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Abstract 

  The weighting process for surveys with 
complex designs can be a major undertaking, 
often requiring several adjustment steps. While 
calculating the sampling weights, care must be 
applied to ensure that the resulting survey 
estimates are as efficient as possible – a 
nontrivial process that must arrive at an equitable 
balance between the two competing features of 
weights: bias reduction and variance inflation. 
By nature, complex surveys often encounter 
unanticipated weighting issues that further 
complicate this process, proper resolutions of 
which should take into account the specific 
analytical objectives of the given survey. This 
paper discusses a number of such issues and the 
solutions that were implemented while 
calculating the analysis and replicate weights for 
the 2004 National Study of Postsecondary 
Faculty (NSOPF:04) survey. 
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1.   Introduction 

 Virtually, all surveys encounter some 
form of nonresponse at the item level, unit level, 
or both levels. While item nonresponse is 
typically handled via imputation, unit 
nonresponse is often addressed through weight 
adjustments.  Falling to account for nonresponse 
can result in survey estimates that carry varying 
degrees of bias. A general approach that attempts 
to minimize this potential bias involves adjusting 
the sampling (or design) weights so that the 
responding units can also represent those units 
that have failed to respond. Variations of this 
approach include weighting class adjustments, 
poststratification, and raking, as well as, weight 
adjustment techniques that involve statistical 
modeling through logistic regression and 
generalized exponential models. 

 To account for the nonresponse these 
weighting approaches rely on the assumption 
that the data is missing at random. That is, the 
response propensity,φ , depends only on the 

auxiliary variables, },...,1{, Pixi ∈ , where P is 

the number of auxiliary variables used in the 
model. Ratio adjustments techniques, such as 
weighing class adjustments and poststratification 
models assume all respondents in a class have 
the same response propensity, i.e., 

., CiCCi ∈∀= φφ  These classes can be formed 

by any number of the P auxiliary variables. With 
raking adjustments the model assumes that all 
respondents that fall in the cross classification of 
the values of the two auxiliary variables H and K 
have the same response propensity, i.e., 

}...1{},...,1{{, KkandHhihkhki ∈∈∈∀= φφ
, where the number of auxiliary variables can be 
extended to include all P auxiliary variables. The 
logistic regression model assumes each unit has 
a response propensity, i.e., 
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φ where the xi is the P-

variate auxiliary variable. In this case, not 
implementing any method to account for 
nonresponse amounts to assuming that everyone 
has the same response propensity, i.e., 

., ii ∀= φφ    

 The section on weighting alternatives 
will discuss how these response propensities are 
employed in traditional methods of calculating 
weighting adjustment factors. The section 
addressing the issues in NSPOF:04 describes a 
number of specific issues that were encountered 
when calculating the analysis weights for the 
NSOPF:04 and how they were addressed.  The 
section covering the diadnostics for weighting 
describes a number of diagnostic tests that were 
used to assess the effects of weighting. The final 
section provides a conclusion. 

2.   Weighting Alternatives 

 This paper discusses four common 
alternatives that are often used for calculating 
survey weights. The first is the weighting class 
adjustment, for which the estimated response 
probability for weighting class C will be the sum 
of the weights for the responding units in class C 
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divided by the sum of the weights of the eligible 
units in the given class. That is, the estimated 
response propensity for class C is: 

∑
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where wk or wj is the unit’s weight in class C, R 
is the subset of responding units in class C, and 
E is the set of eligible units in class C. 
Subsequently, the adjusted weight for the 
responding unit i in class C is given by: 
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While the poststratification alternative is very 
similar to the weighting class adjustment, with 
this method it is the frame counts or some other 
external totals that are used within each class for 
calculation of the adjustment factors. Here, the 
poststratified adjusted weight for a responding 
unit i in class C is given by: 
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where NC is the control total for class C. Unlike 
the weighting class adjustment method where the 
auxiliary information is only needed for the 
sampled units, here, it will be necessary to have 
the auxiliary information for all sampling units 
on the target universe belonging to each class.  
As a result this method of adjustment can also 
account for frame inadequacies such as 
undercoverage. 

 Weighting class adjustments and 
poststratification force the sum of the weights for 
the classes to reflect the joint distribution of the 
auxiliary variables used to form each class. 
Alternatively, in the absence of the joint 
distribution, it is possible to have the sum of the 
weights for the classes match the marginal 
distributions of the auxiliary variables used to 
form these classes. Under this alternative, the 
distribution of weights does not match the joint 
distribution of the auxiliary variables, which are 
usually unknown, rather they match the marginal 
distributions of the variables that form the 
classes. With this method, which is typically 

referred to as raking, the following criteria will 
be simultaneously satisfied: 
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where THh and TKk represent the distributions of 
the first and second auxiliary variables, with nk 
and nh identifying the number of responding 
units at each level of the given auxiliary variable. 
This approach can also be extended to the P 
auxiliary variables. 

 When many variables are used to form 
adjustment classes, it is possible to end up with 
sparse adjustment classes.  Logistic regression 
modeling, which calculates the estimated 

response propensity as i
e ii x

i ∀
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can offer one way around this problem. By 
producing a response probability for each unit, 
the adjusted weight for the responding units is 
given by:  
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Alternatively, the estimated response propensity 
can be sorted and grouped together by similar 
values to form classes, within which a method of 
adjustment is implemented.  This alternative has 
the advantage that all of the available 
information from auxiliary variables is distilled 
into one number and used to create weighting 
classes. 

 The final methodology is a general 
weight calibration1 model called the generalized 
exponential model (GEM), which is a 
generalization of the commonly used raking-ratio 
method (Folsom and Singh, 2000).  Here, 
specific distance functions are minimized by 
incrementally perturbing the initial weights 
within certain bounds while simultaneously 
matching the control totals. Explicitly, this 
method is a generalization of Deville and 
Sarndal’s (1992) logit method:  

                                                 
1 Weight calibration describes weighting 
adjustments that simultaneously adhere to 
control totals. 
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GEM has a centering constant and does not 
required that the bounds have to be uniform. The 
centering constant is ck and the specific bounds 

),,( kk ul where k is a unit in the sample for the 
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For our situation, GEM allows for different 
bounds to be placed on the three possible 
adjustment factors - low extreme, nonextreme, 
and high extreme - where adjustment factors are 
considered extreme when they fall outside of the 
interval defined by the median ± 3×interquartile 
range. The control of the bounds for the extreme 
weights, along with the incorporation of control 
totals, gives GEM the flexibility to create 
nonresponse and poststratification adjustment 
factors without creating extreme weights. This 
program has been used to create the NSOPF:04 
analysis weights. 

3.   Issues Addressed in NSOPF:04 

 NSOPF:04, a study of postsecondary 
faculty and instructional staff, has relied on a 
two-stage sample. The first stage consisted of 
sampling institutions while in the second stage 
faculty members were selected amongst the 
sampled institutions. Consequently, the fianl 
analysis weight for a responding faculty was 
calculated as the product of his/her institution 
and individual weights.  Moreover, a separate set 
of weights were calculated to be used for 
analysis of the institution survey data, since not 
all institutions from which faculty participated in 
NSOPF:04 had responded to the corresponding 
institution survey.  

 For calculation of the faculty analysis 
weights, the initial faculty weights – the product 
of the faculty design sampling weight and his/her 
corresponding institution weight – were adjusted 
for multiplicity, unknown eligibility, and 
nonresponse before they were poststratified to 
control totals. Moreover, replicate weights were 
created for calculation of standard errors that 
included a similar form of poststratification.  As 
discussed in Issue: Cell Collapsing section, 
certain adjustment classes had to be collapsed to 
ensure proper convergence in GEM. 

 A similar set of adjustments were 
implemented for calculation of the institution 
analysis weights, including an adjustment for 
nonresponse.  The final weights for each 
institution were then calibrated to ensure that 
estimates of total part- and full-time faculty 
members obtained from the two surveys would 
coincide, as discussed in the Issue: Control 
Totals section. 

4.   Issue: Identifying Respondents 

 The NSOPF:04 survey employed two 
questionnaires, one for gathering basic 
information from each sample institution and a 
second and more detailed one for interviewing 
faculty members selected from lists secured from 
sampled institutions. Sampled institutions that 
responded to the institution questionnaire were 
considered respondents to the institution survey. 
Institutions providing faculty lists without 
responding to the institution questionnaire were 
included only to the extent their selection 
probabilities were needed to calculate the faculty 
design weights. 

5.   Issue: Control Totals 

 For NSOPF:04 there were three 
possible sets of estimates for faculty counts: 
weighted estimates from the institution survey, 
weighted estimates from the faculty survey, and 
an auxiliary set of estimates obtained from the 
Winter 2003-04 Employees by Assigned 
Position Survey (EAP:03). The latter source was 
used to create postratification totals, or control 
totals, for the faculty analysis weights, 
aggregates of which were used to calibrate the 
institution analysis weights. 

 One of the necessary conditions for 
poststratification is that the needed population 
counts should be known. Since the EAP:03 
source only contained information for 
instructional faculty, it could not directly be used 
to create the needed control totals, as NSOPF:04 
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also included non-faculty who provide 
instruction but do not have teaching as their 
principal activity.  Consequently, estimates of 
total for the latter group had to be estimated from 
the survey data prior to the poststratification 
step.  For this purpose, the survey data were 
divided into two subsets: one for which the 
EAP:03-based population counts were known 
and one for which we the needed counts were 
unknown. The first subset was poststratified to 
the EAP:03 totals, while nonresponse-adjusted 
weights for the latter subset were used to 
estimate the outstanding sub-population.  In the 
final step, the resulting two datasets along with 
the corresponding weights were merged to create 
the combined set of analysis weights.  As a result 
of this process, the weighted totals from the 
combined dataset aggregate to estimates that are 
slightly larger than what can be obtained from 
the EAP:03. 

6.   Issue: Cell Collapsing 

 In order to construct the 
poststratification adjustment factors for faculty, 
the corresponding input weights were adjusted 
along two dimensions, as well as their 
interactions. One dimension consisted of the 
joint distribution of employment status (full- and 
part-time) within each of the 10 institution types 
that were used for sample selection.  The other 
dimension was indexed by institution type, 
race/ethinicity, and gender of faculty members. 
In two of the resulting poststrata respondents had 
to be collapse along the race categories to ensure 
stable adjustment factors.  Analogously, similar 
measures where taken when poststratifying the 
replicate weights.  For this purpose, a somewhat 

coarser set of the poststratification control totals 
were constructed by eliminating the three-way 
interactions.  That is, final resplicate weights 
were poststratified along the main dimensions 
and the resulting three two-way interactions. 

7.   Diagnostics for Weighting 

 Survey weights must be calculated 
while taking into account the potential inflation 
that can results in estimates of standard errors.  
While GEM provides a affective tool keep such 
ill effects under control as various weight 
adjustment factors are calculated, it was 
necessary to monitor the measure of variance 
inflation, often refer to as unequal weighting 
effect (UWE) defined by Kish (1992): 
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where cv(w) represents the coefficient of 
variation of the weights. This measure was 
calculated at each stage of the weighting process 
to assess the impact of the adjustments on the 
weights. Table 1 provides a summary of the 
number of responding units and the resulting 
UWE factors by institution type. We also 
monitored the distribution of the adjustement 
factors and the distribution of the weights at each 
stage of the weighting process. An example of 
the weight distribution is in Chart 1. 

 

 

Table 1. Analysis Weight Information 

Minimum Median Mean Maximum Coefficient Stratum Count Weight Weight Weight Weight Of Variation UWE 

Overall 26108 0.04 37 46 621 0.76 1.58 
1 7464 0.49 35 42 167 0.56 1.32 
2 2617 1.63 48 56 177 0.57 1.33 
3 513 1.53 30 41 195 0.90 1.82 
4 6416 0.28 44 57 216 0.79 1.63 
5 106 1.13 124 134 621 0.81 1.65 
6 3161 0.04 36 44 187 0.69 1.47 
7 2269 0.41 40 44 143 0.61 1.37 
8 2523 0.21 22 27 151 0.86 1.73 
9 190 1.37 21 45 365 1.29 2.67 

10 849 0.10 30 42 207 1.02 2.03 
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Chart 1: Example of Weight Distribution

 
 

The distribution of the analysis weights is 
skewed to the right, but there are no extreme 
outliers.  As a final check, point estimates and 
their associated standard errors were calculated 
for a number of the key outcome measures.  
These estimates were checked against previous 
estimates of the same measures for external 
validity, when available. 

 

8.   Conclusion 

 Using GEM allowed us the ability to 
maintain control over the adjustment factors at 
each stage of the weighting process. Controlling 
the adjustment factors at each stage minimized 
the creation of extreme weights and helped keep 
the design effects for unequal weighting 
relatively low.
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