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Abstract 

 
Ranked set sampling is an alternative to simple 
random sampling that has been receiving 
considerable attention in the statistics literature.    
Researchers have shown that ranked set 
sampling outperforms simple random sampling 
in many situations by reducing the variance of a 
parameter estimator, thereby providing the same 
accuracy with a smaller sample size than is 
needed in simple random sampling.  Ranked set 
sampling involves preliminary ranking of 
potential sample units on the variable of interest 
using judgment or an auxiliary variable to aid in 
sample selection. Ranked set sampling prescribes 
the number of units from each rank order that are 
to be measured. 
 
In this paper we conduct a sensitivity analysis of 
optimal allocation of sample units in unbalanced 
ranked set sampling to each of the order statistics. 
We use a simulation study to examine the 
sensitivity of the optimal allocation.  Our 
motivating example comes from the National 
Survey of Families and Households.   
 
Keywords:  Optimal Allocation, Sensitivity 
Analysis, Simulation Study, Unbalanced Ranked 
Set Sampling 
 

1.  Introduction 
 
Ranked set sampling (RSS), originally proposed 
by McIntyre (1952), is an alternative method of 
data collection that has been shown to improve 
on simple random sampling (SRS).   RSS uses 
judgment ranking of a characteristic of interest to 
improve estimation of a population parameter.   
For a general introduction to RSS, see Wolfe 
(2004). Theoretical results have shown that in 
many settings RSS estimators are unbiased with 
precisions at least as small as the corresponding 
SRS estimators (see, for example, Patil, 1996).  
The improvement in RSS over SRS is especially 
evident in situations where the sample units can 
be easily ranked but actual measurement of units 
is costly in time and/or effort.   In this paper, we 

consider the use of RSS for estimating a 
population proportion.   
 
1.1 Balanced RSS 
 
The most basic version of RSS in balanced RSS.  
In this form, each judgment order statistic is 
allotted the same number of sample units.  Under 
balanced RSS, we first select m2 items from the 
population at random.  These items are then 
randomly divided into m sets of m units each.  
Within each set, we rank the m units by 
judgment or through an auxiliary variable 
according to the characteristic of interest.  We 
select the item with the smallest ranking, X[1], for 
measurement from the first set.  From the second 
set we select the item with the second smallest 
ranking, X[2].  We continue in this manner until 
we have ranked the items in the mth set and 
selected the item with the largest ranking, X[m].   
This complete procedure, called a cycle, is 
repeated independently k times to obtain a 
ranked set sample of size n = mk.  As is evident, 
a total of m2k items are selected randomly but 
only mk units are measured.   
 
Let X[r]i denote the quantified rth judgment order 
statistic in the ith cycle.  The RSS estimator of 
the population mean µ is then the average of 
these RSS observations; that is,  
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This RSS estimator is an unbiased estimator of µ 
and is at least as precise as the SRS estimator 
based on the same number of measured 
observations (see, for example, Dell and Clutter, 
1972; Bohn, 1996; Patil, 2002)  There are a 
number of factors that affect how much more 
precise the RSS estimator is than the SRS 
estimator.  The more accurate the ranking is 
within each set, the more precise the RSS 
estimator will be.  In cases where the ranking is 
based on a concomitant or auxiliary variable, 
Chen et al. (2005b) show that the amount of 
increase in the precision of the RSS is directly 
related to the correlation between the 
concomitant variable and the variable of interest.   
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1.2 Unbalanced RSS 
 
Another option is that of unbalanced RSS, under 
which possibly different numbers of each ranked 
order statistic are selected for measurement.  
Neyman allocation may be used to allocate 
sample units for each order statistic 
proportionally to its standard deviation.  This is 
the optimal form of unbalanced allocation in that 
it leads to minimum variance among the class of 
all such RSS estimators.  Chen et al. (2005b) 
discuss the general properties of unbalanced RSS 
and describe the Neyman allocation method for 
assigning sampling units to each judgment order 
statistic.  We will use the following notation: let 
n1 denote the number of observations allocated to 
the first order statistic, n2 the number of 
observations allocated to the second order 
statistic, and so forth, until nm denotes the mth 

judgment order statistic.  Then, for each r = 1,…, 
m, we sample nr sets of size m units each from 
the population and obtain rankings of the 
variable of interest within each set as before.  
Instead of measuring equal numbers of the 
various judgment ordered units, however, we 
take ni measurements of the ith judgment order 
statistic, for i = 1,…, m.  The total sample size of 

measured units is then
1

.
m

r
r

n n
=

=∑  Under 

unbalanced RSS, it is not always the case that the 
RSS estimator will have greater precision than 
the SRS estimator.   
 
In this paper, we examine the sensitivity of 
unbalanced ranked set sampling to departures 
from optimal allocation when the goal is to 
estimate a population proportion. Neyman 
allocation is only optimal if the population 
proportion is known in advance of doing the 
allocation.   In practice, of course, we only have 
an estimate of the population proportion based 
on a previous study or an informed guess.  Thus, 
it is important to know how Neyman allocation 
performs if the allocation is not truly optimal.  
We will vary the sample sizes from the optimal 
sample sizes found using Neyman allocation and 
examine the effect this has on the standard 
deviation of the RSS estimator. We will also 
study the effect of imperfect rankings on this 
standard deviation. 
 
For a discussion of the use of RSS with binary 
data, see Lacayo (2002) and Chen (2005a). 
Theoretical results for the sample mean apply 
immediately to this situation as a sample 
proportion is just the sample mean for binary 

data.  To accomplish the within-set ranking we 
can use a logistic regression model to estimate 
probabilities of success and then use those 
estimates for ranking the sample items.  Data that 
are readily available or easy to obtain from 
potential sampling units can be used in the 
logistic regression model for ranking.  Chen et al. 
(2005a) have shown that using logistic 
regression in ranking improves the accuracy of 
the ranking process and therefore leads to 
considerable gains in precision of the RSS 
estimator over the SRS estimator. We will be 
using a single concomitant variable in the 
logistic regression for prediction, which has been 
researched independently by Chen et al. (2003) 
and Terpstra and Liudahl (2004).   
 
Another issue in RSS is that of perfect versus 
imperfect rankings.  In the case of perfect 
rankings the judgment order statistics equal the 
true order statistics.   When rankings are perfect, 
we can express the probabilities of success for 
the various ordered items as functions only of the 
underlying population proportion. When the 
ranking procedure lies somewhere between 
random ordering and perfect rankings (that is, we 
have imperfect rankings), there is concern as to 
how well Neyman allocation will perform.  We 
study the potential loss of precision in the 
unbalanced RSS estimator if our stipulated 
unbalanced allocation (derived under the 
assumption of perfect rankings) deviates from 
the true optimal Neyman allocation.   
 
In Section 2, we discuss how we expect sample 
size allocation to effect the precision of the 
estimator.  In Section 3, we describe the data set 
that is used in the simulation study. The 
simulation results are presented in Section 4.   
 

2.  Effect of Sample Size Allocation on the 
Precision of the Estimator 

 
In this paper, we address the sensitivity of 
optimal allocation in unbalanced RSS.  If we 
knew the population proportion, then we would 
be able to determine the exact optimal allocation 
of the total sample to the various judgment order 
statistics.  In this situation, the optimal allocation 
produces the greatest precision in the RSS 
estimator.  We do not know the true population 
proportion, however, since that is what we wish 
to estimate with our sample. Thus, it is necessary 
to use a rough preliminary estimate of the 
population proportion to determine an 
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approximate “optimal” allocation of the sample 
units.    
 
We anticipate that there is some flexibility in 
how close to the optimal allocation our 
allocation needs to be to maintain a degree of 
precision similar to that of the RSS estimator 
with optimal allocation. If the precision of the 
RSS estimator is relatively insensitive to 
departures from optimal allocation, then errors in 
the preliminary rough estimate of the population 
proportion used to obtain approximate Neyman 
allocation should not result in large increases in 
the variance of the RSS estimator.   
 
We will examine the sensitivity of variances of 
RSS estimators to departures from the optimal 
allocations through a simulation study. This will 
be accomplished by first determining the 
Neyman allocation based on a known population 
proportion, p, using a set size of three. Then we 
will use this optimal allocation to simulate the 
sampling distribution of the RSS estimator of p. 
This will provide us with an estimate of the best 
possible improvement (over SRS) in precision 
from RSS.  Then we will conduct similar 
simulations with allocations differing from the 
optimal Neyman allocation to assess the 
resulting effect on the precision of the RSS 
estimators. Plots of the estimated relative (to 
SRS) precisions of these various RSS estimators 
will be used to evaluate how robust Neyman 
allocation is to misspecification of p.  For the 
purpose of this comparison, the estimated 
relative precision of the RSS estimator relative to 
the SRS estimator is just the standard error of the 
SRS estimator divided by the standard error of 
the RSS estimator.   
 

3.  The Data 
 
To make our simulated RSS realistic, we choose 
a public-use data set, the National Survey of 
Families and Households (NSFH), and treat it as 
our population of interest.  The NSFH was 
funded by the Center for Population Research of 
the United States’ National Institute of Child 
Health and Human Development.  The field 
work was completed by the Institute for Survey 
Research at Temple University.  The NSFH data 
were collected in two waves using a national 
probability sample of 13,008 individuals aged 19 
and over (see Sweet, et al., 1988, for a detailed 
description of the NSFH).  The sample includes 
a main cross-sectional sample of 9,637 
households plus an over-sampling of African 

Americans, Puerto Ricans, Mexican Americans, 
single-parent families, families with step-
children, cohabiting couples and recently 
married persons. One adult per household was 
randomly selected as the primary respondent. 
Several portions of the main interview were self-
administered to facilitate the collection of 
sensitive information as well as to ease the flow 
of the interview. The average interview lasted 
one hour and forty minutes. In addition, a shorter 
self-administered questionnaire was given to the 
spouse or cohabiting partner of the primary 
respondent.  Respondents were first interviewed 
between March 1987 and March 1988.  They 
were recontacted between 1992 and 1994 for a 
follow-up interview. Responses to the second 
wave of the survey provide information on 
marriage transitions or union dissolutions since 
the first wave of the survey.  The design permits 
the detailed description of past and current living 
arrangements and other characteristics and 
experiences, as well as the analysis of the 
possible consequences of earlier living 
arrangements on current states, marital and 
parenting relationships, kin contact, and 
economic and psychological well-being. 
  
We will consider the observations collected by 
the NSFH as our population so that we know the 
population proportions exactly.  This will permit 
us to determine the optimal Neyman allocation 
in a variety of situations.   
 

4. Simulation Specifications 
 
4.1  Perfect Rankings 
 
We first consider the case of perfect rankings 
and set size m = 3.  The total sample size of 
interest is 200 observations.  We denote the 
sample size allocated to the ith judgment order 
statistic as ni, i = 1, 2, 3.  For this setting, we take 
the NSFH females to be our population and 
consider the variable age.  We construct three 
binary variables to provide data sets with three 
different population proportions.  The category 
of age over 20 yields a population proportion of 
p = 0.994, the category of age over 30 yields a 
population proportion of p = 0.743, and the third 
category of age over 35 has associated p = 0.575.   
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Table 1: Optimal Allocation Under Various 
Values of the Population Proportion, p 
p %n1 %n2 %n3 
0.575 34.5 42.5 23 
0.743 49.5 37.5 13 
0.964 81.5 16.5 2 
Note: %ni = percentage of total sample size 
allocated to the ith order statistic 

 
Table 1 shows the optimal allocation of the 
sample for the three values of p.  Notice that, for 
each different population proportion, there is one 
judgment order statistic that provides the most 
information if the measured observation is a 
success.  This is the one to which we allocate the 
largest portion of the sample. As the population 
proportion p varies, this most informative 
judgment order statistic changes.  If we hold the 
Neyman allocation fixed for the judgment order 
statistic allotted the most observations we expect 
that the RSS standard deviation will not be 
affected seriously by varying the sample sizes 
allotted to the other two judgment order statistics.  
On the other hand, we expect the RSS standard 
deviation will move more quickly away from its 
optimal level if we vary the number allocated to 
the group that is designated to have the most 
under Neyman allocation.    
 
In the figures that appear in the Appendix, we 
plot ˆ( ) .ˆ( )

SRS

RSS

SD p
SD p

 The horizontal line that 

appears in some of the graphs corresponding to 
ˆ ˆ( ) ( )RSS SRSSD p SD p= .  Below this line, simple 

random sampling yields higher precision and 
above this line ranked set sampling is preferred 
as it has greater precision.  For perfect rankings, 
Figure 1 shows plots of the relative precision of 
the RSS estimator to the SRS estimator.  We 
provide such plots for the p’s representing the 
proportions in the three age groups so that we 
can see if varying p has any effect on the 
robustness of the allocation.  The general shape 
for the graphs of relative precision is a parabola.  
There is some variation in the maximum portion 
of the parabola, due to simulation error.  For p = 
0.575, it is evident that when holding n1 fixed the 
attained precision of the RSS estimator remains 
close to the relative precision under optimal 
allocation even if we allow the allocations to the 
other two order statistics to vary by as much as 
plus or minus ten observations.  Similarly for p = 
0.575, it is clear that when holding n2 fixed there 
is also some flexibility in allowing the allocation 
between the other two order statistics to change 

by as much as plus or minus five observations 
from the optimal allocation without losing 
precision for the estimator.  Finally, when 
holding n3 fixed for p = 0.575, we can allow the 
allocations to the other two order statistics to 
vary by as much as plus or minus ten 
observations from the optimal allocation without 
seriously affecting the precision.  These results 
suggest that the sample allocated to each 
judgment order statistic does not have to be 
exactly at the optimal allocation for the precision 
of the estimator to remain close to optimal when 
p is near 0.5.     
 
Next, we examine the situation when p = 0.743, 
in which case the first judgment order statistic 
has the largest allocation of the sample.  Figure 2 
shows the effect of changing the sample 
allocations on the relative precision of the RSS 
estimator for this setting.  Holding n1 fixed, we 
can vary the sample size allocation to the other 
two order statistics by five in either direction and 
still have nearly optimal relative precision.   
When examining the situation where n2 is fixed, 
we see that we can vary from the optimal sample 
allocation by about seven observations in either 
direction without substantial reduction in 
precision.  Lastly, fixing n3, we can vary from 
the optimal allocation by plus or minus seven 
observations without much loss in precision.   
 
Lastly, we consider the case where p = 0.964.  
The effect of changing the sample allocations on 
the relative precision of the RSS estimator in this 
setting is examined as well.  Holding n1 fixed, 
we can vary the sample size from the optimal 
allocation by about three in either direction and 
still have good relative precision. When 
examining the situation where n2 is fixed, we see 
that we can vary from the optimal allocation by 
about five observations without substantial 
reduction in precision.  Lastly, fixing n3, we can 
vary from the optimal allocation by plus or 
minus five observations without much loss of 
precision.   
 
An analysis was done with the males from the 
NSFH as the population and considered the 
variable age as well.  This analysis yielded 
similar results to the females.  As p gets closer to 
0 or 1, it becomes more important that our 
sample allocations to the judgment order 
statistics are close to the optimal allocations in 
order not to lose much in relative precision.  On 
the other hand, the allocations are not as critical 
if p is close to 0.5 

ASA Section on Survey Research Methods

3238



 

4.2 Imperfect Rankings 
 
Next, we address the case where we have 
imperfect rankings.  In this setting, we use 
auxiliary variables to estimate the probability of 
success through logistic regression.  We then use 
these estimates to rank the units for RSS.  Here 
we look at the proportions of males and females 
working.  For males, this proportion is 0.743 and 
for females it is 0.544.  We use three different 
auxiliary variables to rank the units and select 
units for inclusion in our sample.  For both males 
and females we use the variables, “public 
assistance”, “age”, and “hours worked last week”.   
The variable named public assistance is an 
indicator of whether or not the respondent’s 
family received public assistance when the 
respondent was a child.  We expect that the gain 
in precision in the RSS estimator over the SRS 
estimator will be an increasing function of the 
absolute magnitude of the correlation between 
the variable of interest and the auxiliary variable 
used to obtain the RSS rankings.   The relevant 
correlations between working (a 0 and 1 variable) 
and the auxiliary variables mentioned above for 
each of the populations are as follows: 
 
Males:    
          Correlation with Working 
Public Assistance        0.0352 
Age    0.319 
Number of Hours Worked  0.5969 
 
Females:  
           Correlation with Working 
Public Assistance   0.0394 
Age    0.2378 
Number of Hours Worked  0.75796 
      
We will again vary the sample allocations away 
from the optimal allocation to each judgment 
order statistic to see what effect there is on the 
standard error of the estimate of p.   
 
In the case of imperfect rankings, we first 
examine the women’s data set.  Here the 
proportion of interest is p = 0.544, the proportion 
of women reporting that they are working, and 
the effect of sample allocations on the relative 
precision of the RSS estimator is displayed in 
Figures 3 and 4 .   The first case that we consider 
is where the “public assistance” (correlation of 
0.03938 with working) is used for rankings.  As 
we consider again what happens when we hold 
the “optimal” sample allocations associated with 
each of the judgment order statistics fixed.  Since 

this ranking variable is virtually uncorrelated 
with the variable of interest, we can see that the 
ranking does not help improve the precision of 
the estimator.  In this case, we always do worse 
with RSS than with SRS.  This is the danger with 
using unbalanced RSS.  Only balanced RSS 
guarantees us that we will not do worse than 
SRS.  This leads us to the conclusion that it is 
important to consider the correlation that the 
ranking variable has with the variable of interest 
in the unbalanced RSS situation.   
 
Consider the case where “age” (correlation of 
0.2378 with working) is used for ranking.  We 
again look at what happens when we hold the 
“optimal” sample allocations associated with 
each of the judgment order statistics fixed.  Since 
the ranking variable is not highly correlated with 
the variable of interest, it is not a surprise that the 
precision of the unbalanced RSS estimator is less 
than the precision of the SRS estimator unless 
the sample allocations are nearly optimal.  As we 
vary the sample allocations for the judgment 
order statistics, the SRS estimator quickly 
outperforms the unbalanced RSS estimator with 
non-optimal sample allocations. 
 
Next consider the ranking variable “hours 
worked last week”, which has a correlation of 
0.7579 with the variable of interest.  When we 
varied the sample allocations to each judgment 
order statistic for this setting, we see that there 
was still an improvement in precision with the 
unbalanced RSS estimator.  We had to miss the 
optimal allocation by more than 20 in a cell for 
the precision of the RSS estimator to be worse 
than that of the SRS estimator.  
 
The second data set that we considered contains 
only males.  In this situation the proportion 
working is p = 0.743. The same patterns occur 
with this data set as with the females.  Again the 
situation occurs where unbalanced RSS never 
outperforms SRS when the ranking variable and 
the variable of interest are virtually uncorrelated.  
When we have a variable that is not highly 
correlated with the working variable, then we do 
not have flexibility to deviate from the optimal 
allocation if we want the RSS estimator to have 
better precision than the SRS estimator.  As we 
approach correlations of 0.5 or higher we can 
once again deviate from the optimal allocation 
and still achieve greater precision with the 
unbalanced RSS estimator than with the SRS 
estimator.   In a few of the settings when we 
deviate from optimal allocation a problem occurs 
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when the sample size for one of the judgment 
order statistics gets too small.  In these cases, we 
quickly do worse with overly unbalanced RSS 
than with SRS, since it is necessary even in 
unbalanced RSS to sample a minimal number of 
units from each of the judgment order statistics 
to effectively estimate a population proportion.   
 
There is further analysis on the male data set, 
varying p’s, and numerous correlations. For 
more detailed information and graphical 
representations of these results, see Kohlschmidt 
et al. (2005).   
 

5.  Conclusions and Further Work 
 
In this paper, we have studied the sensitivity of 
unbalanced RSS estimators to deviations from 
the optimal allocation of the sample to the 
judgment order statistics.  We concluded that 
under perfect rankings, the optimal allocation is 
not crucial to insure that the RSS estimator has 
greater precision than the SRS estimator.  In the 
case where we have imperfect rankings, however, 
there is not as much flexibility in departing from 
the optimal allocation of the sample.  When the 
correlation between the ranking variable and the 
variable of interest is low, deviating too far from 
the optimal allocation results in the RSS 
estimator being worse than the SRS estimator.  
As the correlation increases to 0.5 and above, we 
once again have considerable flexibility in how 
the sample is allocated.  In such settings even if 
we differ from the optimal allocation by 10% in 
one of the judgment order statistics, the RSS 
estimator still has greater precision than the SRS 
estimator.   
 
In this paper, we were concerned with how much 
flexibility we have in varying the sample 
allocation and still improving on the SRS 
estimator.  We showed that in most cases, 
unbalanced RSS outperforms SRS even if we are 
not under optimal allocation of the sample units.  
The purpose was not to show whether we did 
better or worse than unbalanced RSS with 
optimal allocation.  It is obvious that if it is 
possible to use optimal allocation then that is the 
best for minimizing standard error.  It has 
already been shown that optimal allocation of 
unbalanced RSS will do considerably better than 
SRS.  Here we wanted to show that if there was 
uncertainty in the proportion p we could still 
improve upon the SRS estimator.  This gives us 
the freedom to use RSS even in situations in 

which there is uncertainty about the likely value 
of p.  
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Appendix of Figures 

 
Figure 1:  Relative Precision for Females with 
Age > 35, p = 0.575 
 
Note: The ranking variable here is the continuous 
random variable age.  The optimal allocation is 
n1 = 69, n2 = 85, and n3 = 46. 
a) n1 = 69 fixed            

 
 b) n2 = 85 fixed       

 
 
 
 
 

c) n3 = 46 fixed 

 
Figure 2:  Relative Precision for Females with 
Age > 30, p = 0.743 
 
Note:  The ranking variable here is the 
continuous random variable age.  The optimal 
allocation is n1 = 99, n2 = 75, and n3 = 26. 
a) n1 = 99 fixed            

 
b) n2 = 75 fixed     

 
c) n3 = 26 fixed 
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Figure 3:  Relative Precision for Females 
Working, p = 0.544  
 
Note: The ranking variable here is the probability 
of working from logistic regression on age.  The 
optimal allocation assuming perfect rankings is 
n1 = 63, n2 = 86, and n3 = 51. 
a) n1 = 63 fixed                  

 
b) n2 = 86 fixed     

 
c) n3 = 51 fixed 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 4:  Relative Precision for Females 
Working, p = 0.544 
 
Note:  The ranking variable here is the variable 
“Number of Hours Worked”.  The optimal 
allocation assuming perfect rankings is n1 = 63, 
n2 = 86, and n3 = 51. 
 
a) n1 = 63 fixed            

 
b) n2 = 86 fixed  

 
c) n3 = 51 fixed 
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