
 

Comparison of Two Weighting Schemes for Sampling with Minimal Replacement 
 

Pedro J.  Saavedra 
ORC Macro, 11785 Beltsville Dr., Calverton, MD 20705 

 
 

 
Abstract  

In his 1979 paper on PPS sampling with minimal 
replacement (SMR) for multistage samples, Chromy 
developed an estimator based on the inverse of the 
expected number of times a PSU would be selected. 
This yields an unbiased Horvitz-Thompson estimator, 
which takes into account the sampling process at every 
stage. An alternative estimator also is used with SMR 
based on Stage 1 weights computed as the inverse of 
the PSU probabilities of selection. With this approach, 
the allocations at the second stage are taken as a given 
and not as the result of a probabilistic process at Stage 
1. This is exactly the estimator most commonly used 
for sampling without replacement, and thus many 
statisticians may be more familiar with it than with the 
Chromy estimator. This study compares the design 
effect for the two estimators using real sampling 
frames with varying numbers of selected PSUs with 
and without perfect correspondence of the number of 
units per PSU and the size measure. The alternative 
estimator was more efficient when the intra-class 
correlation was high. 

Keywords: two stage sample, estimator, simulations, 
sequential sampling 

1. Introduction 
 

In his 1979 paper, James Chromy introduced the term 
“probability minimum replacement” (PMR) to 
designate an alternative to probability replacement 
(PR) designs and probability nonreplacement (PNR) 
design. Since the terms Sampling With Replacement  
(WR) and Sampling Without Replacement (WOR) 
have become more usual, the term Sampling With 
Minimal Replacement (WMR) will be used in this 
paper. Chromy introduced the term to describe one 
particular sampling scheme, but the concept is 
applicable to any of a number of schemes where only 
PSUs which are selected with certainty can be selected 
more than once.   
 
Consider a cluster sample design where m Primary 
Sampling Units (PSUs) or clusters are to be selected 
among M, where the number of units is a measure of 

size, where cluster j has Nj units, and where N is the 
total number of units across all clusters.  The 
expectation of a cluster can be expressed as Ej = mNj / 
N (one can, of course, use a size measure that 
correlates with the number of units in the population, 
and most of what is said here will hold).  In a WMR 
design, if all the expectations are less than one, the 
expectations represent probabilities of selection, and 
the design is identical to a WOR design.  Now, let 
Int(Ej) be the integer portion of Ej and Frac(Ej ) be the 
fractional part.  A design is WMR if the number of 
times cluster j is selected is Int(Ej )+ 1 with probability 
Frac(Ej), and Int(Ej ) times with probability 1-Frac(Ej ), 
 

2. WMR Sampling Methods 
 
Any WOR method can be made into a WMR method 
in the following way.  First one calculates the 
expectations Ej as described above.  Then one selects 
each unit Int(Ej) times where Int(Ej)  is the integer part 
of Ej .  Finally one assigns a probability of   Pj=Ej-
Int(Ej) to each unit and selects the units with that 
probability.  If a unit selected with certainty Int(Ej) 
times is selected, then it will be in the sample Int(Ej)+ 
1 times.   
 
However, there are at least two methods where the 
WMR sampling can be implemented directly.  One is 
an extended Goodman-Kish (1950) approach.  Once 
expectations have been calculated, the PSUs are sorted 
randomly (or randomly by stratum) and labeled 1 
through j. Let Cj=(E1+E2+ …Ej) where the Ej are 
expectations of PSUs 1 to j.  Let sj=Int(Cj+r)-Int(Cj-

1+r) where r is a starting random number (0<r<1) and sj 
the number of times PSU j is sampled.  This approach 
is the WMR equivalent of Procedure 2 in Brewer and 
Hanif (1983). 
 
A second method is the one introduced by Chromy in 
his 1979 paper, and presented as Procedure 50 in 
Brewer and Hanif (1953).   The Chromy method 
begins the same way as the extended Goodman-Kish 
approach, and hence one can begin with the same 
notation and terminology.  The units are ordered and 
the terminology is the same as before.  Let Ij = Int(Cj) 
and Fj =Frac(Cj) Let n(j)= s1+ s2+ …+ sj.  It can be 
seen that for any j, n(j) will be Ij  or Ij  + 1.  The 

ASA Section on Survey Research Methods

3516



 

selection is sequential.  If Fj =0 then n(j)= Ij .  Now let 
rj be a random number associated with PSU j.   Given 
that the sample has been drawn up to unit j-1, n(j-1) 
must be Ij-1 or Ij-1 + 1.  The following rule will be used 
to define n(j): 
 

1) If n(j-1)= Ij-1 and Fj  ≥  Fj-1  ≥  0 and rj  <  
(Fj - Fj-1 )/(1-Fj-1) then n(j)= Ij +1 

2) If n(j-1)= Ij-1 and Fj  ≥  Fj-1  ≥  0 and rj  ≥  
(Fj - Fj-1 )/(1-Fj-1) then n(j)= Ij 

3) If n(j-1)= Ij-1 and Fj-1  >  Fj  >  0 then n(j)= 
Ij 

4) If n(j-1)= Ij-1 +1 and Fj  ≥  Fj-1  ≥  0 then 
n(j)= Ij +1 

5) If n(j-1)= Ij-1 +1 and Fj  > Fj-1  >  0 and rj  <  
(Fj / Fj-1 ) then n(j)= Ij +1 

6) If n(j-1)= Ij-1 +1 and Fj  > Fj-1  >  0 and rj  ≥  
(Fj / Fj-1 ) then n(j)= Ij  

 
Now, one simple calculates sj = n(j)-n(j-1), where, once 
again sj  is the number of times PSU j is sampled.   
 
The Chromy method has one advantage over the 
extended Goodman-Kish.  Consider a population of 
five units where two are to be sampled with 
probabilities .1, .6, .6, .1, and .6 . There is no way that 
the two units with the smallest probabilities can be 
both sampled.  However, using the Chromy approach 
(where one randomly sorts the units as a starting point) 
one can easily see that a very low rj for the first and 
fourth unit will lead to their selection.  This means that 
a variance estimate can be obtained, and Chromy 
presents one in his paper. 
    

3. Weighting aproaches 
 
The question examined in this paper is what the 
weights should be for a WMR sample.  Suppose that 
indeed we decide to sample kj n  units from each PSU, 
where kj is the number of times cluster j was sampled.  
There are two possible ways of looking at the design, 
leading to two different sets of weights.  The first is 
equivalent to the Chromy’s approach.  One determines 
the probability of selection of a particular unit in the 
population.  In order to generalize, let us suppose that 
the measures of size are exact (we will discuss the 
other situation later) and that as before we sample n 
units for every time the PSU is selected.  It is easy to 
realize that the probability of selection of a unit is 
Frac(Ej  )(Int(Ej)+1) n/ Nj + (1-Frac(Ej ) Int(Ej )n/Nj= 
(n/Nj)( Int(Ej)+Frac(Ej)) = (n/Nj )Ej  = (n/Nj ) (m Nj/N) 
= mn/N.  In other words, every unit has exactly the 
same probability of selection.  Of course, if it turns out 
that the real number of units of the PSU is Nj’ then the 
probability becomes (mn/N) (Nj’/ Nj).  
 

However, there is another way of looking at the same 
probability of selection without altering the sampling 
method. The sample could be treated as a WOR 
sample.  The probability of selection would be Pj = 
min(Ej,1) and the probability of selection of a unit 
would be Pj(nj/Nj)  where nj is the number of units 
sampled from cluster j, which in turn depends on how 
many times the cluster was actually selected.  This 
approach treats the nj  as if they had been arbitrarily 
selected. 
 
For either approach we can use the inverse probability 
as a weight. We will call the first weight the 
unconditional (because the weight are not dependent 
on the first stage results) or Chromy weights and the 
second weight the alternateor conditional weights. 
Now, in the case where we know the exact number of 
units in each cluster beforehand, the unconditional 
weights will add up to the population.  The conditional 
weights will not, but can be adjusted so that they do 
add up to the population.  This makes no difference in 
estimating means and proportions, but it will affect the 
estimates of totals. 
 
Let us take an example.  Suppose a design calls for 100 
clusters with 20 units to be sampled per cluster, and 
there are 2,000,000 units in the population.  Suppose a 
cluster has 44,000 units.  The expectation is 
E=100(44,000/2,000,000) or 2.2.  This means there is a 
20% probability that the PSU would be selected three 
times and an 80% probability that it be selected twice.  
The probability of selection will be 1/1,000 for all 
units, whether in this cluster or not.  On the other hand, 
the unadjusted conditional weight will depend on the 
number of times the PSU is selected.  If the cluster is 
selected twice, the probability of selection of the units 
in that cluster will be 40/44,000 and the weight will be 
1,100 whereas if the cluster is selected three times, the 
probability of selection will be 60/44,000 and the 
weight will be 733.33.   
 
It would seem that the unconditional weights yield an 
additional design effect due to weighting, and that the 
conditional weights would be preferable.  But a 
contrived example will show that this is not necessarily 
so.  Suppose that in the above example the cluster in 
question were the only certainty cluster.  Suppose 
furthermore that there were a variable with a uniform 
value of 10,000 in the cluster and 1,000 in every other 
cluster.  It is easy to calculate that the population mean 
is 1,198 and that using unconditional weights the 
sample estimates could be 1,180 or 1,270, depending 
on the number of times the certainty cluster was 
selected.  However, using the conditional weights, the 
estimates would be exactly 1,198 regardless of how 
many times the certainty cluster was selected. 
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The totals are a different matter.  The population total 
is 2,396,000,000.  The estimates using  the 
unconditional weights are 2,360,000,000 80% of the 
time and 2,540,000,000 20% of the time, with the 
average estimate across samples equaling the 
population.  The WOR sample yields 2,400,000,000 
every time, showing a bias, but being closer to the 
population all the time.  And the bias can be corrected 
by adjusting the weights to the known number of units 
in the population.  Thus in this contrived instance the 
conditional weights yield the lower mean square error, 
even though they do show a bias if the totals are 
uncorrected. 
 
In order to explore the two kinds of weights, we 
decided to do simulations using real data, sampling 
from a frame where the values were known for every 
unit in the frame.  The first set of simulations used 
States as the PSUs and schools as the units.  We used 
schools in an old Common Core of Data (CCD) file for 
which at least one of grades 6, 8, 10 and 12 were 
present and for which the proportion of students of 
each race was reported.   Estimates were made for  two 
variables, the number and percent of schools with a 
sixth grade and the number and percent of schools with 
enrollments less than 80% white.   
 

4. The School Simulations 
 
Several simulations were conducted.  In each, States 
were selected as PSUs and schools were selected at the 
second stage.  In two, the number of schools in the 
States was used as a size measure, and in the other two, 
the number of students was used.    Each of these 
simulations was first conducted using the extended 
Goodman-Kish procedure and later repeated using the 
Chromy procedure.  Estimates were obtained using the 
unconditional estimator developed by Chromy and the 
alternate conditional estimator. 
 
The school simulations were conducted using a subset 
of the CCD, including schools with ethnicity 
information and at least one of  grades 6 through 10 in 
49 States and the District of Columbia (Hawaii was 
excluded, as its number of schools in the frame was too 
small).  The process of drawing a sample began with a 
list of States indicating the number of units (schools in 
this case) in each State.  For the first two simulations 
the proportion of all schools in the frame that were 
found in that State were  multiplied by the number of 
States to be sampled (40 in this case) to provide the 
expectation of selection for the State.  If this 
expectation was less than 1.0, it represented the 
probability that the State would be selected once.  If it 
was greater than 1, the integer part was equal to the 

number of times the State was to be selected with 
certainty, and the fractional part became the 
probability that the State would be selected one 
additional time.  The sum of all expectations equaled 
40, or the number of States to be sampled. 
 
Two estimates were selected for the simulation.  The 
first was the percentage of schools nationwide, among 
those with grades 6 through 10 that included a sixth 
grade.  The second was the percentage of schools 
nationwide with more than 20% minority enrollment.  
These variables have very different distributions across 
States.  The first has a low intra-class correlation, as 
the percentage of schools that include a sixth grade is 
not that different from State to State.  The second has a 
high intra-class correlation, as one finds that in some 
States, such as Vermont there are no schools with more 
than 20% minorities and in others, such as the District 
of Columbia, every school has at least 20% minority. 
 
Several sets of samples were drawn, selecting 1000 
schools, 40 States and 25 schools per State, for each 
time the State was selected.  The frame had 47,104 
schools, 44% of which had over 20% minority 
enrollment and 63% of which had a sixth grade.   
 

5. The Assisted Housing Simulations 
 
Using a count of assisted housing tenants in three 
programs by county (obtained as part of an evaluation 
of assisted housing recertification practices) the 
counties were clustered into 1,196 PSUs.  Of these 100 
clusters were selected and the selection of 40 tenants 
per cluster was simulated.  Estimates were obtained of 
the percentage of tenants in each of three programs:  
Traditional Public Housing, Tenant-Based Section 8 
and Project-Based Section 8.  As with the school 
simulations, 1000 samples were drawn. 
 

6. Evaluation of Results 
 
Though the relative effectiveness of the Goodman-
Kish and Chromy approaches was not a primary 
concern of this paper, comparisons were made for each 
estimate using an ordinary t-test.  Two dependent 
variables were used.  The first was the absolute value 
of the difference between the estimate and the 
parameter obtained from the frame.  The other was the 
square of that difference.  The squared deviations 
criterion, of course, gives greater weight to large 
discrepancies. 
 
Then for each  parameter being estimated within a 
method, the two estimators were compared, also using 
both absolute deviations and squared deviations.  Only 
these comparisons were compared using matched 
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paired t-tests.  To present an example, suppose y were 
the parameter being estimated (e.g. the proportion of 
schools with sixth grades in the country).  Let ŷi1 be the 
estimate using the unconditional weights for the 
sample drawn at sample i and ŷi2

 be the corresponding 
estimate using the conditional weights.  Now let di = 
|ŷi1 – y| - |ŷi2 – y|  .  A t-test was used to determine if one 
of the two estimators was significantly closer to the 
population parameter than the other, by determining if 
the di were significantly different from zero.  A similar 
test  was used using di’= (ŷi1 – y)2 - (ŷi2 – y)2 .  
Coefficients of variations were used for descriptive 
purposes in the comparisons. 
 

7. Results  
 
Three designs are reported in this paper: 
 

1) 40 States, 25 schools per State per selection, 
exact size measures 

2) 40 States, 25 schools per State per selection, 
approximate size measures 

3)  100 PSUs, 40 tenants per PSU, exact size 
measures. 

 
Comparing the precision of the two sampling methods, 
no difference was found for either estimator for the 
high intra-class correlation variables, but for a low 
intra-class correlation variable (proportion of schools 
with a sixth grade) the Chromy method was slightly 
better for either estimator (p<.05 using squared 
deviations) when the measure of size was exact.  All 
the comparisons of the two estimators yielded similar 
results regardless of sampling method, so only the 
results using the Chromy method will be presented.  
The absolute deviation tests and the squared deviation 
tests led to the same conclusions when comparing 
estimators. 
 
For the first design, the conditional estimator was 
significantly better for estimating proportion of schools 
with over 20% minority students (high intra-class 
correlation variable).  There was no difference for the 
low intra-class correlation variable.  For the second 
design, where the measure of size was not exact, the 
unconditional estimator was better for the low intra-
class correlation variable and the conditional estimator 
was better for the high intra-class correlation variable.   
 
For the third design, for two out of the three estimates, 
the conditional estimator performed better.  Indeed, 
these two were the estimates of the proportion of 
traditional public housing, more prevalent in large 
metropolitan areas, and tenant-based Section 8 housing 
(more prevalent in less densely populated counties).  
Both of these tend to have a higher intra-class 

correlation.  The project-based Section 8 housing is 
more widespread, and is not managed by the local 
PHA, so the intra-class correlation can be expected to 
be lower.   
 
Table 1 presents the results of the estimator 
comparisons: 
 
Variable Uncond. Condit. P<.01
Des.1  - low .01901 .01888   
Des.1  - high .05432 .05247 * 
Des.2  - low .02770 .02806 * 
Des.2  - high .07864 .07740 * 
Design 3 – a .05084 .04959 * 
Design 3 – b .05015 .04886 * 
Design 3 – c .05318 .05293   
 
 
 

8. Conclusions and Summary 
 
The results are consistent with the observation that 
Chromy’s estimator for samples where PSUs are 
selected with minimal replacement works best for 
variables with a low intra-class correlation, whereas 
the conditional estimator works best for variables with 
a high intra-class correlation.  It should be noted that it 
is precisely for variables with a low intra-class 
correlation that one would want to use sampling with 
minimal replacement.  If there was a high degree of 
homogeneity within PSU, it would not be cost-
effective to increase the allocations of the larger PSUs.  
On the other hand, when the intra-class correlation is 
low, it is more important to sample each unit with  
close to the same probability of selection. 
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