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Abstract 

 
Weights are often used in sample surveys to create 
unbiased estimates.  These weights typically adjust 
for differential selection probabilities, differential 
response rates, and variations from control totals 
among other things.   These adjustments can create a 
lot of variability in the weights, which increases the 
variability of estimates (reducing the effective sample 
size).  Sometimes, this variability is large, and is 
caused by extreme weights very different from most 
of the weights; we refer to these weights as outlier 
weights.  Whether to trim outlier weights in statistical 
analyses is an issue that often arises in practice. This 
paper investigates the effects that trimming outliers 
has on the survey estimates and estimated variances 
for the REACH 2010 project.   
 
This paper includes some earlier results from Pedlow 
et al (2003), but expands them. This earlier paper 
only analyzed year one data for REACH, and 
compared only simple methods (capping weight 
ratios and winsorization).  This current paper 
includes analyses for years one and two and adds 
compound weight pooling to the methods analyzed.  
Beyond a look at which methods work best, this 
paper also considers the theoretical question of 
whether it is proper to curtail weight variability that 
is driven by sample design decisions.  
 
Keywords: Extreme weights, winsorization, capping 
weights, simple weight pooling, compound weight 
pooling. 
 

1. Introduction to REACH 2010  
 

Racial and Ethnic Approaches to Community Health: 
2010 (REACH) is a project sponsored by the Centers 
for Disease Control (CDC) with the goal to eliminate 
racial and ethnic disparities in health by 2010.    
REACH is a community-based program: local 
community groups across the United States applied 
for funds to design and implement a local health 
intervention.  These interventions target one or more 
health priority areas (diabetes, cardiovascular disease, 
breast and cervical cancer, HIV/AIDS, and adult and 
childhood immunization) and one or more race-
ethnicity groups (African-American, Hispanic, Asian, 
Native American, and Pacific Islander). The goals of 
the interventions are to increase community 
awareness and knowledge about the health priority 

issue and how to prevent and combat these health 
problems, as well as to improve medical care access 
for the targeted race-ethnicity group. 
 
Over forty communities have been given grants, and 
NORC has collected data from twenty-seven 
communities (only twenty-one in year one).  NORC’s 
interview collects information on health outcomes 
and behavioral risk factors.   This information can be 
used to measure and monitor the progress of the 
interventions.    
 
The study designs among the twenty-seven 
communities varied greatly.  While some used a very 
simple list-assisted random-digit dial (RDD) 
sampling method, others used stratification, 
supplementation from a list sample, or in-person 
interviewing. Some communities involved 
stratification and over-sampling in order to target a 
rare race-ethnicity group of interest.    These designs 
sometimes resulted in large probability and weight 
differentials, which reduce the effective sample size 

of analyses ( )effn .   The reduction in effective 

sample size is often referred to as the Design Effect 
(DEFF), which measures the inflation in standard 
errors when compared to a simple random sample 
with the same sample size: 
 

DEFF
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Design effects can be approximately divided into two 
components: one based on weight differentials, and 
one due to clustering of cases.    This talk 
concentrates only on the weight differential 
component. 
 
One measure of variability in the weights is the 
coefficient of variation (CV), which is the standard 
deviation of a quantity divided by the mean.   A well-
known property of weights (Kish, 1965) is that 
arbitrary weights increase the variance of estimates 
by a factor 1+L where: 
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1+L is commonly referred to as the Design Effect 
(DEFF) due to weighting.   The effective sample 
sizes (neff,w) due to weighting can also be defined as:  
 

L

n
n weff +

=
1,  

 
The above effective sample sizes only account for the 
variability in the weights, but the other main factors 
in reducing effective sample sizes (sample design and 
clustering issues) would remain the same under 
different outlier weight adjustment strategies, and 
thus, we ignore them here.  
 
In year one, five of the twenty-one communities had 
enough variability in the weights to reduce the 
effective sample size by a factor of three.  This 
implies that the effective sample size is cut to a third 
of the observed sample size (e.g., a sample size of 
900 interviews would have an effective sample size 
of only 300). These large design effects motivated us 
to explore trimming the weights. We were able to 
improve the sample designs in year two, which 
resulted in less variability in the weights.  However, 
some of the weighting design effects were still 
significant in year two.  Table 1 shows the squared 
coefficient of variation (L) for each of the twenty-
seven REACH communities in years one and two. 
 
2. Theory versus Practice in Outlier Weight Issues  

 
Since the variability in the weights is so large, some 
trimming of them seems desirable. Trimming weights 
is assumed to cause bias if the extreme weight cases 
(that are trimmed) are different from the other cases, 
but will reduce the variability of the weights and 
therefore the variability of the survey estimates.  Of 
course, like a lot of choices in statistics, this is a 
delicate balancing act.   Our question is whether we 
can reduce the variance enough to outweigh any bias 
created.   We use as our criterion the mean squared 
error (MSE), which is the bias squared plus the 
variance: 
 

VarianceBiasMSE += 2  
 
Before we put into motion our comparison of weight-
trimming strategies, we need to step back to consider 
the theoretical desirability of weight trimming.  The 
mean squared error combines the bias and variance 
into a formula, but many argue that bias is much 
more important than variance.    Any biased estimator 
is tainted, and some would argue that is not worth 
any variance savings.  In REACH, the weight 
differentials arise by design.   Our stratification 

strategy resulted in large differential probabilities.  
Theoretically, it is undesirable to tinker with weight 
differentials caused by our own sample design 
decisions.  
 

3. Approach and Methodology 
 
Keeping these theoretical issues in mind, we went 
ahead to study different weight trimming methods.  
With the actual year one and two REACH interview 
data, we were able to examine the bias caused and 
variance reduced by various outlier weight 
adjustment choices.    
 
We used two basic outlier weight adjustment 
strategies (winsorization and capping weight ratios 
from the median weight) and one more advanced 
method (compound weight pooling) to compute 
twenty-seven variations of the REACH weights. One 
of these variations was, of course, to use the full 
REACH weight with no outlier weight adjustment.  
Another was to not use the weights at all (all cases 
have a weight equal to one).  We used twelve 
different variations of winsorization, which 
essentially caps the weights at a certain percentile 
(e.g., for each community, set all weights larger than 
the 95th percentile to be equal to the 95th percentile 
value and/or set all weights smaller than the 5th 
percentile to be equal to the 5th percentile value).  
We used upper end caps (only) at the 99th, 95th, 
90th, and 75th percentiles.   We also used lower end 
caps (only) at the 1st, 5th, 10th, and 25th percentiles.  
Finally, we used two-sided balanced winsorization at 
these four levels (1st and 99th; 5th and 95th; 10th and 
90th; and 25th and 75th).  We also used ten different 
variations of capping weight ratios from the median 
weight (e.g., for each community, set all weights 
more than five times the median weight to be equal to 
five times the median weight, and/or set all weights 
less than one-fifth of the median weight to be one-
fifth of the median weight).   We capped weights at 
the upper end at three, five, ten, and twenty times the 
median weight.  We also capped weights at one-third, 
one-fifth, and one-tenth of the median weight (there 
were no communities with weights less than one-
twentieth of the median).   Finally, we enforced both 
ratios to be three, five, and ten.  The more advanced 
method we used is the compound weight pooling 
method given in Elliott and Little (2000).  This 
method is described in the next two sections. 
 
For all twenty-seven of these outlier adjustment 
strategies, a scale adjustment was performed to make 
sure the weights were all comparable (all sum to the 
sample size). It is important to note that there were 
several communities in which many of the outlier 
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weight adjustments had no effect because the 
variability among the full weights was small.  
 
We calculated means and standard errors for each 
community under each outlier weight adjustment 
strategy on thirteen important binary variables CDC 
has identified as “performance measures.” Here are 
the 13 performance measures: 
 

• Immunization questions (2): 
o “Immunized for flu?”  
o “Immunized for pneumonia?” 

• Diabetic within the last year questions (3): 
o “Have you had an HbA1C test?” 
o “Have you had your feet checked?” 
o “Have you had your eyes dilated?” 

• Warning sign knowledge (2): 
o “Signs of myocardial infarction?” 
o “Signs of a stroke?” 

• Females over 50 questions (2): 
o “Mammogram in last two years?” 
o “Pap smear in the last three years?” 

• Hypertension (2): 
o “Taking hypertension medication?” 
o “Under doctor’s care for it?” 

• High Cholesterol (1): 
o “Under doctor’s care for it?” 

• Fruits and Vegetables (1): 
o “Five or more servings per day?”   

 
Given the means and standard errors, we calculated 
the bias and variance for each of our twenty-seven 
weights for each performance measure in each 
community.   We made the assumption that the full 
weight with no outlier weight adjustment was 
unbiased. We realize that this is an important 
assumption that gives an advantage to not trimming; 
in that sense, it is a conservative assumption. The 
bias for every other outlier weight adjustment was 
then the difference between that weight’s estimate 
and the estimate for the full weight.   We then 
calculated the mean-squared error as the sum of the 
squared bias and the variance.  
 
Given the mean-squared errors for each weight on 
each variable in each community, we followed two 
simple steps to get a simple comparison of the 
twenty-seven different weights.  First, for each 
community, we summed the mean-squared errors 
across the thirteen performance measures.   The 
second step was then to take the mean-squared error 
sums by community and sum across the 
communities.  This provided us with an overall score 
(sum of all mean-squared errors) for each of the 
twenty-seven weights. 

4. Simple Weight Pooling 
 
While winsorization and capping weight ratios are 
simple and well-known techniques, this is not the 
case for compound weight pooling.   To understand 
compound weight pooling, we first explain simple 
weight pooling.   
 
The first step in simple weight pooling is to 
determine a finite set of H cut points to divide the 
weights into cells.  Since we had a finite number of 
weighting steps, we had a finite number of different 
weight values, so we used the distinct weight values 
as cut points.  For any one cut point, we leave the 
smaller weights (those below the cutpoint) 
unchanged, while we pool all weights above the 
cutpoint and replace them with the average.  This 
results in a new “weight” for each of the H cutpoints.   
Take a simple example with three cases, with weights 
of 1, 3, and 5.   There are three cutpoints: 0, 2, and 4.   
Here are the resulting simple pooling weights: 
 
Cutpoint 0: we pool all three cases; 3, 3, and 3. 
Cutpoint 2: we pool 3 and 5; 1, 4, and 4. 
Cutpoint 4: we do not pool; 1, 3, and 5. 
 
Please note that one of the cutpoints results in “no 
weighting” (cutpoint 0) and one results in “no outlier 
adjustment” (cutpoint 4). 
 
We can compute the mean squared error for each 
possible simple weight pooling method, and 
determine the “best” cutpoint for each community 
and overall.  However, we found no pattern in the 
best cut-points by community (sometimes more 
pooling is better and sometimes less pooling is 
better), and simple weight pooling can be impractical 
because you need to analyze the actual data before 
calculating weights.  Sometimes, this is impossible 
(weights are needed before data is ready) and it does 
seem dangerous to have the choice of what the final 
estimates will depend on a weighting decision that 
uses parameter estimates in the choice.  These 
disadvantages can be overcome by the use of 
composite weight pooling. 
 

5. Composite Weight Pooling 
 
The idea behind composite weight pooling is to 
combine the simple weight pooling weights through a 
Bayesian method.   Notationally, we let each cutpoint 
be represented by C = 1, …, c, … , H.  Then, the 
Bayesian method is equivalent to assigning a 
probability to each of the H cutpoints c.  There are, of 
course, many options for what probabilities to assign, 
but we considered three: 
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Option 1. Take the average of all H cut-point 
weights. 
 

H
cCP

1
)( ==  

 
Option 2. Give less weight to more pooling: 
 

∑
=

==
H

i

c

c
cCP

1

)(  

 
Option 3. Consider the distance between weights. 
 
Option 1 is the very simplest idea, and Options 2 and 
3 were attempts to improve upon the simplest 
combination method.  Since we felt that less pooling 
might perform better, we explored Option 2 to give 
less weight to simple weight pooling methods that 
perform more pooling.  Option 3 considers the 
difference between weight values.  More weight is 
given to cutpoints that are very different from the 
next smaller weight. 
 
Figure 1 shows an example of compound weight 
pooling.    In this example, there are five different 
cases.  Each of the five cases has a unique weight 
ranging from 0.2 to 3.0 in the Full Weight column.  
Since there are five distinct weight values, there are 
five different simple weight pooling cut-points, 
resulting in five different simple pooling weights.  
The first cut-point is below the smallest weight (0.2), 
so all five weights are averaged (W1).  The first cut-
point is the unweighted option.  The second cut-point 
is between the first (0.2) and second (0.3) weight 
values, so all but the lowest weight is averaged, and 
so on to create the five simple pooling weights.   The 
fifth cut-point is just below the highest weight value, 
so no averaging is done for W5.  The last cut-point is 
the no outlier adjustment option.   The different 
compound weight pooling options combine these five 
pooling weights (W1 – W5) differently.   Option 1 
simply averages the five pooling weights (each given 
a weight of 1/5).   Option 2 gives more emphasis to 
W5 because it involves no pooling; W1 is given the 
least emphasis.   Option 3 also gives more emphasis 
to W5, but because it is so different from the other 
weights.   The example shows that Option 1 trims the 
weights the most and Option 3 trims the weights the 
least.  
 

 
 

6. Results 
 
Table 2 shows which weights performed best across 
all twenty-one REACH communities in Year 1. The 
MSE improvement is the amount of MSE reduction 
compared to the weight with no outlier adjustment.  
Those that show the smallest overall sum of mean-
squared errors appear at the top of the table.  Among 
the compound weight pooling options, Option 1 
performs the best while Option 3 performs the worst.  
However, Options 1 and 2 are the two best strategies 
used, beating all of the simpler methods.   Both 
options reduce the mean squared error by over 12%.  
Among the simpler methods, the ratios from the 
median outperform winsorization.     These ratios 
also outperform Compound Option 3.   The full 
weight with no outlier weight adjustment is very 
close to the bottom of the table.   This implies that 
trimming the weights creates very little bias while 
reducing variability a lot.  However, looking at the 
very bottom of the table, the worst performer is the 
unweighted option, which implies that while 
trimming improves the mean squared error, ignoring 
the weights entirely (i.e., trimming all weights to be 
equal) causes an explosion of bias that outweighs the 
variance gain and increases the mean squared error 
by over 10%.     
 
Table 3 shows the similar results for Year 2.   
Compound Options 1 and 2 are again the two best 
weights.    The gains in mean squared errors are 
much smaller in Year 2; for the best two, the gains 
are 9% and 7% in Year 2 versus 16% and 13% in 
Year 1. The gains are smaller because sample design 
improvements were made that decreased the 
variability in selection probabilities and therefore the 
weights.   Compound Option 3 is outperformed by 
fewer of the simpler methods in Year 2.   Among the 
simpler methods, the ratios from the median are not 
as clearly superior to winsorization in Year 2.   The 
lessons from the bottom of the distribution are the 
same.  All of the trimming methods outperform the 
full weight, but ignoring the weights explodes the 
bias.  The unweighted option increases the mean 
squared error by over 12.5%. 
 

7. Summary 
 
In summary, trimming resulted in more improvement 
during Year 1 than in Year 2 because the sample 
designs were improved for Year 2.  The improved 
sample designs resulted in smaller variability among 
the weights, as shown in Table 1.  The mean squared 
error improvements are significant.  Compound 
Option 1 reduces the mean squared error by over 
15% in Year 1, and by almost 9% in Year 2.  These 
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gains are just like creating a larger sample size by 
simply adjusting which weight is used in analyses.  
These gains are possible because very little bias is 
created in trimming compared to the significant 
reduction in variability.   
 
Of all the methods tried, the simplest compound 
weight pooling option (Option 1) is best.   Giving 
more emphasis to simple weight pooling cut-points 
with less averaging is outperformed by the simple 
average of all cut-points.    More generally for the 
REACH data, all of the methods used outperform the 
full unadjusted weight. 
 
One of our most important findings, though, is that 
you should not ignore the sampling weights.   The 
bias explodes compared to the variance savings, 
which we can see is significant by the savings shown 
for all the various outlier weight adjustments.  In both 
REACH years, ignoring the weights increases the 
mean squared error by over 10%.  This has serious 
implications for complicated methods of analysis that 
must be performed with specialized software that 
cannot use the weights.    
 
Among the simpler methods, capping ratios from the 
median weight perform better in Year 1 than 
winsorization.   In Year 2, the best simple methods 
are still ratio caps, but the overall superiority is not as 
clear.   Capping the high outliers is most important, 
but both tables show that capping low outliers has 
little effect on either the bias or variance.   
 

8. Theory versus Practice Final Decision 
 
So our empirical results indicate that significant 
improvement is possible; 15% in Year 1 and 9% in 
Year 2 using Compound Option 1.  However, let’s 
step back a bit to consider whether it is theoretically 
justifiable to trim the weights to achieve these gains.  
Our analysis shows that the large gains seen are 
almost entirely achieved by reducing the weight 
differentials between strata.   Recall that many of the 
REACH community sample designs used 
stratification to target high-density areas.  It is the 
sampling decision of how much to oversample that 
caused large probability (and therefore weight) 
differentials.   We re-ran our analysis to only adjust 
weights within strata and almost no gains could be 
had by outlier weight adjustments.    No gains were 
possible without tampering with the sample design 
decisions.    Since the gains have been shrinking (this 
paper only shows Year 1 and 2 data), NORC has 
decided not to adjust the weights, but we realize this 
is an open and critical question for further research. 
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Table 1.  The twenty-seven REACH communities and the variability of the weights. 
 

L = (CV)2 

 Community  Sample Type Year One  Year Two 
 Lowell, MA  Field - Area Prob 3.14 0.60 
 Atlanta  Dual Frame 2.60 0.05 
 San Diego  Stratified RDD 2.39 0.47 
 Seattle  Stratified RDD 2.25 0.86 
 Boston  Stratified RDD 2.00 0.49 
 Nashville  RDD 1.66 0.38 
 Los Angeles  Dual Frame 0.98 0.27 
 Chicago  Dual Frame 0.81 0.36 
 Chicago  Dual Frame 0.65 1.25 
 New Orleans  Dual Frame 0.57 0.40 
 Charleston  RDD 0.49 0.47 
 Charlotte  Dual Frame 0.47 0.73 
 Santa Clara  Phone List only 0.41 0.12 
 Los Angeles  Dual Frame 0.39 1.00 
 Oklahoma  RDD 0.38 0.69 
 Detroit  RDD 0.33 0.31 
 Lawrence  RDD 0.29 0.10 
 Alabama  Stratified RDD 0.29 0.88 
 Bronx  RDD 0.22 0.23 
 North Carolina  Field - List 0.04 0.02 
 Texas  Field - Area Prob 0.03 0.07 
 Portland Stratified dual n/a 0.70 
 Nevada Dual Frame n/a 0.64 
 New Mexico Dual Frame n/a 0.36 
 Missouri Dual Frame n/a 0.20 
 New Hampshire Phone List Only n/a 0.11 
 Chicago Dual Frame n/a 0.10 

Figure 1. Example of Compound Weight Pooling. 
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Table 2.   A ranking of all twenty-seven weights in Year 1 
 
Weight MSE sum MSE Improvement 
Compound Option 1 0.3762 15.83% 
Compound Option 2 0.3906 12.59% 
Both ratios 5 0.4009 10.29% 
High ratio 5 0.4028 9.87% 
High ratio 10 0.4068 8.97% 
High ratio 20 0.4068 8.97% 
Both ratios 10 0.4068 8.97% 
Both ratios 3 0.4122 7.76% 
High ratio 3 0.4137 7.43% 
Compound Option 3 0.4147 7.21% 
Winsorize 5-95 0.4235 5.24% 
Cap at 95th percentile 0.4238 5.17% 
Winsorize 25-75 0.4248 4.95% 
Cap at 75th percentile 0.4291 3.98% 
Winsorize 10-90 0.4326 3.20% 
Cap at 90th percentile 0.4337 2.95% 
Cap at 99th percentile 0.4404 1.45% 
Winsorize 1-99 0.4407 1.39% 
Cap at 25th percentile 0.4412 1.28% 
Cap at 10th percentile 0.4440 0.65% 
Cap at 5th percentile 0.4442 0.60% 
Low ratio 3 0.4442 0.60% 
Low ratio 10 0.4469 0.00% 
Low ratio 5 0.4469 0.00% 
NO OUTLIER ADJ 0.4469 0.00% 
Cap at 1st 0.4472 -0.07% 
NO WEIGHT 0.4949 -10.74% 

 
 
 
 
 
 

Table 3.   A ranking of all twenty-seven weights in Year 2 
 
Weight MSE sum MSE Improvement 
Compound Option 1 0.425848 8.93% 
Compound Option 2 0.435966 6.77% 
Both ratios 3 0.443181 5.22% 
High ratio 3 0.444171 5.01% 
Compound Option 3 0.447409 4.32% 
Winsorize 25-75 0.454046 2.90% 
Winsorize 10-90 0.456618 2.35% 
Cap at 25th percentile 0.457647 2.13% 
Winsorize 5-95 0.457716 2.12% 
Cap at 75th percentile 0.459735 1.68% 
Both ratios 5 0.460313 1.56% 
Cap at 90th percentile 0.460315 1.56% 
Cap at 95th percentile 0.460441 1.53% 
High ratio 5 0.460481 1.52% 
Cap at 10th percentile 0.463028 0.98% 
Winsorize 1-99 0.464364 0.69% 
Cap at 5th percentile 0.464426 0.68% 
Cap at 99th percentile 0.464695 0.62% 
Low ratio 3 0.466265 0.29% 
Both ratios 10 0.466811 0.17% 
High ratio 10 0.466814 0.17% 
Cap at 1st percentile 0.467269 0.07% 
Low ratio 5 0.467439 0.04% 
Low ratio 10 0.467605 0.00% 
High ratio 20 0.467608 0.00% 
NO OUTLIER ADJ 0.467608 0.00% 
NO WEIGHT 0.526201 -12.53% 

 

ASA Section on Survey Research Methods

3469


