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ABSTRACT 
 

Hierarchical model such as Fay-Herriot (FH) model is 
often used to develop small area estimates. It might 
perform well overall but is vulnerable to outliers. We 
propose a robust extension of the FH model by 
assuming the area random effects follow a t 
distribution with an unknown degree of freedom. The 
inference is done in a Bayesian framework. Monte 
Carlo Markov Chain (MCMC) techniques such as 
Gibbs sampling and Metropolis-Hastings acceptance 
and rejection algorithms are used to obtain the joint 
posterior distribution of model parameters. The 
procedure is illustrated in an example, in which we 
estimate the county level prevalence of overweight 
from the 2003 public-use Behavioral Risk Factor 
Surveillance System (BRFSS) data. We also applied 
two approaches to identify outliers in this application. 
 
Key Words: t distribution; Hierarchical model; 
Complex sample survey; BRFSS; Overweight; 
Outlier detection. 
 
 
1. Introduction 

In the context of estimating the income for 
small places with population less than 1,000, Fay and 
Herriot (1979) generalized the James-Stein estimator 
to a regression model and obtained small area 
estimates. In the Fay-Herriot (FH) model, both the 
design-based direct estimates of small area means and 
the area-level random effects are assumed to be 
normally distributed. The distribution assumption on 
the design-based direct estimates is easier to justify 
because of central limit theorem. Comparatively, the 
assumption on the random effects is hard to check and 
might be vulnerable to outliers. In this article we 
extend FH model by assuming a t distribution for the 
random effects or “between-area” effects. We call this 
model “t model” contrast to the “FH model” or 
“normal model” when random effects are assumed 
normally distributed.  

 
The t distribution is important in robust 

statistical modeling. Lange, Little, and Taylor (1989) 

discussed the use of the t distribution for error terms in 
linear and nonlinear regressions. Pinheiro, Liu, and Wu 
(2001) discussed the application of multivariate t 
distribution in linear mixed effects models assuming 
the same degree of freedom for the t distributions of 
the error term and random effects.  

 
In the literature of small area estimation, there 

are a number of related papers on the robust extensions 
of the FH model, and some used a class of models for 
the random effects where the t distribution is a special 
case. Lahiri and Rao (1995) showed that an estimator 
of mean square error (MSE) of the empirical best 
linear unbiased prediction (EBLUP) of the FH 
estimates in Prasad and Rao (1990) is robust with 
respect to nonnormality of the random effects under 
some regularity condition. Specifically, for t 
distribution the regularity condition requires that the 
degree of freedom is greater than 9. Datta and Lahiri 
(1995) introduced a model assuming the random 
effects follow a scale mixture of normal distribution 
where t distribution is a special case. Assuming the 
parameters of the scale-mixture normal distribution 
known, they derived the hierarchical Bayes small area 
estimates in theory. In this article we assumed the 
parameter of the t distribution, the degree of freedom, 
is unknown and obtained its posterior distribution. 
Further we applied this approach on a real data 
example.  

 
This article is organized as follows. In section 

2 we discuss the proposed model and inference. 
Section 3 describes the details in applying the 
extension to an example, including how to detect 
outliers and how to evaluate model fit. Discussion and 
future study are given Section 4. 
 
 
2. Extention to Fay-Herriot Model and Inference 
 

Let , 1, ,iy i n= "  be the design-based direct 
estimates of the proportion mean of our interest in area 
i. Let id be the design-based variance estimate for iy  
by taking into account the complex design features in 
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the survey. The sampling distribution of iy  is assumed 
as  

( , )i i iy N dθ∼  (1) 

where iθ  is the quantity of our interest, the true 
population mean for area i. In FH model, it is further 
assumed that  

2( , )i iNθ σx β∼  (2) 

where β is a vector of regression coefficients 

associated with area level covariates iX  and 2σ is the 
variance of the area level random effects (or between-
area variance). We propose to replace (2) with  

2( , )i v itθ σx β∼  (3) 

where 2( , )vt µ σ  denotes a t distribution with 

location parameterµ , scale parameter 2σ , degree of 
freedom v, and density  
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Note that the t distribution is symmetric and 

the degree of freedom v can be any positive number. 
Specifically, the t distribution with 1 degree of 
freedom is known as the Cauchy distribution. The t 
distribution approaches the normal distribution 
as v →∞ . The t distribution belongs to a family of 
scale mixture of normal distributions as discussed in 
Datta and Lahiri (1995). This family of models can be 
represented by ( , )i i iN uθ X β∼ and  iu follows a 
distribution with longer-than-normal tails. Specifically, 
when iu follows a Bernoulli distribution, iθ  is a 

mixture of two normal distributions. iθ follows a t 
distribution 2( , )i v itθ σx β∼  when 2 2Inv ( , )iu vχ σ−∼  

where 2 2Inv ( , )vχ σ−  denotes a scaled inverse Chi-

square distribution with mean 2
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The likelihood of the model (1)+(3) is 

therefore 
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2.1 When 2σ ,β , and v are known 

When 2σ ,β , and v are known, i.e., (3) is a 

prior for iθ , it is easy to show that the posterior mean 

of iθ , as in Datta and Lahiri (1995), is 
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pE  is with respect to the 

marginal posterior density of iu : 
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where 2( | , )ip u v σ  is the density of 2 2Inv ( , )vχ σ− .  
 
Note that from (4), îθ  is a convex 

combination of iy and ix β , i.e., a weighted average of 

iy and ix β . Further analysis can show that iw , the 

weight associated with the direct estimate iy , is a 

nondecreasing function of i iy − x β  and a 
nonincreasing function of v . This indicates the weight 
on direct estimate iy  in a t model is higher than that in 

a normal model when given 2σ and β . When 2σ and 

β  are unknown, îθ  is not a convex of iy and ix β  any 

more since iw  is a function of iy and ix β when 

v < + ∞ . The weight on the direct estimate iy  is not 
necessarily higher in a t model for some i.  

 
 
2.2 When 2σ ,β , and v are unknown 

 
When 2σ , β , and v are unknown, one way 

is to estimate these parameters is via maximum 
likelihood (ML) or restricted maximum likelihood 
(REML) approaches. Then an empirical Bayes (EB) 
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estimator of iθ  can be obtained by replacing 2σ , β , 
and v in (4) with the ML or REML estimates. However, 
(4) does not have a closed form and numerical 
integration has to be applied. The computation of the 
variance is not readily available either.  

 
We propose to obtain the joint posterior 

distribution of all the unknown parameters, 2σ ,β , v, 

and iθ , under a fully Bayesian framework. Following 
Gelman et al (1995), we assume an improper uniform 
prior for 2σ  andβ , and a vague proper prior for v, 

i.e., 2( , , ) ( ) ( , )p v p v Gammaσ α γ∝ =β  

where ( ),Gamma α γ  denotes a Gamma distribution 

with mean α γ  and variance 2α γ .  
 
The joint posterior distribution of unknown 

parameters is then  
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The marginal posterior distribution of 2σ ,β , 

v, or iθ cannot be written explicitly. However, the joint 
posterior distribution can be simulated using the 
Markov Chain Monte Carlo technique such as Gibbs 
sampling (Gelfand and Smith (1991), Tierney (1991)) 
and Metropolis-Hastings algorithm. Note that when v 
is assumed known, Raghunathan and Rubin (1990) 
provided an importance resampling algorithm to obtain 
the joint posterior distribution.  

 
The conditional distributions of 2σ ,β , or iθ  

involve normal, inverse Chi-square, or Gamma 
distributions. The conditional distribution of v is not 
standard. We adapt a Metropolis-Hastings acceptance-
rejection algorithm proposed by Watanabe (2001). For 
a general discussion on this algorithm, see Chib and 
Greenberg (1995). The conditional distributions are as 
following.  
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(9) Conditional distribution of v:  
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proved that this conditional distribution is unimodal if 
2 2nα + >  which is satisfied as long as the number 
of areas 2n > .  

 
Suppose there is a candidate-generating 

distribution ( )h v  such that it is possible to sample 
directly from ( )h v by some known method. Watanabe 
(1999) proposed to use a normal distribution 
as ( )h v with mean *v A B−  and variance 

1 B− where  

*
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( ) ln ( )vv
v

ψ ∂ Γ
=

∂
, and ( )' ( )vv

v
ψψ ∂

=
∂

. Note that ( )vψ  

and ( )' vψ are called psi (digamma) and trigamma 
function respectively.  

Let 
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Denote the jth sampled value of v  by jv  and consider 
the (j+1)th sampling. The Metropolis-Hastings 
algorithm is: 

a. Sample a candidate xv  from the candidate-

generating distribution ( )h v and a value 1r  
from the uniform distribution on (0, 1).  

b. If 1
*( )
*( )

x

x

f vr
h v

≤ , return xv ; else, go to a.  

c. If *( ) *( )j jf v h v< , then let q=1; 

If *( ) *( )j jf v h v≥  

and *( ) *( )x xf v h v< , then let 

*( )
*( )

j

j

h v
q

f v
= ; 

If *( ) *( )j jf v h v≥  

and *( ) *( )x xf v h v≥ , then let 
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min ,1
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x j

j x

f v h v
q

f v h v
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

; 

d. Sample a value r from the uniform 
distribution on (0, 1). 

e. If r q≤ , return 1j xv v+ = . Else, 

return 1j jv v+ = .  
 
To speed up the algorithm, the value of *v  is 

selected to solve  

*

ln ( ) * * 1ln 1 0
2 2 2 *v v

f v n v vA
dv v

αψ η
=
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⎝ ⎠⎩ ⎭

. 

The equation might be solved by standard methods. 
For example, starting from 0*v , the Newton-Raphson 

algorithm set the next 
0

1 0
* *

* *
v v

Av v
B =

= − , so on 

and so forth.  

  Under the FH model with normal assumption 
on iθ , the conditional distributions of the model 
parameters are: 
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3 An Example --County-level prevalence of 
overweight from the 2003 Behavioral Risk Factor 
Surveillance System 

 
We illustrate the model inference by 

estimating the county level prevalence of overweight 
from the 2003 Behavioral Risk Factor Surveillance 
System (BRFSS). We also propose two ways of 
detecting outliers and demonstrate them in this 
application. Bayesian posterior predictive distribution 
is used to check the model fit under normal and t 
models. 
 
3.1. Data and analysis 

 
Overweight is a risk factor for many diseases 

including cardiovascular diseases, diabetes, and certain 
types of cancers. Federal, state, and local government 
agencies need accurate estimates of prevalence of 
overweight and obesity for small areas such as 
counties to implement and evaluate obesity prevention 
programs. Operationally, an adult is said to be 
“overweight" if his or her body mass index (BMI) is 
over 25 where the BMI is defined as weight in 
kilogram divided by the square of height in meter.  

 
One data source for the estimates of 

overweight prevalence in small areas is the Behavioral 
Risk Factor Surveillance System (BRFSS), a telephone 
survey of the health behaviors of US adults, by the 
Centers for Disease Control and Prevention (CDC). In 
2003, all states and DC used a disproportionate 
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stratified sample design, a type of list-assisted design 
(Lepkowski, 1988). 

 
Due to confidentiality concerns, if a county 

had fewer than 50 subjects in the 2003 public-use 
BRFSS data, the county identifier was suppressed. In 
addition, the counties in Alaska are not identified and 
the whole state of Alaska was treated as one single 
area (“county”). Totally, 1053 “counties” are identified 
in the public-use data. Hence there are 1,053 
“counties” in the analysis, including the state of Alaska, 
District of Columbia, and 1,051 counties in the other 
49 states. The population sizes of these 1053 
“counties” from the 2000 Census ranged from 2,397 to 
9,519,338. The average population size is 216,860. 
The total population in the 1053 “counties” consists 
81.1%  the total population in US, while the rest 2,061 
counties consists 18.9% with a mean population per 
county 25,748.  

 
The total sample size for the 1053 “counties” 

is 200,810, excluding those without a valid BMI. The 
direct estimates of the county level overweight 
prevalence range from 0.308 to 0.819 with a median 
0.604, standard errors from 0.011 to 0.143 with median 
0.055.  

 
For every county, we also have four county 

level variables available. They are obtained from the 
2000 Census. These 4 covariates are percentages of 
Hispanic population, percent of people who have a 
bachelor or higher degree among those 25 years or 
over, percent of taking public transportation to work 
for workers 16 years and over, and the percentages of 
population that is 0-18 years old. We also considered 
many other variables related to the county’s 
urban/rural status, MSA status, and various 
characteristics of the population such as employment 
status, medium income, poverty level, percent of blue 
collar workers, etc. They are not contributing much 
when adjusting for the 4 covariates included in the 
model. The 4 covariates are included on the log-scale 
to reduce the impact of skewness and standardized to 
reduce the impact of collinearity. 

 
We first fit the FH model to the data and 

identified two outlying counties. A t model with 
unknown degree of freedom v is then applied to the 
data. The parameters in the Gamma prior for v is 
chosen so that it is noninformative. Specifically, 

410α γ −= = . To obtain the Bayesian estimates under 
both models, programs are written in GAUSS 
programming language to run 2000 iterations to each 
of 10 independent sequences of Gibbs sampler. After 
the first 1000 iterations in each sequence, i.e., burn-in 
period, the Gibbs sampler converges according to 

Gelman-Rubin statistic R (Gelman and Rubin, 1992). 
We then take every 5th draw to avoid autocorrelation 
between consecutive draws.  
 
3.2 Identify outlying counties under normal model 
 

Under the FH (normal) model, the marginal 
distribution of iy  by integrating iθ  out is  

2( , )i i iy N dσ +x β∼ . As suggested in Dempster 
and Ryan (1985), we have 

2

2
( , ) (0,1)i i

i

i

y N
d

δ σ
σ
−

≡
+

x ββ ∼  where 2 2( , )iδ σ β is a 

Mahalanobis-like distance, as defined in Lange et al 
(1989). When 2σ and β  are replaced by the 

maximum likelihood estimate (MLE) 2σ�  and β� , 
2( , )iδ σ β��  has asymptotically the same 

(0,1)N distribution. In a Bayesian setting with 
noninformative prior, the posterior mode is 
approximately equivalent to the MLE. For the FH 
model, the posterior mode can further be approximated 
by the posterior mean 2σ̂ and β̂ , and thus 2 ˆˆ( , )iδ σ β  
approximately follows a standard normal distribution. 
Therefore 2 ˆˆ( , )iδ σ β can be used to check the 
assumptions in the FH model. Note that 

2 ˆˆ( , )iδ σ β considers not only ˆ
i iy − x β , but also the 

reliability of the direct estimate iy . Only those areas 
with “extreme” and relatively reliable direct estimates 

(i.e., large ˆ
i iy − x β  and small id ) will be recognized 

as outliers.  
 
There is another way to identify outliers. You 

and Rao (2002) computed statistics proposed by 
Daniels and Gatsonis (1999). The rationale is that we 
can simulate the posterior predictive distribution of a 
hypothetical replication of the direct estimates. 
Computationally, drawing from the posterior 
predictive distribution is nearly effortless given that we 
have the draws of iθ from its posterior distribution. 

For every draw of iθ , we simulate a hypothetical 

replicate direct estimate from ( , )rep
i i iy N dθ∼ . The 

resulting 10,000 draws of rep
iy  represents the posterior 

predictive distribution of iy .  
 
Define a p-value for the normal model as 
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( )

1

1 J
N rep j
i i i

j
p I y y
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( )
( ) 1 if 

0 otherwise

rep j
rep j i i
i i

y y
I y y

⎧ >
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⎩
 

(12) 

 where 1, ,j J= "  indexes the number of replicates 

and J is the number of draws of rep
iy . For county i, 

a N
ip  close to 0.5 indicates a good fit of the model, a 

value close to 0 or 1 indicates a lack-of-fit of the 
model. A county with 0.05N

ip <  or 0.95N
ip >  is 

an outlier. 
 
Figure 1 shows the half-normal plot of 

2 ˆˆ( , )iδ σ β under the FH (normal) model. Two 
counties at the lower left corner show a violation of 

normal distribution assumption. Both outlying counties 
have a 2 ˆˆ( , )iδ σ β  smaller than -3.5. Both counties 

have a p-value N
ip  greater than 0.95.  

 
Table 1 gives the direct estimate, posterior 

mean from the normal model, posterior mean from a t-
model, 2 ˆˆ( , )iδ σ β , and N

ip  for each of the two 
outlying counties, Dickinson County, Kansas and Park 
County, Montana. The two counties have direct 
estimates 0.3-0.4 with a small standard error.  

 
 

Table 1: Outlying counties and their estimates (the numbers in the parentheses are associated standard error or posterior 
standard derivations) 
County 

iy  
îθ  from normal 2 ˆˆ( , )iδ σ β  N

ip  îθ  from t, v=3.96 t
ip  

A 0.361 (0.076) 0.618 (0.030) -3.674 0.952 0.549 (0.091) 0.856 
B 0.309 (0.059) 0.522 (0.029) -4.044 0.962 0.412 (0.078) 0.774 
Note: County A: Dickinson County, KS, County B: Park County, MT 
 

 

 

Figure 1: Half-normal plot of 2 ˆˆ( , )iδ σ β  under FH 
(normal) model. The straight line is the expected line 

when there are no outliers. 
 

 

 
3.3 Small area estimates 
 

We then compare the posterior distribution of 

iθ  and one striking difference is in the skewness. In 

the normal model the posterior distribution of iθ  is 
approximately symmetric, while in the t model it is 
skewed except for those with a N

ip  close to 0.5. 
Figure 2 shows histograms from selected counties 
(including the two outlying counties) with N

ip  from 

0.3 to 0.962. We observe that the distribution of iθ  is 

left skewed when N
ip <0.5 and right skewed when 

N
ip >0.5. Generally the skewness is associated with 

the distance between N
ip  and 0.5 with the only 

exception of the distribution of iθ  for the most 

outlying county with N
ip =0.962 (Figure 2e). This case 

needs further exploration.  
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a. posterior distribution of iθ  from the normal model and t model for a county with N
ip =0.3 

  
b. posterior distribution of iθ  from the normal model and t model for a county with N

ip =0.5 

  
c posterior distribution of iθ  from the normal model and t model for a county with N

ip =0.7 
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d. posterior distribution of iθ  from the normal model and t model for a county with N
ip =0.952 

  

e. posterior distribution of iθ  from the normal model and t model for a county with N
ip =0.962 

Figure 2 Posterior distribution of iθ from normal and t models for selected counties (the histogram on the left is from 
the normal model, on the right is from the t model) 

 
 
3.3.1 Posterior means 
 

Figure 3a shows the posterior mean of 

iθ from the normal model and the t model. For the 
majority of the counties, the differences are small. The 
shrinkage effect is smaller in the t model, and îθ  

agrees well when the direct estimate iy  is in the middle 
(around 0.6). The differences between the two model 
estimates are mostly between -0.05 and 0.03 except for 
the two outlying counties. In addition, we can observe 
that the differences are a monotone function 
of 2 ˆˆ( , )iδ σ β , as shown in Figure 3b.  
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Figure 3a. Posterior mean îθ  from the normal 
and t model versus direct estimates. The line is 

what to expect if there is no shrinkage effect. The 
stars are posterior mean from the normal model, 

the open circles are from the t model. 

Figure 3b. Differences between the posterior mean îθ  

from the normal and t model and 2 ˆˆ( , )iδ σ β . The two 
points on the left upper corner correspond to the two 

outlying counties. 
 

 
3.3.2 Posterior standard derivations 
 

The posterior standard derivations of iθ are 
between 0.010 and 0.143 with a median 0.054 for the t 
model, while those for the normal model are between 
0.010 and 0.031 with a median 0.028. Table 2 shows 
that the posterior standard deviations for the two 
outlying counties are larger under the t model than 
those for the normal under or even the direct estimates. 
This is expected due to the high variation in the draws 
on the tails of a t distribution. Although the normal 
model estimates appear to have a higher precision in 
these areas, the model does not fit the data well. To 

check the model fit for the t model, we define the same 
t
ip  for the t model as in (12). The values of t

ip for all 
counties are between 0.166 and 0.879.  
 
3.4 Estimate of v 
 

The posterior distribution of v is shown in 
Figure 4. The posterior mean of v is 3.96 with a 
standard deviation 0.16 with a 95% posterior 
confidence interval (3.62, 4.24). Although it appears a 
little right-skewed, the mode of v is very close to the 
posterior mean 4.00. 
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Figure 4: Histogram of draws of degree of freedom v from its posterior distribution after burn-in period in Gibbs 
sampling 

 
3.5 Estimates of 2σ and β  

Table 2 gives the estimates of 2σ andβ . The 
posterior mean and standard deviation of β  from the 
two models do not differ much. From both models, we 
can see that percent of bachelor degree or higher 
education in 25+ and percent of population 0-18 years 
old explain more variation in the county level 

prevalence of overweight than other county covariates. 
The prevalence of overweight is positively correlated 
with percent of population 0-18 years, and negatively 
correlated with percent of bachelor degree or higher 
education in people 25 years old or over, percent of 
Hispanic population, and percent of taking public 
transportation to work in workers 16 years old or over.  

 
Table 2 Posterior means and standard derivations (in parentheses) of 2σ andβ from the normal model and t model with 
v=3.96 

County level covariates Normal model t model 
% of Hispanic -0.0065 (0.0022) -0.0070 (0.0025) 
% of taking public transportation to 
work in workers 16+ 

-0.0060 (0.0022) -0.0060 (0.0022) 

% of population 0-18 yr old 0.0144 (0.0019) 0.0148 (0.0021) 

 
 
 
β  

% of bachelor degree or higher 
education in 25+ 

-0.0278 (0.0018) -0.0276 (0.0019) 

2σ   0.0010 (0.0001) 0.0005 (0.0001) 

 
The interpretations of 2σ  are different in the 

normal and t models. It is not meaningful to compare 
2σ  under different models. However, when we 

discuss the weight iw  in Section 2.1, we assume that 
2σ and β are known constants. Note that this 

assumption does not hold, especially for 2σ .  
 
4 Discussion 
 

In this article we illustrates the ability of 
improving model fit using a t distribution to model 

small area mean where there are outliers. We conclude 
with some remarks on the limitations of the approach, 
and mention some areas that seem to require further 
study.  

 
1. Our model assumes an independent sampling 

error among areas. Due to complex nature of 
the sampling designs, the sampling errors are 
sometimes correlated. For example, when the 
small areas cut across the sampling design. 
Under this situation, we need to consider a 
multivariate model for iy , i.e.,  ( , )Ny θ D∼  
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where '
1( , , )ky y=y " , '

1( , , )kθ θ=θ " , 

D  is the sampling variance matrix of y . It is 
the case discussed in Datta and Lahiri (1995). 
Under Bayesian framework the extension is 
straightforward. With the model for θ  
unchanged, the conditional distributions of all 
parameters are unchanged except forθ .  

 
2. We assume a normal distribution model for 

the direct estimate iy  although iy  is the mean 
of binary variables indicating whether a 
sampled person is overweight. The normal 
assumption might not hold when the sample 
size is small. When ignoring complex 
sampling design, one can assume a binary 
model for i in y , i.e., ( , )i i i in y Binomial n θ∼ , 

where in  is the sample size from area i . We 

can further assume 2logit ( ) ( , )i v itθ σx β∼ . 
Rao (2003) discussed the normal case where 

2logit ( ) ( , )i iNθ σx β∼ in Section 10.11.2. 

The conditional distribution of iθ  is not 
standard and algorithms such as Metropolis-
Hastings can be used to obtain the joint 
posterior distributions. When the survey 
sampling design is complex, further 
investigation is needed to investigate how to 
take it into consideration. A possibility is to 
use the effective sample size in each area to 
replace the actual sample size 
in ( , )i i i in y Bin n θ∼ .  

 
3. To detect outliers, we defined 2 ˆˆ( , )iδ σ β  as a 

pseudo measure in Section 3.2. The 
distribution of 2 ˆˆ( , )iδ σ β  is approximated by 

assuming the posterior mean of 2σ  and β  
under noninformative prior are roughly equal 
to the MLE of 2σ  and β . There might be 
some bias in the approximation. The posterior 
predictive distribution approach is more 
appropriate in general.  

 
 
4. One can also consider proper priors for 2σ  in 

the normal and t models. A typical choice for 
the prior of 2σ  for the normal model is 
inverse Gamma, and for the t model, Gamma. 
When both priors are chosen to be 
noninformative, little difference is found 

between the posterior distributions under 
proper and improper priors.   
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