Y Y . In what 

follows we denote 1N , 1n and 1r  as vectors of 1’s 

and NI , nI  and rI  as identity matrices of order N, n 

and N n−  respectively. In practice the variance 
components that define covariance matrix Ω  are 
unknown and so need to be estimated from the 
sample data. We use a “hat” to denote such an 
estimate. Further, throughout this paper we assume 
that sampling is uninformative, so the sample data 
also follow the population model. 
 
Given this notation, the sample weights that define 
the BLUP for population total of Y under a general 
linear ‘fitted value’ model (2) are  
   11 ( 1 1 ) ( ) 1h

BLUP n h N s n n h s ss sr rw H J J I H J −′ ′ ′ ′ ′= + − + − Ω Ω    (3) 

where 1 1 1( )h s ss s s ssH J J J− − −′ ′= Ω Ω . See Royall (1976). The 
sample weights (3) derived via model calibration are 
calibrated on J . The weights (3) are based on a 
model appropriate for estimation of population as a 
whole and using these weights for SAE will be 
inefficient. The most commonly used class of 
models for small area estimation model is essentially 
a mixed model. The next section describes the 
models suitable for SAE. 
 
3.  Small Area Models under Transformation 

 
Let iY  be the 1iN ×  vector of values of variable of 

interest in small area i ( 1,...., )i m=  and let iX  be the 

iN p×  matrix of values of the auxiliary variables 

associated with iY . We assume that iY  and iX  are 
not related by a linear model on themselves, but they 
are linearly related on logarithm (natural) transform 
model. We consider the following linear mixed 
model specification for the distribution of log( )i il Y=  

given iZ : 

i i i i il  Z  G u eβ= + +            (4) 

where (1 ,log( ))i N ii
Z X=  is the ( 1)iN p× +  matrix of 

values of the auxiliary variables in area i, β  is a 
( 1) 1p + ×  vector of fixed effects, i G  is a iN q×  
matrix of known covariates characterising 
differences between small areas, iN  is the number 

of population units in the small area i, 1Ni
 is a vector 

of 1’s of order iN , iu  is a random area effect 

associated with the ith small area and ie  is a 1iN ×  
vector of individual level random errors. The two 
random variables iu  and ie  are assumed to be 
independently normally distributed, with zero means 
and with variances ( )iV u Σ=  and 2( )i e Ni

V e σ I=  

respectively. The variance-covariance matrix of il  is 
2( )i i i e Ni

V G G Iθ σ′= Σ + , with ( ) ( )ijj ij ij ijv G G   Var e  θ ′= Σ +  

and ( ) , , 1,...,ijk ij ik iv G G j k Nθ ′= Σ = .  

 
By grouping the area-specific models (4) over the 
population, we are led to the population level model: 

l Z Gu eβ= + +            (5) 
where 

1( ,...., )ml l l′ ′ ′= , 1( ,...., )mZ Z Z′ ′ ′= , ( ;1 )iG diag G i m= ≤ ≤ ,

1( ,..., )mu u u′ ′ ′=  and 1( ,...., )me e e′ ′ ′= . The variance 

matrix of l is ( ;1 )iV diag V i m= ≤ ≤ . We assume that 
Z has full column rank. In practice the variance 
components of the model that define the covariance 
matrix V are unknown and we estimate them from 
the sample data under the model (5). The estimated 

variance matrix of l is ˆ ˆ( ;1 )iV diag V i m= ≤ ≤  with 
2ˆ ˆˆ

i e N i ii
V I G Gσ ′= + Σ . We consider the partition of l, Z, 

G and V into sample and non-sample components as 
mentioned before (3). We use similar notation at the 
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small area level by introducing an extra subscript i 
to denote small area.  
 
With this notation, and assuming (5) holds, the 

EBLUE of β  is ( ) ( )-1
1 1

1 1
ˆ ˆ ˆm m

is iss is is iss isi i
Z V Z Z V lβ − −

= =
′ ′= ∑ ∑  

with ˆ( )Eξ β β=  and ( )-1
1

1
ˆ ˆ( )

m

is iss isi
V Z V Zξ β −

=
′= ∑ . We 

denote ˆ ˆ
i iZφ β=  with ˆ( )i iE Zξ φ β=  and 

ˆ ˆ( ) ( )i i iV Z V Zξ ξφ β ′= , where ˆ( ) 0ijk ij ika Z V Zξ β ′= →  as 

n → ∞ . We denote by 11( ,...., )i iN Ni ii a aa ′=  

and 11( ,..., )i iN Ni ii v vv ′= , the vectors of diagonal 

elements of the covariance matrices ˆ( )iVξ φ   and  

( )iV lξ  respectively. 

 
In order to use the Chambers and Chandra (2006) 
MBD method to get estimates for small areas we 
require sample weights. For skewed data that 
follows a linear mixed model on the log scale (5), 
the sample weights can be derived via model 
calibration, so first we need to evaluate ‘expected 
value’ model (Section 2). In other words, we need to 
evaluate the first and second moments under the 
model (4) to derive the sample weights (3). We can 
use parameter estimates derived under model (4) to 
obtain the predicted values of the transform variable 
and then back-transform to get predicted values of Y. 
These lead to the naïve-lognormal predictor. 
However, this predictor is biased. Bias corrected 
first and second order moments that define the 
expected value model are expressed below. 
Let us consider  

/ 2 ˆ( ) ( )
Z vij ijj

ij ijE Y e E Y
β

ξ ξ
+= ≠           (6) 

Thus, we need to adjust this bias. Using two-step 
Taylor series approximation, a second order bias 
corrected estimate of ( )ijE Yξ  is defined as 

    1
ˆˆ ˆˆ ˆ( ; ) exp( ),  1,....,
2
ijj

ij ij ij ij i

v
Y h Z k Z j Nη β−= = + =       (7) 

so that / 2ˆ( ) ( )
Z vij ijj

ij ijE Y e E Y
β

ξ ξ
+≈ = . Here 

( )ˆ ˆ ˆ1 ( ) / 4 2ij ijj ijjk a Var v⎡ ⎤= + +⎢ ⎥⎣ ⎦
 is the bias correction 

and ˆ( )ijjVar v  is the asymptotic covariance matrix of 

îjjv  given by inverse of the relevant information 

matrix (Rao, 2003). Under normality of the random 
errors iu  and ie , covariance between  ijY  and  ikY  in 

small area i  is 

       

1
( )( ) 2

2

[ ( 1)]   

[ ( 1)]       

v vijj ikkZ Z vij ik ijk

ijk
Z v vij ijj ijj

e e e  if j k

e e e             if j k

β

β
ω

++⎧
⎪ − ≠= ⎨
⎪ − =⎩

         (8) 

 
We group the bias corrected predictor (7) and the 
covariance (8) at the small area level as 

    1 ˆˆ ˆˆ ˆ( ; ) exp( )
2

i
i i i i

v
Y h Z k Zη β−= = + ,         (9) 

( ) [ ]i i ijk i i iVar Y A A  ξ ω ′= Ω = = ∆        (10) 

where { }( ) ;1
Zij

i iA diag e  j N
β= ≤ ≤  and i  ∆ is i iN N×  

positive definite matrix with ( , )thj k  elements as 
( ) / 2

{ (e 1)}
v v vijj ikk ijk

ijk  eδ += − .  

 
The area-specific approximately bias corrected 
estimator (9) and covariance matrix (10), grouped at 
population level define the population level version 
of ‘expected value’ model  
   0 1( | ) 1NE Y h h Jξ α α α= + = and ( | )V Y hξ = Ω        (11) 

where 1( ,......., )mh hh ′ ′ ′=  and  ( ;1 )idiag i m= Ω ≤ ≤Ω .  
 

4. SAE under the Expected Value Model (11) 
 
With appropriate sample and non-sample partition of 
Y, J  and Ω , as in section 2, the EBLUP version of 
sample weights (3) under the model (11) are 
   1ˆ ˆ ˆ ˆ1 ( 1 1 ) ( ) 1h

EBLUP n h N s n n h s ss sr rw H J J I H J −′ ′ ′ ′ ′= + − + − Ω Ω       (12) 

where 1 1 1ˆ ˆ ˆ( )h s ss s s ssH J J J− − −′ ′= Ω Ω . We note that the  
weights (12) depend on random area effects of the 
mixed model (4) via the covariance structure of 
model (11) and are thus suitable for small area 
estimation. We now use the MBD approach of 
Chambers and Chandra (2006) to define estimator 
for small areas. They only consider the Hájek form 
of the MBD estimator for small areas using sample 
weights derived under a linear mixed model. 
However, the weights (12) are derived via model 
calibration under the expected value model (11) 
where estimator is defined as the HT form (Section 
2). Thus, we consider both forms of MBD 
estimators. The sample weights (12) associated with 
the sample units in the small area i can be used to 

define the following MBD estimators for the thi  
small area mean iY : 

• The Hájek form of the weighted sample for area i  

             ˆ Hájek

j j ji s si i
Y w y w=∑ ∑           (13) 

• The Horvitz-Thompson form of the weighted 
sample for area i 

           ˆ HT

j j ii si
Y w y N=∑         (14) 

Both estimators (13) and (14) also depend on how 
the model calibration weights (12) are specified. In 
particular, we consider two different specifications 
for the expected value model (11), the ratio and the 
regression specification (see below equation (2)). 
This leads to four different MBD estimators that are 
set out below. 
 

Estimator Estimator type Model 
specification  

TrMBD1 Hájek type  Ratio  
TrMBD2 H-T type Ratio  
TrMBD3 Hájek type  Regression  
TrMBD4 H-T type Regression  
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Estimation of MSE of (13) and (14) follows the 
approach of Chambers and Chandra (2006), and 
treats these expressions as simple weighted domain 
mean estimates under the population level model 
(3). Under this approach, the sample weights derived 
from (12) are treated as fixed and the prediction 
variance of (13) and (14) is estimated using a 
standard robust variance estimator. See Royall and 
Cumberland (1978). A “plug-in” estimate of the 
squared bias of (13) and (14) under this model is 
added to this estimated prediction variance to finally 
define a simple estimate of the MSE. Note that 
under this approach the EBLUP weights underlying 
(13) and (14) “borrow strength” via the assumed 
small area model (11), but this model is not used in 
inference. In particular, we treat the expected value 
model (11) as a vehicle for generating estimation 
weights, but base inference on the model (2), thus 
ensuring consistency with the way mean squared 
errors are estimated at population level.  
 

5. Simulation Study 
 
In this section we illustrate the performance of seven 
different small area estimators. These are the 
proposed MBD estimators (TrMBD1-TrMBD4) for 
skewed data (Section 4), the Hájek type (MBD1), 
and HT type (MBD2) MBD estimators based on 
sample weights derived under a linear mixed model 
and the EBLUP under a linear mixed model. 
 
We consider two types of simulation studies. The 
first type of study uses model-based simulation to 
generate artificial population and sample data. These 
data are then used to contrast the performance of 
different estimators. The second type of simulation 
study was carried out using real data and design-
based simulations to test these estimators in the 
context of a real population and realistic sampling 
methods. Three measures of estimation performance 
were computed using the estimates generated in the 
simulation study. These were the relative mean error 
and the relative root mean squared error (RMSE), 
both expressed as percentages, of regional mean 
estimates and the coverage rate (CR) of nominal 95 
per cent confidence intervals for regional means.  
 
5.1 The Model Based Simulation Study 
 
In model-based simulations, we consider a 
population size N=1500 and generated randomly the 
small area population sizes Ni (i=1,...,m=30) so that 

ii
N N=∑ . Further, we consider n=600 and 

generated ( / )i in N n N=  with ii
n n=∑ . These were 

fixed for all simulations. We generated the 
population values ijy  from a multiplicative 

model 5.0ij ij i ijy x u eβ= . The generated population is 

skewed on the raw scale and linear on the log 
transform scale. The random errors ije  were 

independently generated from a lognormal (LN) 
distribution with LN (0, eσ ). The random area 

effects iu  and auxiliary variables ijx  were generated 

from LN (0, uσ ) and LN (6, xσ ) respectively. The 

values of parameter eσ  and uσ  were chosen so that 
intra-area correlation varies between 0.20-0.25. We 
used six different sets of parameter to bring different 
level of variation in generated data as shown below:  
 

Parameter  β uσ  eσ  xσ  

Par1 0.5 0.30 0.50 3.00 
Par2 0.8 0.35 0.60 2.50 
Par3 1.0 0.40 0.70 2.25 
Par4 1.3 0.45 0.80 1.75 
Par5 1.5 0.50 0.90 1.50 
Par6 2.0 0.60 1.00 1.20 

 
Using this generated data we estimated the 
parameters using the lme function in R, and then 
calculated the estimates for small areas (Section 4). 
We replicated 1000 simulation runs. The results 
from this simulation study are reported in Table 1. 

 
5.2 The Design Based Simulation Study  
 
In design-based simulations, our basic data come 
from the same sample of 1652 Australian broadacre 
farms (AAGIS) that were used in the simulation 
study reported in Chandra and Chambers (2005). In 
particular, we use the same target population of 
81982 farms (obtained by sampling with 
replacement from the original sample of 1652 farms 
with probabilities proportional to their sample 
weights). The same 1000 independent stratified 
random samples as used in Chandra and Chambers 
(2005) were then drawn from this (fixed) 
population, with total sample size in each draw 
equal to the original sample size (1652) and with the 
small areas of interest defined by the 29 Australian 
agricultural regions represented in this population. 
Sample sizes within these regions were fixed to be 
the same as in the original sample. Note that these 
varied from a low of 6 to a high of 117, allowing an 
evaluation of the performance of the different 
methods considered across a range of realistic small 
area sample sizes. Here, our aim is to estimate 
average annual farm costs (A$) in these regions with 
farm size (hectares) as auxiliary variable. We used 
random intercept model specification of the mixed 
model. Details of this simulated population are 
described in Chandra and Chambers (2005). Table 2 
set out the results from this simulation study.  
 
5.3 Results of the Simulation Studies 
 
Results from Table 1 show that the average relative 
mean errors (RMEs) and the average relative 
RMSEs for Hajek type of estimators (TrMBD1 and 
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TrMBD3) under expected value model (11) are 
significantly large. Further, high coverage rates 
under these methods (TrMBD1 and TrMBD3) are 
the consequence of large biases. The HT type 
estimators (TrMBD2 and TrMBD4) derived under 
ratio and regression specifications for the expected 
value model are almost identical. Among 
conventional calibration weighting based MBD 
estimators, both Hajek type (MBD1) and HT type 
(MBD2) estimators are identical. Therefore, in 
further discussion we drop the Hajek type of 
estimator under model calibration and HT type 
estimator under classical calibration. Further, Table 
1 shows that the average RMEs and the average 
relative RMSEs for TrMBD2 are consistently lower 
than both MBD1 and EBLUP. However, with same 
order of RMEs, the relative RMSEs of EBLUP is 
lower order than MBD1. The average coverage rates 
for TrMBD2 are relatively higher with smaller width 
as compare to MBD1 and EBLUP. With almost 
same coverage rates, EBLUP has smaller average 
widths than MBD1. We noticed that both the RME 
and the relative RMSEs of TrMBD2 are smaller 
than MBD1 and EBLUP in all regions. Further, the 
RMEs and the relative RMSE of MBD1 and EBLUP 
increase proportionate to non-linearity (Par1 to 
Par6) in the data. The coverage rate increases and 
the width decreases, hence accuracy increases in 
transformation-based methods. Further, the relative 
interval width under TrMBD2 reduced more rapidly 
as non-linearity in data increases. The results 
indicate a significant gain due to transformation 
based method of small area estimation for skewed 
data. This gain is proportionate to non-linearity in 
the data. Between MBD1 and EBLUP methods, the 
EBLUP appears to perform better. 
 
The results from the design-based simulation using the 
real data (AAGIS) show that the average RME of 
TrMBD2 is smaller than EBLUP and but larger than 
MBD1. The relative RMSE of TrMBD2 is marginally 
larger and the average coverage rate higher (Table 2). 
However, Figure 1 indicates that the high RME and 
relative RMSE of TrMBD2 is due to an outlier in 
region 21. The TrMBD2 is more affected by this 
outlying point. If we discard the outlier contaminated 
estimates and examine the average based on 28 
regions then TrMBD2 seems to be performing better. 
Overall transform variable based SAE methods for 
AAGIS data appears to provide efficient set of 
estimates. The TrMBD2 method provides significant 
gain under linearity on transform model. The gain may 
not be significant if linearity does not hold. However, 
it is safer to use TrMBD2 method even though 
transform model is approximately linear. For AAGIS 
data, fitted model on log scale is not exactly linear. 
Consequently, TrMBD2 method of SAE performs 
marginally better overall. 
 

6. Conclusions and Further Research 
 
Our results show that transformed variable based 
method for SAE of skewed data performs well. We 
note that the gain in efficiency by accounting non-
linearity in data via log-transform linear model is 
quite significant. Further, even though assumed 
model deviates slightly from linearity on transform 
scale, the proposed method still works well with 
marginal gain. These results are based on normality 
assumption of random errors. However, we also 
investigated under gamma distribution for the 
random errors and noticed that method is robust 
with respect to distribution of random errors. The 
application of proposed SAE techniques to real data 
from AAGIS provides a satisfactory performance. In 
application of this method, identification of an 
appropriate transform model is crucial, otherwise 
results can be misleading. 
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Table 1 Average relative mean error (ARME), average relative RMSE 
(ARRMSE), average coverage rate (ACR) and average 2-sigma 
confidence interval width (AW) for model based simulations. All 
averages are expressed as percentages.  

Criterion Estimator Par1 Par2 Par3 Par4 Par5 Par6 

ARME TrMBD1 -86.02 -96.54 -98.43 -98.58 -98.45 -99.06 
  TrMBD2 -0.01 -0.05 0.27 0.09 -0.43 0.76 
  TrMBD3 -75.2 -95.97 -97.97 -98.55 -98.12 -98.66 
  TrMBD4 0.02 -0.07 0.28 0.11 -0.39 0.75 
  MBD1 10.98 4.11 -0.29 -6.28 -7.81 -9.59 
  MBD2 12.63 5.47 0.48 -5.91 -7.58 -9.5 
  EBLUP 12.65 5.44 0.49 -5.85 -7.68 -9.32 

 ARRMSE TrMBD1 0.92 1.13 1.2 1.29 1.43 1.56 
  TrMBD2 0.15 0.29 0.39 0.52 0.70 0.88 
  TrMBD3 7.98 1.25 1.22 1.3 1.44 1.59 
  TrMBD4 0.15 0.29 0.39 0.52 0.7 0.88 
  MBD1 1.03 1.47 1.79 1.89 1.98 2.78 
  MBD2 1.16 1.6 1.83 1.91 1.99 2.79 
  EBLUP 0.76 0.69 0.61 0.75 0.98 1.29 

 ACR TrMBD1 99 98 96 95 94 92 
  TrMBD2 94 90 89 89 89 89 
  TrMBD3 99 98 96 95 94 92 
  TrMBD4 94 91 89 89 89 89 
  MBD1 87 85 85 87 88 87 
  MBD2 87 85 85 87 88 87 
  EBLUP 85 85 85 87 87 87 

 AW TrMBD1 1265 22389 140563 27x104 35 x105 44x106 

  TrMBD2 208 4326 33228 7x104 11x105 15x106 

  TrMBD3 1753 22487 141001 27x104 35 x105 43x106 

  TrMBD4 220 4426 33722 8x104 11x105 16x106 

  MBD1 1007 19318 139346 28x104 38x105 56x106 

  MBD2 1033 19677 140626 28x104 38x105 56 x106 

  EBLUP 380 7253 55498 13x104 20x105 31 x106 
 
Table 2 Average relative mean error (ARME), average relative RMSE 
(ARRMSE) and average coverage rate (ACR) for AAGIS data. All 
averages are expressed as percentages.  
Criterion Estimator Average of 29 areas Average of 28 areas 
ARME TrMBD2 3.00 2.54 
  MBD1 -2.49 -2.58 
  EBLUP 4.24 4.74 
ARRMSE TrMBD2 22.00 17.15 
  MBD1 20.55 17.33 
  EBLUP 19.92 19.40 
ACR TrMBD2 99 99 

  MBD1 92 93 
  EBLUP 90 90 
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Figure 1 Regional performance of TrMBD2 (solid line), MBD1 
(dashed line) and EBLUP (thin line) for AAGIS data.  
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