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Abstract

We consider alternative definitions of seasonal
adjustment variances for both model-based and X-
11 type seasonal adjustments. In particular, when
we account for sampling error components of time
series we can consider either the variance of the es-
timation error for the nonseasonal component of the
true series, or the variance of the estimation error
for the seasonally adjusted series (observed series
minus estimated seasonal component). The mag-
nitudes of these variances can be quite different. We
examine the relative contributions of various error
components to seasonal adjustment variances, and
the effects on model-based seasonal adjustment vari-
ances of uncertainty about model parameters. The
considerations are illustrated with several examples.

Keywords: sampling error, canonical decomposi-
tion, forecast extension

1. Introduction

The desire for variances of seasonally adjusted
data has a long history. It was mentioned in the re-
port of the “Gordon commission” (President’s Com-
mittee to Appraise Employment and Unemployment
Statistics 1962), predating the appearance of the
popular X-11 seasonal adjustment program (Shiskin,
Young, and Musgrave 1967). The development of
methods of model-based seasonal adjustment (e.g.,
by Burman 1980; Hillmer and Tiao 1982; Har-
vey 1989; and others), and of corresponding com-
puter software such as SEATS (Gomez and Maravall
1997), would seem to present opportunities for pro-
ducing variances of seasonal adjustments, since these
follow directly from signal extraction calculations for
the models. Approaches to develop variances for X-
11 type seasonal adjustments have also been pro-
posed by Wolter and Monsour (1981), Pfeffermann
(1994), and Bell and Kramer (1999). Despite these
developments, questions still remain about how to
produce variances for seasonally adjusted data.

This paper reviews some of the issues that arise

∗Disclaimer: This report is released to inform interested
parties of research and to encourage discussion of work in
progress. The views expressed on statistical, methodological,
technical, or operational issues are those of the author and
not necessarily those of the U.S. Census Bureau.

for producing seasonal adjustment variances. Sec-
tion 2 provides mathematical background and also
makes the important point that, when sampling er-
ror is present in the observed time series, there are
two choices of what to estimate in seasonal adjust-
ment, and hence two possible definitions of seasonal
adjustment error and of seasonal adjustment vari-
ances. Section 3 examines contributions to seasonal
adjustment error from different perspectives, includ-
ing (i) contributions from each of the components of
the observed series (seasonal, nonseasonal, sampling
error), (ii) contributions from forecast extension er-
ror, and (iii) contributions from uncertainty about
regression and other model parameters. Examples
illustrate that when sampling error is present its con-
tribution to seasonal adjustment error can be quite
important, and that the contribution to seasonal ad-
justment variances from parameter uncertainty can
be quite erratic over time. Section 4 reviews different
approaches to X-11 seasonal adjustment variances,
noting how these approaches differ in regard to what
components of error are accounted for. Section 5
summarizes the conclusions.

Examples presented here are intended to be il-
lustrative of the issues discussed, and should not be
interpreted as saying anything definitive about the
particular time series used, many of which involve
data that have since been revised. The series serve
mainly to provide models of the type used in prac-
tice, which are used here only to illustrate various
mathematical results. In most cases the results are
presented as standard deviations rather than vari-
ances to provide more interpretable numbers.

2. Mathematical Background

Seasonal adjustment involves estimating com-
ponents of an observed time series. The decomposi-
tion we generally consider here is:

yt = St +Nt + et, (1)

where yt is the observed time series, St and Nt are
the seasonal and nonseasonal components, and et
is the sampling error. We shall say more about et
shortly. We assume that the components in (1) are
orthogonal, i.e., uncorrelated with each other at all
leads and lags. Sometimes we shall further decom-
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pose the nonseasonal component as

Nt = Tt + It,

where Tt and It are the trend and irregular compo-
nents, also assumed orthogonal to each other and to
St and et. Often yt will be the logarithms of original
survey estimates, implying a log-additive decomposi-
tion, equivalent to a multiplicative decomposition on
the original (unlogged) scale. In this case the stan-
dard deviations of the component estimates may be
interpreted in percentage terms, approximating co-
efficients of variation (CVs) on the original scale.

In (1) we leave the range of the time index,
t, unspecified. Most expressions given apply to
the theoretical cases of a semi-infinite sample (t =
. . . − 1, 0, 1, . . . , n) or a doubly infinite sample (t =
0,±1,±2, . . .), though actual calculations done here
are only for the practically relevant case of a finite
sample (t = 1, . . . , n).

The inclusion of the sampling error component
et in (1) is appropriate when the yt are estimates
from a repeated sample survey. We then view yt
as estimating corresponding population quantities Yt
that would be obtained if a complete census were
conducted each time period, and so write

yt = Yt + et. (2)

(We often think of Yt as the unobserved “true”
series, though this ignores nonsampling errors in
the survey estimates yt such as response and non-
response errors, survey frame coverage errors, and
so on.) Time series modeling and seasonal adjust-
ment often ignores sampling error, implicitly assum-
ing that the “true” series Yt is observed. Though
some economic time series are not subject to sam-
pling error (import and export statistics being typi-
cal examples), many economic time series do contain
significant sampling error components. Since (1) and
(2) imply that St and Nt are the seasonal and non-
seasonal components of Yt, not of yt, when sampling
error is present it should be recognized as in (1) and
(2), and accounted for when developing seasonal ad-
justment variances. The references to variances for
X-11 seasonal adjustments cited in the Introduction
all take sampling error into account in their analyses.
Bell and Otto (1992) and Bell (2004) consider sam-
pling error in the context of model-based seasonal
adjustment.

Let ωN (B) =
P

j ωN,jB
j denote a linear fil-

ter to be applied to yt to estimate Nt, where B is
the backshift operator (Byt = yt−1). We leave the
limits of the summation unspecified to allow the ex-
pressions to apply for any given time t, and for the

finite, semi-infinite, and doubly infinite sample cases
mentioned above. We write the estimator of Nt as

N̂t = ωN (B)yt =
X
j

ωN,jyt−j . (3)

We consider only such linear estimators, although
since model-based seasonal adjustment filters in-
volve estimated model parameters, this makes their
component estimators actually nonlinear functions
of the data yt. We shall use N̂t as a generic notation
for an estimate of Nt, that is, we won’t generally add
to the notation of N̂t or ωN (B) anything to indicate
the specific model or filter being used. The nature of
the specific filter and estimator N̂t being discussed
at any point should be clear from the accompanying
text. Similarly, we let ωS(B) =

P
j ωS,jB

j denote
the linear filter used to estimate St, that is

Ŝt = ωS(B)yt =
X
j

ωS,jyt−j . (4)

We can alternatively view seasonal adjustment
as the estimation of Nt, or as the estimation and
removal of St, i.e., as the estimation of At = yt−St.
In the latter case the seasonally adjusted series, Ât,
is

Ât = yt − Ŝt = [1− ωS(B)]yt. (5)

We now consider errors in these estimates of Nt, St,
and At.

From (1) and (3), the error, ε̂Nt , in using N̂t to
estimate Nt is

ε̂Nt = Nt − ωN (B)[St +Nt + et]

= [1− ωN (B)]Nt − ωN (B)St − ωN (B)et. (6)

From the orthogonality of the components, the vari-
ance of ε̂Nt is

Var(ε̂Nt ) = Var{[1− ωN (B)]Nt}
+ Var[ωN (B)St] + Var[ωN (B)et]. (7)

The terms in (7) can be computed, in principle, if
models for the components Nt, St, and et are known
(subject to the terms in (7) not requiring differenc-
ing, a qualification discussed shortly.) Knowledge of
component models is the basis for doing model-based
seasonal adjustment although, as noted above, the
sampling error component is often ignored. Compo-
nent models are not generally available when doing
X-11 type seasonal adjustment.

Analogously, the error in using Ŝt from (4) to
estimate St is

ε̂St = [1− ωS(B)]St − ωS(B)Nt − ωS(B)et (8)
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and the variance of this error is

Var(ε̂St ) = Var{[1− ωS(B)]St}
+ Var[ωS(B)Nt] + Var[ωS(B)et]. (9)

In addition, the error in the seasonally adjusted se-
ries, Ât, is ε̂

A
t = (yt − St)− (yt − Ŝt) = −ε̂St , and so

the variance of the error in Ât equals the variance of
the error in the estimate of the seasonal component,
that is, Var(ε̂At ) = Var(ε̂

S
t ).

Considering (6)—(9), we note the following
points:

• If there is no sampling error in the series yt then
ωS(B) + ωN (B) = 1, the terms involving et
drop out of (6)—(9), and we see that in this case
ε̂Nt = ωS(B)Nt − ωN (B)St = −ε̂St = ε̂At , also
implying that Var(ε̂Nt ) = Var(ε̂

S
t ) = Var(ε̂

A
t ).

• As long as the filters are constructed so that
ωS(B) + ωN (B) = 1, i.e., by assuming no sam-
pling error, then we can substitute ωS(B) for
1 − ωN (B) in (6) and (7), and we can substi-
tute ωN (B) for 1−ωS(B) in (8) and (9). But if
yt really does contain sampling error, then (6)
and (7) still differ from (minus) (8) and (9) due
to the terms involving et.

In general, when sampling error is present ε̂Nt 6= ε̂At ,
and so Var(ε̂Nt ) 6= Var(ε̂St ) =Var(ε̂

A
t ). In fact, the

difference between these can be substantial, as is il-
lustrated by the following example.

Example 1. We use an example from Bell (2004)
that involves a model fitted to a monthly time series
of (logarithms of) U.S. retail sales of drinking places.
This series had fairly significant sampling error, with
an average sampling CV over the stretch of data
used of about 5.1 percent. The following model was
estimated for yt = Yt + et:

(1−B)(1−B12)[Yt − x0tβ]

= (1− θ1B)(1− θ12B
12)bt (10)

(1− .75B)(1− φ3B3)(1− ΦB12)et

= (1− ηB)ct. (11)

where bt and ct are white noise, and the parame-
ter estimates are (omitting β̂ for brevity) θ̂1 = .23,

θ̂12 = .88, σ̂2b = 3.97 × 10−4, φ̂3 = .66, Φ̂ = .71,
η̂ = −.13, and σ̂2c = 0.93 × 10−4. The parameter
estimates for (11) were obtained by approximating
directly estimated sampling error autocovariances.
(The value .75 in the AR(1) operator is known from

the nature of the “composite” survey estimator used
to produce the yt.) The parameter estimates for (10)
were obtained by fitting the component model for
yt by maximum likelihood using the REGCMPNT
program (Bell 2004) and holding the parameters of
(11) fixed. The regression variables xt account for
trading-day and length-of-month variation in the se-
ries (Bell and Hillmer 1983). Apart from the regres-
sion effects, the model for Yt is the well-known “air-
line model” (Box and Jenkins 1976). The sampling
error model takes into account features of the sample
design and estimation (although these have changed
in recent years). Apart from the high level of sam-
pling error, the most notable features of the sam-
pling error model are the substantial nonseasonal au-
tocorrelation (coming from the (1− .75B)(1−φ3B3)
factors) and the substantial seasonal autocorrelation
coming from the large value of Φ̂. Another point
worth noting is that the sample for the retail trade
survey is independently redrawn about every five
years, resulting in a break in the covariance structure
of et when this happens. This was accounted for by
the REGCMPNT program when implementing the
model (11).

Figure 1 shows signal extraction standard de-
viations, [Var(ε̂At )]

.5 = [Var(ε̂St )]
.5 (dotted curve)

and [Var(ε̂Nt )]
.5 (dashed curve), obtained from a

canonical decomposition (Hillmer and Tiao 1982)
of the model (10) for Yt to get the decomposition
yt = St+Nt+et. For simplicity, these results ignore
parameter estimation error. We see that the values
of [Var(ε̂Nt )]

.5 are about four times as large as those
of [Var(ε̂At )]

.5. This result is typical, and will be seen
later in other examples, though the magnitude of the
difference depends on the magnitude of the sampling
error in the series (in relation to the amount of vari-
ation in the true series Yt). The two local minima in
the graph of [Var(ε̂Nt )]

.5 result from the covariance
break in et due to the redrawing of the sample, and
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Figure 1. Signal extraction standard deviations
for Example 1.
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are not characteristic of other examples. The solid
curve is what results for [Var(ε̂At )]

.5 = [Var(ε̂Nt )]
.5 if

we fit model (10) ignoring the sampling error (i.e.,
behaving as if the series had no sampling error),
and then do the canonical decomposition. We see
that, for this example, these results are in reasonable
agreement with those of [Var(ε̂At )]

.5 from the com-
plete model with sampling error, but they therefore
greatly understate [Var(ε̂Nt )]

.5.
To actually compute seasonal adjustment vari-

ances when a model-based method is used, and we
make the usual assumption that we have the cor-
rect model (so our estimators are assumed optimal),
we do not need to use expressions such as (7) and
(9) – it is easier to do the calculations more di-
rectly. One approach is to put the model in state-
space form and use the Kalman filter and an as-
sociated smoother. This is discussed for the non-
stationary case (appropriate to models used in sea-
sonal adjustment) by Kohn and Ansley (1987) and
Bell and Hillmer (1991). Alternatively, we can use
matrix results developed by Bell and Hillmer (1988),
simplified formulas for which are given by McElroy
(2005).

To compute variances for an X-11 seasonal ad-
justment one could use equations (7) and (9) given
the X-11 filter and given models for the compo-
nents. (To deal with X-11 with forecast extension
one can compute the filter that results from con-
voluting the X-11 filter with the forecast extension
process as pointed out by Pfeffermann, Morry, and
Wong (1995).) Section 4 notes, however, that the
proposed approaches to X-11 variances all ignore
some terms from (7) and (9).

The qualification noted above is that to com-
pute Var(ε̂Nt ) and Var(ε̂

A
t ), whether from (7) and

(9) or more directly, we need the time series ε̂Nt and
ε̂At to be stationary, or at least we need that they not
require differencing. This can be examined using
(6) and (8). Models used in seasonal adjustment
typically assume that the components St and Tt,
and hence Nt, are nonstationary, but are made sta-
tionary (considering the monthly case for concrete-
ness) by taking U(B)St ≡ (1 + B + · · · + B11)St
and (1 − B)dNt, where typically d = 1 or 2. From
(6) we see that for ε̂Nt to be stationary ωN (B) must
then contain U(B) as a factor, and 1−ωN (B) must
contain (1 − B)d. This is equivalent to requiring
ωS(B) to contain (1−B)d and 1−ωS(B) to contain
U(B) (whether or not sampling error is present),
and so the same conditions are required for ε̂At to
be stationary. These conditions will hold in all the
examples we consider here. The conditions hold gen-
erally for model-based methods assuming the model

actually used has the correct (or at least has suf-
ficient) differencing. These conditions can also be
shown to hold for X-11 symmetric filters, and for X-
11 filters with full forecast extension, again assum-
ing that the model used for forecast extension has
sufficient differencing. (Note: Full forecast exten-
sion means enough forecasts and backcasts are ap-
pended to the ends of the series so that the symmet-
ric X-11 filter can be applied to the extended series.
Partial forecast extension is any forecast extension
short of this.) The conditions do not always hold for
X-11 asymmetric filters, or X-11 filters with partial
forecast extension because these filters ωN (B) re-
produce only constant polynomials (not linear poly-
nomials in t). This means that the corresponding
1 − ωN (B) = ωS(B) will contain only 1 − B, not
(1 − B)2, so the conditions will fail if d = 2 in the
model for Nt. Section 4 notes, however, that the
proposed general approaches to X-11 variances all
ignore the term ωS(B)Tt in (6) and (8).

2.1 Comments on Sampling Error and Sea-
sonal Adjustment

Seasonal adjustment practice has yet to deal ex-
plicitly with the presence of sampling error compo-
nents in many of the time series that are season-
ally adjusted. Partly this is due to the fact that
empirical methods of seasonal adjustment, such as
X-11 and its successors, are not based on statistical
models and were not designed to explicitly recognize
sampling error in the construction of filters. (They
essentially assume no sampling error.) Also, though
sampling error components can be readily added to
models used for seasonal adjustment (Bell and Otto
1992, Bell 2004), available software for doing model-
based seasonal adjustment, such as SEATS, does not
allow for this. Finally, explicit accounting for sam-
pling error in seasonal adjustment generally requires
that one have available estimates of sampling error
autocovariances over time to use in building a time
series model for et. While estimates of sampling
error variances are routinely produced by statisti-
cal agencies, for many economic surveys estimates
of sampling error autocovariances are unavailable,
or are produced only occasionally as part of special
studies. Thus, information to permit an explicit ac-
counting for sampling error in seasonal adjustment
is often lacking.

The failure to explicitly account for sampling
error in seasonal adjustment practice has impor-
tant implications for developing seasonal adjustment
variances. Since statistical agencies generally regard
as essential the provision of sampling error variances
to indicate statistical uncertainty in the unadjusted
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data, developing seasonal adjustment variances that
ignore the contribution of sampling error seems un-
acceptable. Thus, while model-based seasonal ad-
justment methods easily provide error variances of
the component estimates, the failure of current soft-
ware to allow for sampling error components in mod-
els is a severe limitation as far as seasonal adjust-
ment variances are concerned. The approaches to
variances for X-11 type seasonal adjustments that
are cited in the Introduction and discussed in Section
4 all recognize the importance of explicitly account-
ing for sampling error and do so. These methods
are all limited to some extent, however, in that they
ignore the contributions to seasonal adjustment er-
ror from some of the other components (St, Tt, and
It). This is discussed further in Section 4. Also, the
X-11 filters were not themselves designed to account
for sampling error.

3. Contributions to Seasonal Adjustment
Error

In this section we examine contributions to sea-
sonal adjustment error, and hence to seasonal ad-
justment variances, from a few different perspec-
tives.

3.1 Contributions from the components

Equations (6) and (8) express the errors ε̂Nt and
ε̂At = −ε̂St (the latter after multiplying equation (8)
by −1) as sums of contributions from the compo-
nents St, Nt, and et. The corresponding equations
(7) and (9) for Var(ε̂Nt ) and Var(ε̂

A
t ) can thus be

viewed as variance decompositions. If we compute
the individual terms in (7) and (9) we can thus ex-
amine the relative importance of the component con-
tributions to the seasonal adjustment error, whether
defined as ε̂Nt or ε̂At .

Example 2. Figure 2 shows such results for two se-
ries. For both series the models used for Yt were like
that of (10), though without any regression effects.
Details of the models are omitted. Canonical decom-
position of the model for Yt yielded models for the
seasonal and nonseasonal components, St and Nt.
Models for the sampling errors are discussed briefly
below. The graphs show variances, not standard de-
viations, to illustrate the additivity of the variance
components. As before, parameter estimation error
is ignored for simplicity.

The top two plots in Figure 2 show results for
the logarithms of monthly U.S. total housing starts
over about a 12-year period as estimated in the Cen-
sus Bureau’s Survey of Construction. As this is a

very aggregate series the level of sampling error is
low, with an average sampling CV of around 2 per-
cent. Although an MA(2) model was used for et, the
two MA parameters were quite small, reflecting lit-
tle autocorrelation in the sampling errors. The true
series Yt is not particularly stable, containing a large
amount of time series variation. The top left plot in
Figure 2 shows the resulting Var(ε̂At ) (solid curve)
and the contributions to this from St (dotted curve),
Nt (dashed curve), and et (long dashed curve). We
see that the largest contribution to Var(ε̂At ) comes
from Nt, with a relatively small contribution from
the sampling error et, and even less from the seasonal
St. The top right plot shows corresponding results
decomposing Var(ε̂Nt ). First, comparing the vertical
scales of the two graphs, we note that Var(ε̂Nt ) is
much larger than Var(ε̂At ), something noted for the
example of Figure 1. Here, in a series with lower
sampling error, Var(ε̂Nt ) is about twice as large as
Var(ε̂At ). Further examining the top right plot, we
see the contributions to Var(ε̂Nt ) from Nt and et are
similar, though that for et increases near the ends of
the series. Again, the contribution from St is quite
small.

The bottom two plots in Figure 2 show corre-
sponding results for a rather short (6 years) series
of logs of estimates of value of construction put in
place (VIP) for the category of medical buildings. In
contrast to the U.S. total housing starts series, this
series has substantial sampling error, with an aver-
age sampling CV somewhere around 9 percent. An
AR(1) model was used for et with an AR parameter
of about .8. As before, comparing the vertical scales
of the two graphs shows that Var(ε̂Nt ) (bottom right
plot) is much larger than Var(ε̂At ) (bottom left plot),
here about 3-5 times as large. In both graphs the
contribution from the sampling error is the largest,
dominating the decompositions except near the mid-
dle of the series for Var(ε̂Nt ), where the contribution
from Nt becomes almost as important. Again, the
seasonal makes very little contribution.

We can generalize a few conclusions from these
two examples. First, when sampling error is present
in the observed series, Var(ε̂Nt ) tends to be much
larger than Var(ε̂At ) (recall that when there is no
sampling error these two are the same.) Second,
even with relatively low levels of sampling error,
we see et can make an important contribution, par-
ticularly to Var(ε̂Nt ). Moderate to high sampling
error can make a dominant contribution to sea-
sonal adjustment variances. In light of these re-
sults, the common practice of not taking explicit
account of sampling error in seasonal adjustment
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seems problematic for developing seasonal adjust-
ment variances, however defined. Third, we see that
the seasonal component tends to make relatively lit-
tle contribution to Var(ε̂Nt ) and Var(ε̂

A
t ).

3.2 Contributions from forecast extension
error

One approach to dealing with the problem of
computing seasonal adjustments near the end of a
time series is to extend a series yt observed for
t = 1, . . . , n with sufficient forecasts and backcasts
to apply the symmetric filter that would be used
if sufficient data were available. The calculations
of model-based seasonal adjustment can be viewed
in this way, and if the correct model is used for
the forecast extension this will produce the optimal
(minimum mean squared error) results (Cleveland
1972, Bell 1984a). The same approach minimizes
mean squared revisions in X-11 seasonal adjustment
(Pierce 1980), though since X-11 symmetric filters
are finite, only a finite number of forecasts and back-
casts are required. This idea was implemented in
the X-11-ARIMA program (Dagum 1975), although
with the forecast and backcast extension generally
limited to just one year, which, for X-11 filters, is
less than full forecast extension. Here we consider
only full forecast and backcast extension for reasons
noted in Section 2.

Let N̂t, Ŝt, and Ât denote the “final” estimators
of the respective components obtained with “suffi-
cient data” (possibly infinite data) to apply the sym-
metric filters. Let Ñt, S̃t, and Ãt denote estimators
obtained by applying the symmetric filters to the fi-
nite observed time series yt extended with optimal
forecasts and backcasts. The error in the estimator
Ñt, ε̃Nt = Nt − Ñt, can be written

ε̃Nt = (Nt − N̂t) + (N̂t − Ñt)

= ε̂Nt + (N̂t − Ñt). (12)

The first term in (12), ε̂Nt , is the error in the final
estimator. The second term in (12), the difference
between the final estimator and the estimator ob-
tained with the forecast and backcast extended se-
ries, depends on the forecast and backcast errors, as
noted by Pierce (1980). From (12), the variance of
the error ε̃Nt is

Var(ε̃Nt ) = Var(ε̂Nt ) + Var(N̂t − Ñt)

+ 2×Cov(ε̂Nt , N̂t − Ñt). (13)

An analogous expression holds for Var(ε̃St ) =
Var(ε̃At ).

If N̂t is the optimal final estimator of Nt, as
is usually assumed under a model-based approach,

then ε̂Nt and N̂t − Ñt are uncorrelated, and the co-
variance term drops out of (13). This is because the
error in N̂t is uncorrelated with the observed data,
and N̂t and Ñt are both linear functions of the data.
(Actually, Bell (1984a) notes that for the optimal es-
timator ε̂Nt is uncorrelated with the differenced data,
but this is sufficient here since N̂t − Ñt turns out to
be a linear function of the differenced data.) In this
case Var(ε̃Nt ) equals the variance of the error in the
final estimator (Var(ε̂Nt )) plus Var(N̂t− Ñt), imply-
ing that Var(ε̃Nt ) ≥ Var(ε̂Nt ). Since Var(N̂t − Ñt)
generally increases as t approaches the ends of the
series, so does Var(ε̃Nt ). (Exceptions can occur for
models that are not time homogenous, e.g., with a
sampling error component whose variance changes
over time.) The characteristic shape of signal ex-
traction variances increasing towards the ends of the
series can be seen in many examples in the literature.

If N̂t is not the optimal final estimator of Nt,
then the covariance term in (13) is needed. Bell and
Kramer (1999) show how to compute (13) for their
approach to X-11 seasonal adjustment. They also
show an example where the increase near the ends
from the Var(N̂t− Ñt) term is partially offset by the
contribution of 2×Cov(ε̂Nt , N̂t−Ñt), which turns out
to be negative near the ends of the series (it is zero
in the middle of the series). Thus, these seasonal
adjustment variances increase less at the ends of the
series than might be expected, a phenomenon that
has been observed in other examples.

3.3 Contributions from error in estimating
model parameters

We begin with contributions from error in es-
timating regression parameters assuming that all
other model parameters are known. As in (10) the
regression effects in the model are x0tβ, where xt is
known and β is the vector of regression parameters
to be estimated. As discussed in Bell (1984b), some
of the regression effects may be assigned to the sea-
sonal component and others to the nonseasonal com-
ponent. Partition x0t as [x

0
St, x

0
Nt] and β as [β

0
S , β

0
N ]
0

so that x0tβ = x0StβS + x0NtβN , where x0StβS are
the regression effects assigned to the seasonal and
x0NtβN are the regression effects assigned to the non-
seasonal component. We assume that none of the
regression effects are assigned to the sampling error
component. We expand the decomposition (1) to
include the regression effects by writing

yt = Sxt +Nx
t + et

= (x0StβS + St) + (x
0
NtβN +Nt) + et, (14)

where St and Nt remain the seasonal and nonsea-
sonal components without regression effects. If we
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knew the regression parameters β, then to estimate
Nx
t in (14) we could subtract x

0
tβ from yt, apply the

filter ωN (B) to the result, and add back the regres-
sion effects x0NtβN that are part of Nx

t . In practice
we do this with β replaced by an estimate β̂. We
denote these two estimators of Nx

t by N̂x
t and N̄x

t ,
respectively. They are written explicitly as

N̂x
t = x0NtβN + ωN (B)[yt − x0tβ], (15)

N̄x
t = x0Ntβ̂N + ωN (B)[yt − x0tβ̂]. (16)

The error in the infeasible estimator, N̂x
t , ofN

x
t ,

can be seen to be just ε̂Nt given by (6). To assess the
error ε̄Nt = Nt − N̄x

t we write

ε̄Nt = (Nt − N̂x
t ) + (N̂

x
t − N̄x

t ) (17)

= ε̂Nt + {[0 x0Nt]− ωN (B)x
0
t} (β − β̂). (18)

Let d0Nt = [0 x0Nt] − ωN (B)x
0
t. Having com-

puted dNt, and assuming that we also have avail-
able Var(β̂), the variance-covariance matrix of the
estimated regression parameters, then from (18) the
variance of ε̄Nt is

Var(ε̄Nt ) = Var(ε̂Nt ) + d0NtVar(β̂)dNt

−2× d0Nt × Cov(β̂, ε̂Nt ). (19)

Var(ε̂Nt ) can be computed as discussed previously.
If ωN (B) is a model-based filter that is assumed
optimal for estimating Nt, then, as in the previ-
ous subsection, ε̂Nt is orthogonal to the data and
so Cov(β̂, ε̂Nt ) = 0 assuming that, as is generally
the case, β̂ is a linear function of the data. So
in this case the covariance term drops out of (19).
But if ωN (B) is not assumed to be an optimal sig-
nal extraction filter, say if it is an X-11 filter, then
the covariance term is present. Bell and Kramer
(1999) show how to compute something analogous
to Cov(β̂, ε̂Nt ). Although they actually replace ε̂Nt
by a different “error” corresponding to a particular
definition of the estimand for X-11 seasonal adjust-
ment, the approach they use also readily applies to
calculating Cov(β̂, ε̂Nt ).

Note that to compute dNt we must filter each re-
gression variable xit in the vector x0t = [x1t, . . . , xrt]
by the filter ωN (B). If the filtering actually involves
forecast and backcast extension as discussed in the
preceding section, this would be applied to the re-
gression variables as well, using the same model that
would be applied to forecast and backcast extend the
series yt−x0tβ. In the model-based context the calcu-
lation of dNt can be accomplished with the Kalman
filter and a smoother as pointed out by Kohn and
Ansley (1985). Bell and Hillmer (1988) show how a

matrix approach can also be used. These references
also note how in fitting the model to the data Var(β̂)
can be obtained from generalized least squares re-
sults.

Example 3. Figure 3 illustrates these results for
model-based seasonal adjustment variances for two
series. The graphs shown compare Var(ε̂Nt ), the vari-
ance when regression and other model parameters
are assumed known (dotted curves), with Var(ε̄Nt )
from (19) (solid curves). Since these results assume
the true model is known, the covariance term drops
out of (19) and Var(ε̄Nt ) ≥ Var(ε̂Nt ). The top graph
shows results for a time series (U.S. retail sales of
department stores) with negligible sampling error,
and following a model as in (10) with xt including
variables as in Bell and Hillmer (1983) to account for
trading-day and Easter holiday effects. The erratic
fluctuations in the solid curve are due to the effects
of error in estimating the trading-day parameters,
though these effects essentially vanish in non-leap-
year Februaries (the points at which the solid and
dotted curves essentially coincide). The occasional
larger variance increases (e.g., at time points 31-32
and 67-68) result from error in estimating the Easter
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Figure 3. Seasonal adjustment standard
deviations with and without accounting for error in

estimating regression effects (Example 3)
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holiday parameter. These larger increases occur only
in March and April, with the magnitude of the in-
crease in a given year depending on the date of
Easter for that year. The bottom graph shows re-
sults for another time series (unfilled orders of U.S.
radio and television manufacturers) assumed to fol-
low a model similar to (10), also without a sampling
error component, but with the nonseasonal MA(1)
of the ARIMA model replaced by an MA(3), and
with xt accounting for a single additive outlier (AO)
at t = 106. The solid curve shows the effects of un-
certainty in the estimate of the AO effect, with the
biggest variance increase at time 106, and decaying
increases before and after this time point at yearly
intervals. (Note: These results assume that a single
AO is known to be present at time 106 and do not
reflect uncertainty in the detection of outliers.)

Bell and Kramer (1999) provide an example il-
lustrating analogous results for X-11 seasonal adjust-
ment variances.

Two approaches could be used to account for
the contribution to signal extraction error from un-
certainty about other model parameters. One ap-
proach would write an expression analogous to (17)
but with N̄x

t replaced by the estimator of Nt based
on estimated values for all model parameters, and
then use asymptotic or simulation results to ap-
proximate the variance of the term analogous to the
second term in (17). See Ansley and Kohn (1986)
for a general discussion. Instead, here we pursue a
Bayesian approach as in Bell and Otto (1992). To
summarize this approach let η indicate model para-
meters apart from the regression parameters β, and
assume that for any given value of η we can produce
the assumed optimal estimator, N̂x

t = E(Nx
t |η, y),

where y = [y1, . . . , yn]0 is the observed data. Assume
that we can also produce the conditional variance,
Var(Nx

t |η, y) = Var(ε̄Nt |η), from (19), omitting the
covariance term since N̂x

t is assumed optimal. Then
the desired posterior variance of Nx

t can be obtained
from

Var(Nx
t |y) = Eη|y{Var(Nx

t |η, y)}
+ Varη|y{E(Nx

t |η, y)}, (20)

where Eη|y and Varη|y denote the expectation and
variance taken with respect to the marginal posterior
distribution of the parameters, p(η|y). Given simu-
lations ηi from p(η|y) or an approximation thereto,
for i = 1, . . . ,M for some large M , we can calcu-
late Var(Nx

t |ηi, y) and E(Nx
t |ηi, y) for each ηi, and

compute the sample mean and variance over the sim-
ulations of these results as an approximation to (20).

Example 4. Figure 4 provides an example illus-
trating the effects of uncertainty about other model
parameters. This example uses a model developed
for a time series of value of construction put in
place for other education buildings. In this example
the “other model parameters” are the MA and
innovation variance parameters of the airline model
as in (10), along with the innovation variance of
the sampling error model. There are no regression
effects in the model. The sampling error model used
was AR(1), but the AR(1) parameter was estimated
fairly precisely and so was held fixed. We see that
the effect of uncertainty about the “other model
parameters,” as reflected by the difference between
the dashed and solid curves, is erratic over time,
and sometimes of consequence. We also notice that
Var(Nt|y) = Var(ε̂Nt ) is again much larger (3 to 4
times larger) than Var(At|y) = Var(ε̂At ).
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Figure 4. Seasonal adjustment standard
deviations for Example 4: upper curves show
StdDev[Nt|y], lower curves show StdDev[At|y].

4. Variances for X-11 Seasonal
Adjustments

We now compare various approaches that have
been proposed for producing variances of X-11 sea-
sonal adjustments. We focus only on additive de-
compositions (typically applied to logged data) so
the X-11 linear filters are used. The approaches are
compared by examining what contributions to sea-
sonal adjustment error are being recognized. Since
the X-11 filters do not explicitly recognize sampling
error, we have ωS(B) + ωN (B) = 1, resulting in
the following simplifications to formulas (6) and (8),
with Nt replaced by Tt+ It, and with (8) multiplied
by −1 to express the error in Ât = yt − Ŝt:

ε̂Nt = −ωN (B)St + ωS(B)Tt

+ωS(B)It − ωN (B)et (21)
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ε̂At = −ωN (B)St + ωS(B)Tt

+ωS(B)It + ωS(B)et. (22)

Since the X-11 filters do not recognize sampling er-
ror, it is not immediately obvious whether X-11 sea-
sonal adjustment should be regarded as estimating
Nt or At = yt − St, so it is not obvious whether
the error in X-11 seasonal adjustment should be re-
garded as ε̂Nt given by (21) or ε̂At given by (22). We
thus examine the proposed approaches in reference
to both (21) and (22).

As noted in the Introduction, approaches to
variances for X-11 seasonal adjustment have been
proposed by Wolter and Monsour (1981), hereafter
WM, Pfeffermann (1994), hereafter DP, and Bell
and Kramer (1999), hereafter BK. WM and DP each
proposed two approaches, which we denote as WM-
1 and WM-2, and as DP-1 and DP-2, respectively.
Table 1 summarizes these approaches in regard to
the seasonal adjustment “error” whose variance is
computed, and the extent to which forecast exten-
sion error is accounted for. The sign of the error
term is essentially arbitrary, so for WM and DP the
sign is changed to keep the error expressions given
here consistent with each other. The second col-
umn of Table 1 shows that all the approaches are
better thought of as approximating Var(ε̂Nt ) than
Var(ε̂At ), since they all take the sampling error con-
tribution as −ωN (B)et, in agreement with (21). All
the approaches ignore the contributions to error of
−ωN (B)St and ωS(B)Tt, and WM-1 and BK also
ignore the contribution of ωS(B)It. WM arrived at
this approximation from a design-based perspective
that recognized only sampling error. BK arrived at
this error by defining the target of the seasonal ad-
justment as what one would get by applying ωN (B)
(actually the final, symmetric version of ωN (B)) to
Yt, the “true series” without sampling error.

Table 1. Approaches to variances for X-11
seasonal adjustments

Approach seas. adj. error accounting for
forecast ext.

WM-1 −ωN (B)et partial
WM-2 ωN (B)It − ωN (B)et partial
DP-1 ωS(B)It − ωN (B)et partial
DP-2 ωN (B)It − ωN (B)et partial
BK −ωN (B)et full

Note: WM-1 and WM-2 are the two ap-
proaches of Wolter and Monsour (1981), DP-1
and DP-2 are the two approaches of Pfeffer-
mann (1994), and BK is the approach of Bell
and Kramer (1999).

WM-2 and DP-2 allow contributions from the
irregular of ωN (B)It. This conforms with neither
(21) nor (22), and for that reason we regard these ap-
proaches as essentially incorrect. WM arrived at this
by considering the variance of ωN (B)[yt − Ŝt − T̂t].
Unfortunately, this approximates the variance of
something like the seasonally adjusted estimator,
not the variance of the error in the estimator. Hence,
the wrong filter, ωN (B), gets applied to It. DP
arrived at DP-2 by considering the error in taking
ωN (B)yt as an estimator of Tt. The rationale for
taking the error in an estimator of Tt as the “seasonal
adjustment error” is unclear. We shall not consider
WM-2 and DP-2 further.

The entries in the third column of Table 1, that
labelled, “accounting for forecast ext.,” require more
explanation. The entry “full” for BK means that the
approach fully accounts for the contribution of fore-
cast extension error using the approach discussed in
Section 3.2 (although, as noted above, some compo-
nent contributions to Var(ε̂Nt ) in (13) are ignored.)
The term “partial” for the other approaches means
that some contribution of the forecast and back-
cast extension errors is ignored. WM and DP do
their calculations with ωN (B) being the X-11 asym-
metric filter actually applied at a given time point
near the end of the time series. Pfeffermann, Morry,
and Wong (1995) extended DP’s approach so ωN (B)
could be an X-11 filter convoluted with forecast and
backcast extension. (Actually, only one year of fore-
cast and backcast extension was used, so this con-
volution was often with asymmetric X-11 filters, not
the final symmetric filter.) When ωN (B) is a finite
filter, symmetric or asymmetric, computing the vari-
ance of (21) and (22) will fully account for forecast
extension error only if no terms in (21) and (22)
are omitted. However, WM and DP do omit the
terms −ωN (B)St and ωS(B)Tt from (21) and (22) so
they are not fully accounting for the contribution of
forecast extension error. WM-1 also omit ωS(B)It.
These approaches assume that these omitted terms
can be ignored not just when ωN (B) is a symmet-
ric filter, but also when ωN (B) is an asymmetric
filter (either an original asymmetric X-11 filter or
the asymmetric filter resulting from forecast exten-
sion and application of X-11 symmetric filters). This
assumption seems less tenable when ωN (B) is an
asymmetric filter than when it is a symmetric filter.
Note that, as discussed in Section 2, when ωN (B) is
an X-11 asymmetric filter, ωS(B)Tt = [1−ωN (B)]Tt
won’t even be stationary if Tt requires two differ-
ences, as is common in some time series models. In
such cases WM and DP’s approaches ignore a non-
stationary contribution to seasonal adjustment er-
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ror.
Two papers have calculated Var(ε̂Nt ) account-

ing for all the terms in (21). Hausman and Watson
(1985) did so for two unemployment series, using
models that accounted for the sampling error in the
observed series of survey estimates. Chu, Tiao, and
Bell (2003), in unpublished work, compared model-
based and X-11 filters (the latter with full forecast
extension) via a comparison criteria that involved
the mean squared error of both the model-based and
X-11 estimators (for canonical decomposition of the
airline model without sampling error.)

5. Conclusions

The following conclusions can be drawn from
the analyses and results presented:

1. When sampling error is not present in the ob-
served series then the error in the estimate of
the nonseasonal component is the same as that
of the seasonally adjusted series (ε̂Nt = ε̂At ),
hence, the variances of the two are the same.
When sampling error is present these two er-
rors are not the same (ε̂Nt 6= ε̂At ), and their two
variances can be quite different, with Var(ε̂Nt )
typically being larger than Var(ε̂At ).

2. Contributions from the seasonal, nonseasonal,
and sampling error components to seasonal ad-
justment variances can be calculated and com-
pared. Often when sampling error is present,
its contribution is quite important.

3. Uncertainty about regression parameters and
other model parameters has erratic effects on
seasonal adjustment variances.

4. Forecast extension error and parameter estima-
tion error are uncorrelated with optimal sym-
metric seasonal adjustment error (i.e., from a
known true model). This is not the case when
the seasonal adjustment filter used is not opti-
mal, that is, forecast extension error and para-
meter estimation error will be correlated with
error in seasonal adjustments from suboptimal
symmetric filters.

5. Proposed approaches to variances for X-11
seasonal adjustment are more consistent with
defining ε̂Nt than ε̂At to be the seasonal adjust-
ment error.
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