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Abstract  

 
Statistical adjustment of nonresponse is a deep and 
pervasive issue for sample surveys.    Contemporary 
statistical methods offer two broad classes of approach 
to nonresponse adjustment.   One is the use of a 
traditional weighting cell approach.   More recently, 
response propensity modeling, using, typically, logistic 
regression, has been developed as a further approach to 
nonresponse adjustment.  Additionally, RTI’s General 
Exponential Model (GEM) generalizes weight 
adjustments and includes poststratification and weight 
trimming. Data from the Education Longitudinal Study 
of 2002 (ELS:2002) are used  to compare the results of 
the weighting class method, raking, a logistic 
regression propensity model, and GEM when used for 
nonresponse adjustment. For the one-dimensional case 
where each unit is in one unique cell, it can be shown 
that the four methods will produce similar results; the 
logistic propensity model approach produces slightly 
different results since it does not require calibration to 
weighted control totals for the selected sample.    
Expanding to many variables and multiple dimensions, 
marginal totals, variances, and weight distributions are 
compared for raking, logistic response propensity, and 
two GEM special cases.  The weighting class method 
is limited to the cell model.    

Keywords: Nonresponse Adjustment, Generalized 
Exponential Model (GEM), Weighting Class, 
Propensity Modeling, Raking 

1. Introduction 
 
 The focus of this paper is on an empirical 
investigation and comparison of methods rather than 
on development of new methods.   The motivation for 
the investigation arose from concerns about 
comparability of statistical results when different 
nonresponse adjustment methods are introduced in 
panel surveys or in repeated surveys in general.   The 
examples chosen to compare some alternative 
nonresponse adjustment methods are simplified by 
reducing the number of dimensions considered and by 
limiting the investigation to adjusting for person level 
nonresponse. 
 The use of weights in sample surveys is a 
generally accepted practice.   The foundations for 

weighting sample data by the inverse of the sample 
selection probabilities is presented by Horvitz and 
Thompson (1952) for probability proportional to size 
without replacement sampling.  The use of design-
based weights as specified by Horvitz and Thompson 
is unambiguous and replicable by other survey 
statisticians with knowledge of the selection 
probabilities. The final survey weights actually used 
for most surveys involve not only the design-based 
weight prescribed by Horvitz and Thompson, but also 
additional factors to account for nonresponse, 
poststratification, and, in some cases, to limit the 
impact of extreme weights.  The methods used to 
develop these additional factors depend on the 
availability of specific auxiliary data at the unit level or 
at the summary level and may be developed, in good 
faith, with slightly different results obtained by 
different practitioners.  

 
2. Methods Studied 

 
 Four weight adjustment approaches were tested 
and compared as they apply to nonresponse 
adjustment: 
(1) Weighting class adjustments are made by 
partitioning the sample into mutually exclusive groups 
called weighting classes and adjusting the sample 
weights in each group by a single adjustment factor so 
that the sum of the weights of respondents equals the 
sum of the weights of respondents and nonrespondents. 
(2) Raking is an iterative procedure where weighting 
class type adjustments are first performed in one 
dimension and then in another until convergence is 
reached.  The method can be extended to two or more 
dimensions and is sometimes called iterative 
proportional fitting (IPF).  Raking controls at the 
margin level for each dimension. 
(3) Response propensity modeling uses logistic 
regression and auxiliary data which are available for 
both respondents and nonrespondents to predict the 
response propensity of each sample member.  The 
inverse of the respondent’s predicted response 
propensity is the weight adjustment.   
(4) The Generalized Exponential Model (GEM) 
developed by Folsom and Singh (2000) is a unified 
approach to nonresponse adjustment, poststratification, 
and extreme weight reduction. It is based on a 
generalization of Deville and Särndal’s logit model 
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(Deville and Särndal, 1992).   The GEM approach 
controls at the margins, and adjustment factors can be 
constrained individually. 
 Weighting class, raking, and GEM methods can be 
applied to poststratification as well as nonresponse 
adjustment.   In poststratification, control totals are 
obtained from external sources believed to be the truth 
or at least much more precise than those based on the 
current survey sample.   Control totals for nonresponse 
adjustment are generated from the selected sample. 
The logistic regression modeling approach analyzes 
the selected sample and uses response as the dependent 
variable.  Logistic regression does not naturally extend 
to poststratification. 
 Weighting class methods are the simplest to 
implement and to explain.  Adjustments are either 
based on a single dimension or are performed at the 
cell level (fully interacted model) for multi-way table 
controls.  When alternative methods are applied at the 
fully interacted model level, they reduce to a weighting 
class approach as is shown in the following sections. 
 Raking or iterative proportional fitting is designed 
to control marginal distributions only and continues 
until the cell level adjustments stabilize (Oh and 
Scheuren 1983).  If applied in a single dimension (or at 
the cell level), it reduces to the weighting class 
method. 
 Logistic regression or response propensity  
methods fit a logistic regression model to the selected 
sample in order to predict the probability of 
responding.  Variables used as predictors in the logistic 
regression must be known for all members of the 
selected sample (both respondents and 
nonrespondents).  Although the predictor variables can 
be continuous or categorical, for comparison with 
other methods, this research considered only 
categorical predictors.      
 Deville and Saarndal (1992) proposed the 
following weight adjustment factor which allows 
setting bounds on the adjustment lower and upper 
bounds: 

λ

λ

λ
k

k

xA

xA

k
elu

eluul
a ′

′

−+−
−+−=

)1()1(

)1()1(
)(  

where ul << 1 and  )]1)(1/[()( luluA −−−= .  
The parameters, u and l, are user-specified bounds on 
the adjustment factors.  The column vector, λ , 
represents the model parameters corresponding to the 
covariate vector, x.   The model parameters are 
obtained for poststratification by requiring that  
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where xT  is a vector of poststratification totals

 Two special cases are used in this report.  The first 

was identified in the Deville-Särndal paper.  As 

0→l  and ∞→u , λλ kx
k ea ′→)( .  This solution 

corresponds to an exponential model and in the limit 
yields the same results as the raking method. 
 Folsom and Singh’s GEM generalized the Deville-
Saarndal calibration method by allowing unit-specific 
bounds on the adjustment factors and by adding a 

centering factor, kc ,  between kl  and ku , which need 

not be 1. 
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model can be applied to either poststratification or 
nonresponse adjustment.  For nonresponse adjustment, 
model parameters are obtained by solving  
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where  xT
~

 is a vector of sums based on the selected 

sample (using the design weights before adjustment).  
The second special case presented in this report is 

based on the GEM model when allowing 1=kl , 

2=kc , and ∞→ku  , then λλ kx
k ea +→ 1)( ; 

i.e., the GEM solution approaches the solution 
obtained by fitting a logistic regression model. . 
 Results from both special cases of the GEM model 
are presented below and compared with results from 
other nonresponse adjustment approaches. 
 

3. Other Comparative Studies 
 

Two empirical studies completed in 1994 used 
panel data from the Survey of Income and Program 
Participation (SIPP).  SIPP was using a weighting class 
approach for nonresponse adjustment, and Folsom and 
Witt (1994) compared it to inverse response propensity 
weighting via generalized raking.  They had mixed 
results and were not able to show any superiority for 
the response propensity approach over the weighting 
class approach.  Rizzo, Kalton, Brick, and Petroni 
(1994) compared SIPP’s weighting class approach 
with six alternative weighting schemes and concluded 
that the different methods produced similar estimates, 
the weights from the different methods were highly 
correlated with each other, and the variability of the 
weights was similar for all the weighting schemes. 

Also, Kalton and Flores-Cervantes (2003) 
compared eight weighting techniques: cell weighting, 
raking, linear weighting, GREG weighting, logistic 
regression weighting, a mixture of cell weighting and 
another method, logit weighting, and truncated linear 
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weighting.  Each adjustment method was briefly 
described, and its application was illustrated with a 
simple example.  The results were generally compared 
across methods.  They noted that “the choice of 
auxiliary variables and of the mode in which they are 
employed in the adjustments may be of more 
significance than the choice of a particular method.” 

 
4. The Empirical Study 

 
One example of nonresponse can be seen in the base 
year of ELS:2002.  Nonresponse occurred both at the 
school and the student levels.   For purposes of 
comparing nonresponse adjustment methods, the 
comparative study was limited to student response 
among students attending public schools.  For this 
population, a response rate of 87 percent (12,039 
respondents from a sample of 13,882 selected students) 
was achieved.  No trimming of extreme weights is 
done in the initial comparisons of the methods.     
 Five sets of variables were used to compare the 
four methods.  Each of these five sets is described in 
the subsections below.  For each of the four methods, 
the mean, minimum, median, and maximum 
adjustment factor and weight after adjustment were 
examined, as well as the unequal weighting effect 
(UWE).  The relative root mean squared differences 
(RRMSD) between methods were also computed as: 

RRMSD = 
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where iX is the nonresponse adjusted weight for 

student i using one adjustment method, iY  is the 

nonresponse adjusted weight for student i using a 

second adjustment method, X  is the mean weight1, 
and n is the number of responding students on the file. 
 In the one variable case, weighting class and 
raking are operationally identical since no iteration is 
required. When using two or more variables, the 
weighting class method can only be applied at the fully 
interacted or cell model.  Most of our interest in 
considering two or more variables is on controlling to 
marginal totals for each variable.  As noted above, 
GEM can be run to either be similar to the raking 
approach (GEM Case 1) or to the logistic propensity 
model approach (GEM Case 2).   These two particular 
cases were studied in the comparative analysis and are 

                                                 
1 The mean weight was computed assuming a 
calibration method which forces the weight sums to 
equal the total weight sum overall. 

summarized in terms of special limiting and centering 
factors identified as: 
GEM Case 1:  

λλ ')(,1,,0 kx
k eacul →=∞→→ , 

and GEM Case 2: 
λλ '1)(,2,,1 kx

k eacul +→=∞→→ . 

Although, the GEM approach is very general in 
allowing the limiting parameters and the centering 
parameter to be set at other values and made specific to 
particular respondents, only these two cases were 
examined in the comparative analysis2. 
 
4.1 One Variable 
 
 The one variable model was first tested using the 
variable sex (male and female).  A common feature of 
the weighting class, raking, and GEM methods is that 
each one calibrates the weights of the respondents to 
sum to the total of the weights before adjustments for 
the selected sample for each control total.   When 
applied to a cell or a one-dimensional model, exactly 
one adjustment factor is applied to each cell by all 
three of these methods and it must be identical to 
achieve the calibration property.   The logistic response 
propensity method does not control adjusted weight 
sums to correspond precisely to initial weights sums 
even though it comes close.  This lack of precise 
control by the logistic response propensity method is 
shown in small differences in mean weights as well as 
in the RRMSDs and the unequal weighting effects.    
 

Raking 
(IPF)

GEM Case 
1 Logistic RP

GEM Case 
2

Raking (IPF)
GEM Case 1 0.000000  
Logistic RP 0.000517 0.000517
GEM Case 2 0.000000 0.000000 0.000517  

UWE 1.5807 1.5807 1.5807 1.5807
Mean weight 263.87 263.87 263.98 263.87

Table 1.  Method Comparsions for One Variable

Method
RRMSD

 
 Table 1 verifies that for one variable, raking, GEM 
case 1, and GEM case 2 produce identical results.  The 
logistic response propensity model produces results 
that differ from the other three as shown by the 
pairwise RRMSD’s of 0.000517 when the logistic 
                                                 
2 Numerically, it is not possible to specify infinity as 
an upper limit.  A value of 108 was used for these 
comparative studies.   In practice, a value of about 3.0 
is often used for an upper limit and yields about the 
same results unless unusually extreme weight 
adjustments are required based on highly variable or 
very low response rates.  
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response propensity method is one member of the pair 
and the mean weight calculations of 263.98 for logistic 
response propensity and 268.87 for the three other 
methods.  Unequal weighting effects (UWEs) are 
comparable. 
 
4.2 Two Variables  
 
 The variables sex (male and female) and 
race/ethnicity (Hispanic, Asian, Black, and 
White/Other) were used for the adjustment using two 
variables. Table 2 shows the RRMSDs to six decimal 
places;  GEM case 1 shows no difference with raking 
(RRMSD=0.000000) and GEM case 2 shows only 
small differences with the logistic response propensity 
method (RRMSD=0.000067).  Larger differences as 
measured by the RRMSD (RRMSD > 0.001600) are 
noted for comparisons of the first two methods with 
the last two methods. 
 

Raking 
(IPF)

GEM 
Case 1

Logistic 
RP

GEM 
Case 2

Raking (IPF)
GEM Case 1 0.000000
Logistic RP 0.001623 0.001623
GEM Case 2 0.001619 0.001619 0.000067
UWE 1.5695 1.5695 1.5692 1.5692
Mean weight 263.8699 263.8699 263.8740 263.8699

Method
RRMSD

Table 2.  Method Comparisons for Two Variables Controlled at 
the Margins

  
 Table 3 shows what happens when the two 
variables, sex and race/ethnicity, are treated as an 
eight-cell model.   This table can be interpreted the 
same way as Table 1, although the differences among 
methods as measured by the RRMSD are smaller in 
this eight-cell case. 
    

Raking 
(IPF)

GEM 
Case 1

Logistic 
RP

GEM 
Case 2

Raking (IPF)  
GEM Case 1 0.000000  
Logistic RP 0.000069 0.000069  
GEM Case 2 0.000000 0.000000 0.000069  
UWE 1.56961 1.56961 1.56958 1.56961
Mean weight 263.8699 263.8699 263.8753 263.8699

RRMSD
Method

Table 3. Method Comparisons for Two Variables 
Controlled at the Cell Level

 

4.3 Four Variables  
 
 In addition to sex and race/ethnicity, control 
variables were added for region (Northeast, Midwest, 
South, and West) and metropolitan status (urban, 
suburban, and rural). Table 4 shows the results of 
method comparisons when all four variables are 
controlled to the marginal totals.  As was the case with 
the two variable model, the differences between raking 
and GEM case 1 (RRMSD=0.0051) and logistic 
response propensity and GEM case 2 (RMSD=0.0015) 
are smaller than the differences comparing the first two 
methods with the last two methods (RRMSD>0.0086).  
As before, the mean weight for the logistic response 
propensity method is slightly different from the mean 
weights for the three calibration methods.  Unequal 
weighting effects were reasonably close for all four 
methods. 
   

Raking 
(IPF)

GEM 
Case 1

Logistic 
RP

GEM 
Case 2

Raking (IPF)
GEM Case 1 0.005106  
Logistic RP 0.008619 0.010184  
GEM Case 2 0.008862 0.010337 0.001455  

UWE 1.5953 1.5971 1.5944 1.5956
Mean weight 263.8699 263.8699 263.8793 263.8699

Method
RRMSD

Table 4.  Method Comparisons for Four Variables Controlled at 
the Margins

 
 With four variables, a completely interacted cell 
model would require control for 96 cells.  Even with 
the large samples available from this population, 96 
cells cannot be formed and some additional combining 
of cells would be required.  This is a common 
procedure when using the weighting class approach. 
The cells would be combined to ensure that each cell 
has a minimum number of respondents and that no 
extreme adjustment factors would result.  From 
examining the two-variable case, we can be fairly 
certain that similar comparative results would occur 
with a larger number of cell controls used.  Since the 
combining of cells is external to any of the methods 
being compared, only marginal control models were 
evaluated for cases with more than two control 
variables. 
 
4.4 Six Variables  
 
 Next, larger models were explored to show how 
the various methods handle more complex weight 
adjustments.  To choose a larger number of variables, a 
pool of 23 variables known for both respondents and 
nonrespondents was included in GEM.  Then the six 
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statistically significant variables were kept in the 
model, and the remaining non-significant variables 
were dropped from the model.  These six variables 
were sex (male and female),  region (Northeast, 
Midwest, South, and West), number of part-time 
teachers (0-1; 2-3; 4-6; >6), percentage of students 
with an IEP (<6; 6-10; 11-15; >15), school level (K-
12, PreK-10, 1-12, PreK/1-9/12, PreK-12; middle 
grades but no elementary; only high school), and 10th-
grade enrolment (0-99; 100-249; 250-499, >499). 
 Table 5 shows the method comparisons for six 
variables.   With more variables, the RRMSDs get 
larger, but the pattern of relative sizes remains the 
same with larger RRMSDs when comparing the first 
two methods (raking and GEM case 1) to the last two 
methods (logistic response propensity and GEM case 
2).  The mean weight for the logistic response 
propensity method is different from the other three.   
Unequal weighting effects are reasonably close. 
 

Raking 
(IPF)

GEM 
Case 1

Logistic 
RP

GEM 
Case 2

Raking (IPF)  
GEM Case 1 0.008217  
Logistic RP 0.021364 0.023303  
GEM Case 2 0.022165 0.024069 0.003165  

UWE 1.5952 1.5961 1.6020 1.6025
Mean weight 263.8699 263.8699 263.8395 263.8699

Method
RRMSD

Table 5.  Method Comparisons for Six Variables Controlled at 
the Margins

 
 
4.5 Eight Variables 
 
 As an alternative method for choosing a larger 
number of variables for a more complex nonresponse 
adjustment, all 23 variables known for both 
respondents and nonrespondents were included in a 
Chi-Squared Automatic Interaction Detection 
(CHAID), which is a tree analysis.   With response as 
the dependent model variable, eight significant 
variables were identified and included in each 
nonresponse adjustment method.  The eight variables 
selected were metropolitan status (three levels), region 
(four levels), number of full-time teachers (four 
levels), percentage of full-time teachers certified (three 
levels), number of part-time teachers (four levels), 
percentage of students with an IEP (four levels), total 
enrollment (four levels), and number of class periods 
(four levels). 
 

Raking 
(IPF)

GEM 
Case 1

Logistic 
RP

GEM 
Case 2

Raking (IPF)  
GEM Case 1 0.017508  
Logistic RP 0.020650 0.025503  
GEM Case 2 0.022043 0.027410 0.004712  

UWE 1.6135 1.6120 1.6120 1.6138
Mean weight 263.8699 263.8699 263.8073 263.8699

Method

RRMSD

Table 6. Method Comparisons for Eight Variables Controlled at 
the Margins

 
 
 Table 6 compares methods when the specified 
eight variables are controlled at the margins.   As more 
variables are added, the computational requirements 
for obtaining convergence to control totals or for 
fitting a logistic response propensity model all increase 
dramatically.   The RRMSDs increase or remain high.  
The pattern of higher values for comparing the first 
two methods against the last two methods vs. 
comparing within the two groups remains, but is less 
pronounced. 
 

5.  Control of Unequal Weighting Effects (UWEs) 
 
 For the purpose of comparing basic methods, no 
attempt was made to control unequal weighting effects 
under any of the methods.   As noted above, the 
differences in UWEs across methods for the same set 
of control variables were small.  In addition, the UWEs 
increased only moderately when the number of control 
variables increased. Ad hoc methods to control for 
extreme weights can be applied with any of the 
methods studied.   The GEM methods allow for putting 
limits on the adjustment factors as part of the 
specification process even though the options studied 
used the loosest possible limits.   In addition, GEM 
provides a general method for trimming extreme 
weights whether they arise from the adjustment 
process or from the design-based weight structure (see 
Folsom and Singh 2000).   
 

6.  Additional Comments and Conclusions 
 
 Weighting class methods are the simplest to apply 
and work well for small samples or when only a few 
auxiliary variables may be available.  When adding 
control variables and crossing their categories to form 
a cell model, empty cells occur frequently even with 
large samples.   This leads to combining of cells and as 
a result, the exact control for some marginal totals is 
lost.  
 Because of the need for combining cells for 
weighting class approaches, the main focus of this 
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paper has been on comparing methods that achieve 
controls for marginal totals of each categorical 
auxiliary variable. Some combining of auxiliary 
variable categories can also occur when using marginal 
control models, but more variables can be used 
simultaneously with known control over marginal 
totals. 
 As expected, GEM special case 1 and raking 
produced nearly identical results.  GEM special case 2 
and the logistic response propensity produced similar, 
but not identical, results.  Since the logistic response 
propensity only approximately controls marginal totals 
and both GEM cases and raking control them 
explicitly, the logistic response propensity results 
usually differed from the other three, even in the value 
of the mean weight.  
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