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Abstract:

The Wilcoxon-Mann-Whitney (WMW) rank-sum
test is often regarded as comparing two independent
medians, but this is only true under conditions rarely
met in practice. So, what does it test? Let Y1 and
Y2 be sample values from two independent groups,
and π = Prob(Y1 > Y1) + Prob(Y1 = Y2)/2. This
is the nonparametric area under the ROC curve in
diagnostic testing, a field that routinely estimates
and forms confidence intervals (CIs) for π and tests
H0 : π = 0.50. Consider θ = π/(1−π). With no ties,
this is a special case of the generalized odds ratio by
Agresti (1980), who gave asymptotic standard errors
for estimates of θ and ln(θ), thus providing CIs and
a test for H0 : θ = 1.0. Generalizing theta to con-
sider ties gives us a meaningful parameter and CI to
augment the ubiquitous WMW p value. This also
gives us a new way to handle sample-size analyses,
competing with Kolassa’s (1995) solution. We as-
sess these methods using Monte Carlo studies and
illustrate them with a two-arm clinical trial involv-
ing a seven-point Likert measure. Finally, we show
perplexities that can result when the WMW test is
applied to ordered categorical data, thus illustrating
that it does not necessarily compare central tenden-
cies.
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1. Introduction

How should you interpret results from the Wilcoxon-
Mann-Whitney (WMW) two-group test? Some soft-
ware, including PROC NPAR1WAY in SAS/STAT,
provides the mean ranks for each group, but these
have no interpretation outside the study, and their
difference increases as the sample size increases. A
misconception commonly found in research reports
and articles (and even in some statistics textbooks)
is that the WMW test compares the two medians.
This is not true except in the rare case in which
the population distributions of the two groups are
merely shifted versions of each other (i.e., differing
only in location, and not shape or scale). In fact, a

WMW statistic can have a p value near 0.00 even
when the two groups have identical sample medi-
ans. Here, we present a simple and highly useful
way to better understand, interpret, and present re-
sults from the Wilcoxon-Mann-Whitney test by esti-
mating a simple odds parameter and computing its
confidence interval. The methodology also appears
to provide to a sound approximation for computing
statistical powers for the WMW test.

2. A Simple Odds Parameter for the
Wilcoxon-Mann-Whitney

(WMW) Test

Consider a hypothetical clinical trial to treat in-
terstitial cystitis (IC), a painful, chronic inflamma-
tory condition of the bladder with no known cause,
though it most commonly affects women. Two treat-
ments will be compared: lidocaine alone (“lido-
caine”) versus lidocaine plus a fictitious experimen-
tal drug called mironel (“Mir+lido”). The design
is balanced, randomized, double-blind, and female-
only. The primary outcome is a measure of overall
improvement at week 4 on the study, measured on a
seven-point Likert scale:

“Compared to when I started this study,
my condition is:”

much worse -3
worse -2
slightly worse -1
the same 0
slightly better +1
better +2
much better +3

Suppose the counts for this trial are:

Response
-3 -2 -1 0 +1 +2 +3

lidocaine 3 8 19 78 29 7 3
Mir+lido 1 5 22 52 42 16 10

The relevant results from the NPAR1WAY proce-
dure in SAS/STAT software are:
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Group N Mean Score
============================
lidocaine 147 134.1
Mir+lido 148 161.8

Wilcoxon Two-Sample Test
============================
Z -2.95
Two-Sided Pr > |Z| 0.0032

The higher mean rank for Mir+lido (161 vs. 134)
along with the low p-value supports the conclu-
sion that the Mir+lido patients reported better out-
comes. But how much better?

Consider the following way to characterize the
WMW test. Let Y1 and Y2 be observations drawn
independently from two distributions. Then the null
hypothesis being tested is:

H0 : π = 0.5, where

π = Prob(Y1 < Y2) +
1
2
Prob(Y1 = Y2)

with alternative depending on the sidedness of the
test:

H1 :

 π > 0.5, upper 1-sided
π < 0.5, lower 1-sided
π 6= 0.5, 2-sided

In other words, H0 asserts that it is equally likely
for Y1 to be less than or greater than Y2, splitting
ties evenly.

Now, converting π to an odds measure, we define

WMWodds =
π

1− π
.

For example, if WMWodds = 2.0, the odds are 2:1
that Y1 is less than Y2, splitting ties evenly.

Expressed in terms of WMWodds, the hypothesis
for the MWM test is:

H0 : WMWodds = 1

H1 :

 WMWodds > 1, upper 1-sided
WMWodds < 1, lower 1-sided
WMWodds 6= 1, 2-sided

Estimating WMWodds just involves counting
properly, and it provides a clear way to quantify how
much the two distributions differ in the manner ex-
amined by the WMW test. For the interstitial cysti-
tis data, there are 9456 Y1, Y2 pairs having Y1 > Y2,
5808 pairs having Y1 > Y2, and 5736 pairs having Y1

= Y2. Thus ̂WMW odds = (9985 + 5877/2)/(5894
+ 5877/2) = 1.46. But what is its sampling distri-
bution? To get this, we can exploit the fact that
WMWodds is an extension of the generalized odds
ratio (genOR) developed by Agresti (1980), the ex-
tension being the accommodation of ties.

3. Extending Agresti’s genOR to
WMWodds

A measure quite similar to WMWodds is Agresti’s
(1980) generalized odds ratio:

genOR =
Prob(Y1 < Y2)
Prob(Y1 > Y2)

.

When used in a 2x2 table, it is identical to the usual
odds ratio, hence the term “generalized odds ratio.”
But it fails to be a suitable effect size measure for
the WMW test, because it ignores the ties rather
than split them evenly, in effect “overstating” the
group difference: genOR ≥ WMWodds, with equal-
ity holding when there are no ties. For the intersti-
tial cystitis data, ̂genOR = 9985/5894 = 1.69 versus
1.46 for ̂WMW odds.

Fortunately, Agresti’s formulas for genOR can be
readily applied to WMWodds. genOR is a simple
transformation of the Goodman-Kruskall gamma (γ)
statistic,

genOR =
1 + γ

1− γ

Accordingly, Agresti used the delta method to take
known results for γ and SE(γ̂) and derive esti-
mates for genOR, SE( ̂genOR), ln(genOR), and
SE( ̂ln(genOR)). The approximate normality of̂ln(genOR) provides confidence limits and p-values
for genOR.

We can extend genOR to WMWodds by modifying
the data in a way that leaves ̂WMW odds unaffected
but destroys all ties between the two groups. Thus,̂genOR = ̂WMW odds and Agresti’s results apply
immediately.

Using the interstitial cystitis example, one can see
that the trick is rather simple. Recall the orginal
table of counts:

Response
-3 -2 -1 0 +1 +2 +3

lidocaine 3 8 19 78 29 7 3
Mir+lido 1 5 22 52 44 16 10

Now add and subtract some arbitrarily small quan-
tity, ε > 0, from each of the values in the second
group, as so:

Response
-3.1 -3.0 -2.9 -2.1 -2.0 -1.9 -1.1 -1.0 -0.9 ...

lidocaine - 3 - - 8 - - 19 - ...
Mir+lido 0.5 - 0.5 2.5 - 2.5 11 - 11 ...

Here, ε = 0.1, but it can be any positive value small
enough to preserve the ordering of the counts across
the categories.
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This 2 x 21 table of counts produces the samêWMW odds = 1.46 value as we obtained from the
original 2 x 7 table. On the other hand, ̂genOR is
reduced from 1.69 to 1.46. Using Agresti’s formulas
for genOR on the modified table yields a 95% con-
fidence interval for WMWodds of [1.11, 1.93], with
p = 0.005 (corresponding to Z = 2.78). For compar-
ison, the 95% confidence interval for genOR is [1.19,
2.41], with p = 0.002 (corresponding to Z = 3.07).
Since there are 5877 ties, ̂WMWodds is closer to 1.0,
and its corresponding Z statistic is smaller. Oper-
ating somewhat like odds ratios and hazard ratios,̂WMWodds and its confidence interval give us an sim-
ple effect size that can be compared with those ob-
tained from other ordinal responses in this or any
other study.

Explicit formulas for WMWodds, SE( ̂WMWodds),
ln(WMWodds), and SE( ̂ln(WMWodds)) are merely
the sample analogues of those given for the popula-
tion values given in Section 4..

4. Power Analysis Based on
WMWodds

The asymptotic distribution of ̂WMWodds can be
obtained by applying Agresti’s (1980) distributional
results for genOR to the contingency table trivially
modified (as demonstrated in Section 3.) to break
ties. This strategy turns out to be identical to us-
ing extended versions of Agresti’s (1980) equations
(with correction terms to split ties evenly) on the
unmodified table. These extended equations for use
with the unmodified table are developed in this sec-
tion. Furthermore, the use of WMWodds is gener-
alized to comparisons of any two distributions with
ordered values, not just ordered categorical distribu-
tions.

While the power computation method is most di-
rectly applicable to the test using ̂WMWodds (being
derived from its asymptotic distribution, after all),
it also appears to serve as a sound power approxi-
mation for the traditional flavors of the WMW test
(such as those implemented in PROC NPAR1WAY
in SAS/STAT). This is not surprising considering
the simple relationship between WMWodds and the
traditional WMW test, with the former based on the
odds parameter constructed from the latter.

4.1 Power Formula

Let Y1 and Y2 be independent observations from any
two distributions that we wish to compare using a
WMW test. For purposes of deriving the asymp-
totic distribution of ̂WMWodds (and consequently

the power computation as well), these distributions
must be formulated as ordered categorical (“ordi-
nal”) distributions. In addition, all of the condi-
tional probabilities (of response given group mem-
bership) must specified, along with the usual power
analysis ingredients such as alpha, sample size per
group, and sidedness of test.

If a distribution is not ordinal, it can be dis-
cretized using a large number of categories with neg-
ligible loss of accuracy. Our suggested discretiza-
tion method is to break each non-ordinal distribu-
tion into b categories (where the choice of b de-
pends upon computational feasability and desired
accuracy), with breakpoints evenly spaced on the
probability scale. That is, each bin contains an
equal probability 1/b for that distribution. Then the
breakpoints across both distributions are pooled to
form a collection of C bins (heretofore called “cate-
gories”), and the probabilities of bin membership for
each distribution are re-calculated. The motiviation
for this method of binning is to avoid degenerate rep-
resentations of the distributions (i.e., small handfuls
of large probabilities among mostly empty bins), as
may be caused by something like an evenly spaced
grid across quantiles rather than probabilities.

After the discretization process just mentioned
above, we now have two ordinal distributions, each
with a set of probabilities across a common set of C
ordered categories. For simplicity of notation, we as-
sume (without loss of generality) the response values
to be 1, . . . , C. Represent the conditional probabili-
ties as

p̃ij = Prob (Yi = j | group = i) ,

i ∈ {1, 2} and j ∈ {1, . . . , C}

and the group allocation weights as

wi =
ni

N
= Prob (group = i) , i ∈ {1, 2}

The joint probabilities can then be calculated simply
as

pij = Prob (group = i, Yi = j) = wip̃ij ,

i ∈ {1, 2} and j ∈ {1, . . . , C}

The next step in the power computation is to com-
pute the probabilities that a randomly chosen pair
of observations from the two groups is concordant,
discordant, or tied. It is useful to define these prob-
abilities as functions of the terms Rsij and Rdij ,
defined as follows, where Y is a random observation
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drawn from the joint distribution across groups and
categories:

Rsij = Prob (Y is concordant with cell(i, j)) +
1
2
Prob (Y is tied with cell(i, j))

= Prob ((group < i and Y < j) or
(group > i and Y > j)) +
1
2
Prob (group 6= i and Y = j)

=
2∑

g=1

C∑
c=1

wgp̃gc

[
I(g−i)(c−j)>0 +

1
2
Ig 6=i,c=j

]
and

Rdij = Prob (Y is discordant with cell(i, j)) +
1
2
Prob (Y is tied with cell(i, j))

= Prob ((group < i and Y > j) or
(group > i and Y < j)) +
1
2
Prob (group 6= i and Y = j)

=
2∑

g=1

C∑
c=1

wgp̃gc

[
I(g−i)(c−j)<0 +

1
2
Ig 6=i,c=j

]
For an indepedent random draw Y1, Y2 from the

two distributions, we have

Pc = Prob (Y1, Y2 concordant) +
1
2
Prob (Y1, Y2 tied)

=
2∑

i=1

C∑
j=1

wip̃ijRsij

and

Pd = Prob (Y1, Y2 discordant) +
1
2
Prob (Y1, Y2 tied)

=
2∑

i=1

C∑
j=1

wip̃ijRdij

Then
WMWodds =

Pc

Pd

Proceeding to compute the theoretical standard
error associated with WMWodds (that is, the popu-
lation analogue to the sample-based estimated stan-
dard error estimate), we have

SE(WMWodds) =

2
Pd

[∑2
i=1

∑C
j=1 wip̃ij (WMWoddsRdij −Rsij)

2
] 1

2

Converting to the log scale using the delta method,

SE(ln(WMWodds)) =
SE(WMWodds)

WMWodds

The next step is to produce a “smoothed” ver-
sion of the 2× C cell probabilities that conforms to
the null hypothesis WMWodds = 1 (in other words,
independence in the 2×C contingency table of prob-
abilities). Let SEH0(ln(WMWodds)) denote the the-
oretical standard error of ln(WMWodds) assuming
H0.

Finally we have all of the terms needed to com-
pute the power, using the noncentral Chi-square and
normal distributions:

power =

P
(
Z ≥ SEH0 (ln(WMWodds))

SE(ln(WMWodds))
z1−α − δ?N

1
2

)
,

upper 1-sided
P

(
Z ≤ SEH0 (ln(WMWodds))

SE(ln(WMWodds))
zα − δ?N

1
2

)
,

lower 1-sided

P

(
χ2(1, (δ?)2N) ≥

[
SEH0 (ln(WMWodds))

SE(ln(WMWodds))

]2

χ2
1−α(1)

)
,

2-sided

where

δ? =
ln(WMWodds)

N
1
2 SE(ln(WMWodds))

and Z is a standard normal random variable,
χ2(df, nc) is a noncentral χ2 random variable with
degrees of freedom df and noncentrality nc, and N
is the total sample size.

4.2 Power Analysis for Clinical Trial Exam-
ple

Consider the clinical trial example introduced in Sec-
tion 2.. Suppose we wish to compute the power of a
test we are planning to compare the self-reports for
“lidocaine” and “Mir+lido” using the WMW test (or
the genOR-based or WMWodds-based test), with a
total sample size of 150 and alpha=0.01.

Discretization of the underlying distributions is
not necessary here, because the distributions are al-
ready ordinal, based on a seven-point Likert scale.
But we do need to specify the planned sample size
allocation weights and conjecture the collection of 14
underlying true probabilities of the 7 self-report cat-
egories given membership in each of the two groups.
Suppose that we plan a balanced design, assign-
ing “lidocaine” and “Mir+lido” to equal numbers
of patients. We make scientifically educated guesses
about the conditional probabilities as shown in Ta-
ble 1.

2195

ASA Section on Statistical Consulting



Response
-3 -2 -1 0 +1 +2 +3

lidocaine .01 .04 .20 .50 .20 .04 .01
Mir+lido .01 .03 .15 .35 .30 .10 .06

Table 1: Conjectured conditional probabilities {p̃ij}.

The theoretical values of genOR and WMWodds

are obtained from Table 1 by simply adding the rel-
evant probabilities and computing ratios:

Prob[Ylidocaine < YMir+lido] = .475
Prob[Ylidocaine = YMir+lido] = .271

genOR =
.475

1− .475− .271
= 1.87

WMWodds =
.475 + .135

1− .475− .135
= 1.57

The computed power to detect a WMWodds of
1.57, using the power formula in Section 4.1, is 0.826.

5. Power Comparisons and
Simulation Results

Tables 2 through 4 show power estimates using the
WMWodds power approximation developed in Sec-
tion 4. for the scenarios presented in Kolassa (1995).
For comparison, powers computed in Whitehead
(1993) and Kolassa (1995) are also shown, along with
empirical power estimates from Monte Carlo simu-
lation.

Since Kolassa’s method applies only to the cumu-
lative proportional odds model, all of the 18 scenar-
ios in Table 2 feature constant cumulative propor-
tional odds. While the individual cell probabilities
are not shown, they can be derived from the assumed
common log odds ratio (denoted θ) and the marginal
column probabilities. The value of θ in each scenario
was chosen to attain nominal powers of either 0.8
or 0.95 in Whitehead’s (1993) power approximation,
since Kolassa’s (1995) paper uses Whitehead (1993)
as a basis for comparison. All scenarios assume a
one-sided test with α = 0.025.

The “Simulated Power” uses the traditional z-
based test reported in PROC NPAR1WAY of
SAS/STAT software and is followed by 95% confi-
dence limits. Each estimate is obtained from 20,000
samples, computed as the proportion of one-sided
tests rejected at the 0.025 level in 20,000 data
sets simulated from the distribution defined by the
marginal column probabilities and θ.

N per Column
Scenario Group Probs θ

1 30 0.289, 0.486, 0.153, 0.072 1.3732
2 15 0.289, 0.486, 0.153, 0.072 1.9739
3 5 0.289, 0.486, 0.153, 0.072 3.6394
4 30 0.25, 0.25, 0.25, 0.25 1.3145
5 15 0.25, 0.25, 0.25, 0.25 1.8895
6 5 0.25, 0.25, 0.25, 0.25 3.4839
7 30 0.1, 0.2, 0.3, 0.4 1.3408
8 15 0.1, 0.2, 0.3, 0.4 1.9273
9 5 0.1, 0.2, 0.3, 0.4 3.5535
10 30 0.289, 0.486, 0.153, 0.072 1.7669
11 15 0.289, 0.486, 0.153, 0.072 2.5398
12 5 0.289, 0.486, 0.153, 0.072 4.6828
13 30 0.25, 0.25, 0.25, 0.25 1.6914
14 15 0.25, 0.25, 0.25, 0.25 2.4313
15 5 0.25, 0.25, 0.25, 0.25 4.4828
16 30 0.1, 0.2, 0.3, 0.4 1.7252
17 15 0.1, 0.2, 0.3, 0.4 2.4798
18 5 0.1, 0.2, 0.3, 0.4 4.5723

Table 2: Description of scenarios.

It should be noted that Kolassa’s method is devel-
oped for use with the score test presented in White-
head (1993), rather than the WMW test. However,
because of the similarities between these two tests,
Kolassa’s method is often used as an approximation
for power of the traditional WMW test. Another
well-known power computation for the WMW test
is that of Hilton and Mehta (1993), but it is excluded
from this comparison because it is designed for the
exact conditional form of the WMW test, whereas
our scope here is limited to asymptotic tests.

6. Does the WMW Test the
Difference Between Two

Medians?

As mentioned in the introduction, the WMW test is
a test of the difference between medians only under
the shift hypothesis.

Below is a case with equal medians but significant
p-values:

-1 0 1
group=1 3 6 1 median=0
group=2 0 6 4 median=0

Equal medians, insignificant WMW and
WMWodds.
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Whitehead Kolassa WMWodds Simulated
Power Power Power Power

1 0.80 0.781 0.786 0.779
2 0.80 0.755 0.771 0.756
3 0.80 0.615 0.691 0.506
4 0.80 0.795 0.799 0.786
5 0.80 0.785 0.797 0.773
6 0.80 0.728 0.779 0.658
7 0.80 0.793 0.797 0.789
8 0.80 0.783 0.794 0.773
9 0.80 0.754 0.772 0.638
10 0.95 0.933 0.930 0.933
11 0.95 0.909 0.906 0.909
12 0.95 0.706 0.773 0.608
13 0.95 0.945 0.939 0.944
14 0.95 0.937 0.926 0.934
15 0.95 0.895 0.869 0.830
16 0.95 0.944 0.938 0.939
17 0.95 0.936 0.924 0.930
18 0.95 0.900 0.867 0.818

Table 3: Estimated and simulated power.

WMW p-value = 0.038
WMWodds p-value = 0.024

WMWodds confidence limits = [0.87, 9.2]

Below is another case with equal medians,
where the WMW p-value is again significant, but
WMWodds is significant due to accomodation of ties,
which provide most of the information here:

-1 0 1
group=1 3 996 1 median=0
group=2 0 996 4 median=0

Equal medians, insignificant WMW, significant
WMWodds.

WMW p-value = 0.034
WMWodds p-value = 0.85

WMWodds confidence limits = [0.89, 1.15]

7. Conclusion

We have demonstrated the utility of the WMWodds

parameter in providing interpretable estimates in

WMWodds Simulated
Power Power

1 0.786 0.779 (0.773, 0.785)
2 0.771 0.756 (0.750, 0.762)
3 0.691 0.506 (0.499, 0.512)
4 0.799 0.786 (0.780, 0.791)
5 0.797 0.773 (0.767, 0.779)
6 0.779 0.658 (0.651, 0.664)
7 0.797 0.789 (0.783, 0.795)
8 0.794 0.773 (0.769, 0.779)
9 0.772 0.638 (0.632, 0.645)
10 0.930 0.933 (0.930, 0.936)
11 0.906 0.909 (0.905, 0.913)
12 0.773 0.608 (0.601, 0.615)
13 0.939 0.944 (0.941, 0.947)
14 0.926 0.934 (0.930, 0.937)
15 0.869 0.830 (0.828, 0.835)
16 0.938 0.939 (0.936, 0.943)
17 0.924 0.930 (0.926, 0.933)
18 0.867 0.818 (0.812, 0.823)

Table 4: Estimated and simulated power, showing
95% simulation confidence limits.

the nonparametric comparison of two distributions
with ordered values. The tests and confidence in-
tervals formulated using WMWodds are a viable al-
ternative to the traditional WMW analysis, which
lacks meaningful and generalizable summary statis-
tics. In addition, because of the similarity between
the hypotheses of the two tests (both splitting ties
evenly), the asymptotic distribution of WMWodds

provides a promising power approximation not only
for its own test statistic, but also for the WMW test.

This paper is a preliminary communication of
work in progress. Feedback is welcome.
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