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Abstract 

 
Arbitron provides users with measures of sampling 
variance through a form of generalized variance function.  
In particular, to estimate standard errors for radio-schedule 
Gross Rating Points estimators, Arbitron currently models 
the standard error as a function of the GRP estimate and 
sample size, allowing for different model parameters 
across a number of demographic groups and radio-
schedule characteristics.  In this paper, we evaluate several 
GVFs for estimating standard errors of radio-schedule 
GRP estimators. 
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1.  Introduction 
 
In the mid-1990’s, both radio broadcasters and advertising 
agencies became very interested in the precision of 
Arbitron’s radio schedule audience estimators.  To provide 
them with the information necessary to understand the 
precision of these estimators, Arbitron conducted a study 
of their sampling error.  See Arbitron (1995). 
 
From this study came formulas that radio industry users 
could apply to estimate the precision of radio-schedule 
Gross Rating Points (GRPs) estimators.  (Loosely 
speaking, GRPs are the percent of people that were 
listening to the radio when a radio advertisement ran 
multiplied by the number of times the advertisement ran in 
a given time period.)  These formulas take the form of 
generalized variance functions – given a set of basic input 
(GRP estimate, sample size, and some information related 
to the advertising schedule), the user can calculate an 
estimated standard error and associated confidence interval 
for a range of radio-schedule GRP estimates. 
 
In the last year or so, the radio industry has again become 
interested in the precision of radio-schedule GRPs.  This 
time around, the American Association of Advertising 
Agencies requested that Arbitron develop a software tool 
that could be used by the industry to easily calculate GRP 
estimator precision.  To meet this request, Arbitron has 
developed a tool which implements the formulas given in 
Arbitron (1995). 
 
For advertisers, the precision of the GRP estimates is 
important, because they need to evaluate whether the 
estimated size of the audience they have reached is within 
sampling error of what they expected when they first 
purchased the radio spot.  In other words, they want to 
know if they got their money’s worth, and they know that, 

to do so, they have to account for the sampling error 
inherent in the GRP estimates.  More generally, the 
importance of variance estimation in survey research is 
witnessed by the temporal length and topical breadth of the 
statistical literature on the subject.  See, for example, 
Wolter (1985) or the discussions on the topic in Kalton 
(1977), Sarndal et al. (1992), and Valliant et al. (2000).  
An example of an early need for reliable variance 
estimates is given in Chameleon (2001). 
 
Given the general importance of understanding precision 
and given that the original study is ten years old, Arbitron 
decided to undertake a new study of the issue.  The two 
practical reasons for undertaking this study are: 
 

• To update the parameter estimates given in 
Arbitron (1995). 

• To determine if there are more appropriate 
models for generating standard error estimates. 

 
This paper focuses on the second reason – it is a study and 
empirical comparison of several potential standard error 
models. 
 

2.  Background 
 
2.1 Brief Review of Arbitron’s Radio Market Surveys 
Methodology 
 
To produce estimates of radio listening audiences in the 
United States, Arbitron divides the country into about 300 
geographical areas called markets.   Arbitron then conducts 
a survey of an RDD sample in each market.  Each survey 
is conducted over a 12-week period.  About 100 of the 
markets are surveyed four times per year; the others are 
surveyed two times each year. 
 
To ensure the selected sample represents the demographic 
and geographic characteristics in each market, Arbitron 
uses a raking methodology to weight the sample to the 
population.  Based on these weights, expansion estimators 
of the numbers of people who listen to the various radio 
stations and the amount of time people spend listening, 
among other radio listening behaviors, are then 
constructed. 
 
2.2 GRPs Explained 
 
As we mentioned earlier, GRPs loosely correspond to the 
percent of people that were listening to the radio when an 
advertising spot ran times the number of times the 
advertisement ran.  To be a little more precise with the 
definition, we have to discuss the concept of daypart.  A 
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daypart can be taken literally to be a part of a day, though, 
it usually refers to the part of a day over an entire week.  
So, for instance, 6am to 10am is part of a day.  In the radio 
business, the corresponding daypart might be 6am to 
10am, Monday through Friday.  This is colloquially known 
as the “morning drive.”  Additionally, one can break each 
daypart up into quarter-hours.  The important concept here 
is that there are 80 quarter hours (4 QH/hour x 4 hours/day 
x 5 days in the daypart) in the morning drive daypart. 
 
So, let’s say an advertiser ran a spot on a given station 
once per hour for each hour in the “morning drive” 
daypart.  They would have then run 20 spots for that 
daypart.  (This is the schedule.)  From its survey, Arbitron 
estimates the average number of people that were listening 
to the station at any given quarter-hour in the “morning 
drive” daypart.  This yields something called the estimated 
AQH rating – the average number of people listening 
during any quarter hour divided by the population that 
could be listening in a given market.  If this estimated 
AQH rating was, say, one percent of the population for the 
morning drive for the station running the advertiser’s spot, 
then the GRP estimate is 20 times 1.00, or 20. 
 
2.3 GRP Math 
 
For those who might get more out of an equation than the 
above explanation, the estimator of the GRP for a radio-
advertising schedule in a given market m can be expressed 
as 
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where m indexes the market a radio station resides 
in (e.g., Minneapolis-St. Paul); d indexes the 
demographic subgroup (e.g., males between the 
ages of 35 and 54) of the market’s population; p 
indexes the daypart (e.g., the “morning drive”); 
Nmd is the number of people in demographic 
group d in market m; s is the number of spots that 
ran in the radio-advertising schedule; nmd is the 
sample size for a demographic group d in market 
m; qp is the number of quarter-hours in daypart p; 
wmdi is the survey weight for respondent i in 
market m and demographic subgroup d; Imdil is an 
indicator function, which is one if respondent i in 
demographic subgroup d was listening to the 
given radio station during the lth quarter-hour of 
the daypart. 

 
3.  Generalized Variance Functions 

 
Since the application that drives the research for this study 
is a tool that can estimate standard errors for a broad 
spectrum of estimators, the GVF methodology suits the 
purpose well.  A table of GVF parameter estimates can be 

passed to the tool and a formula programmed into the tool 
to produce standard error estimates given user-input that 
determines which table entries to use in the calculation. 
 
GVF theory is discussed in Wolter (1985) and Valliant et 
al. (2000).  Below, we briefly present the various GVFs we 
examine in this study. 
 
3.1 GVF Models for Study 
 
The model Arbitron currently uses to estimate variances 
for GRP estimators can be written as: 
 

τ⋅−⋅⋅= nXsXV /)ˆ100(ˆˆ ,  (2)
       

where X̂  is the GRP estimate; s is the number of 
spots; n is the sample size; and τ  is a parameter 
to be estimated.  (See Arbitron, 1995.) 

 
A model that is prevalent in the GVF literature, the one 
that is often given as the theoretical basis for GVF 
methodology, is the one used in the Current Population 
Survey (CPS).  This GVF models the relationship of the 

relative variance of an estimator X̂  to the expected value 
of the estimator: 
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XXV ⋅+⋅= βα 2 , 
 

where )ˆ(XEX = and V is the variance of X̂ . 

 
See Valliant et al. (2000, pp. 344-347), Wolter (1985, pp. 
202-205), Hansen, Hurwitz, and Madow (1953, 571-577) 
and U.S. Department of Labor (2002, pp. 14-3 to 14-5). 
 
An adaptation of the CPS GVF to include sample size in 
the model is 
 

nXnXV //2 ⋅+⋅= βα   (4)
       
This form was used by Otto and Bell (1995) in modeling 
CPS state-level standard errors.   
 
Both (3) and (4) are very similar to the current Arbitron 

model (2).  With 
τ

α 1−=   and 
τ

β s100= , (4) has the 

same form as (2).  (3) and (4) offer a degree of flexibility 
over (2), however, by allowing unrelated parameters for 
the linear and quadratic terms. 
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Griffiths and Mansur (2001) extended (4) to include a term 
for a lagged variance estimate: 
 

1
2 // −⋅+⋅+⋅= tttttt VnXnXV γβα ,    (5) 

where the subscript t denotes the current survey 
and t-1 the previous survey. 
 

In this study, we consider a related model: 
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We also consider a number of other GVF models, each a 
variation on (4), (5), or (6): 
 

• 
XnnXnX

V γβα ++=
2

  (7) 

• ( ) ( )XV lnln βα +=    (8)  

• ( ) ( ) )ln(lnln nXV γβα ++=   (9)  

• 
( ) ( )

)ln()ln(

)ln(lnln

1

1

−

−

+
+++=

tt

ttt

nn

XXV

τδ
γβα

 (10) 

 
We consider the logarithmic transformation primarily to 
help limit the influence of extreme values on the estimated 
parameters; we are interested in how this affects model 
fits.  As will be discussed below, we aren’t greatly 
concerned with assumptions of normality and 
homoscedasticity in model fitting – two typical reasons for 
using transformations.   
 
In the following sections, we refer to the studied models by 
a model number.  The following table associates that 
model number with the above GVF forms. 
 

Model  
Number 

Equation Number and Model Description 

1 (2) with 1995 parameter estimates 
2 (2) with updated parameter estimates 
3 (3) 
4 (4) 
5 (6) 
6 (7) 
7 (8) 
8 (9) 
9 (10) 

 
3.2  Model Fitting 
 
To fit the models, we first classified the estimates into 
several groups.  These groups were delineated by the 
cross-classification of the 22 demographic groups and 

eight daypart groups given in the original Arbitron study.1 
It is assumed that within each of these groups, the same 
GVF model applies.  Each model was fit to the standard 
error estimates for each of these 176 groups. 
 
Any of the GVFs studied might be fit using a least-squares 
technique.  The linear models can be fit using ordinary (or, 
weighted) least-squares regression.  This guarantees 
certain “nice” properties for the models, like minimum 
variance and conditional unbiasedness.  (Rencher, 2000).  
A nonlinear model, like (2), can be fit with a numerical 
least-squares algorithm (or, with a minimization of any 
appropriate objective function for the errors). 
 
If one wishes to do some model-building and make 
assessments of the significance of terms in the model, one 
can assume normality of the variance estimators, or an 
appropriate transformation thereof, and fit the models 
under maximum likelihood estimation.  One could also 
assume the dependent variable has a non-normal 
distribution (e.g., a Gamma) and fit a generalized linear 
model, under maximum likelihood estimation.  (See, for 
example, Griffiths and Mansur, 2001.)  In the case of the 
GVF with lagged dependent variables, we would fit the 
model using partial maximum likelihood estimation.  
 
Alternatively, if the primary property required for the 
models is that they produce standard error estimates that 
are “close” to actual standard errors in, say, an absolute 
relative deviation sense, there is no need to limit ourselves 
to least-squares estimation or MLE, since the desired 
properties are not those guaranteed by least-squares or 
MLE.  In this case, we might minimize the sum of the 
absolute relative deviations to obtain estimators with the 
“optimal” property in our particular situation. 
 
However, the key fact that plays into our consideration of 
model-fitting methods is that we view under-estimation as 
a more serious error than over-estimation for standard 
errors.  From our preliminary analysis of the data, it 
appears that model 1 (the current Arbitron GVF with old 
parameter estimates) allows for more under-estimation 
than we would like.  We want to try to improve in this area 
with the updated model. 
 
This leads us to think about fitting the models using the 
ideas of quantile regression.  For quantile regression 
applied to the problem at hand, the objective is to find the 
model parameters that minimize the following function: 
 

( )∑ −
i

igvfijk sese ,,τρ  

 

                                                                          
1 A daypart group is made up of one or more dayparts – 
dayparts with similar number of quarter-hours are grouped 
together. 
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where igvfse ,  is the GVF estimate of the standard error Si, 

sejk,i is the direct jackknife estimate of the standard error, 

and { })0()( >−⋅= xIxx τρτ ; 

{ } otherwise. 0 0;xifxI >=> 10  (See Koenker and 
Hallock, 2001.)  Here the idea is to use an estimate of the 
expected percentile of the conditional distribution as the 
standard error estimate, instead of the conditional mean, as 
would be the case with an ordinary least squares fit.  For 
instance, one might choose to use the 60th percentile of the 
conditional distribution as the modeled standard error to 
ensure more over-estimation than under-estimation.  This 
model-fitting method allows us to penalize the models 
more for an under-estimation error than for an over-
estimation error. 
 
This idea is similar to that used by Johnson and King 
(1987), who assumed that “the consequences of an 
underestimate are three times as severe as those of an 
overestimate.”  In fitting their models, Johnson and King 
(1987) assumed a normal conditional distribution and used 
the conditional expected mean plus .67 times the standard 
error (the 75th percentile of the normal distribution) as their 
“optimal prediction.” 
  
In what follows, we examine and compare the fits of the 
various GVFs by fitting the models to yield estimated 
standard errors that are the estimated 60th percentile of the 
conditional distribution.  This allows us to appease our 
conservative tendencies by bringing the under-estimation 
issue under better control.  It also provides an equitable 
basis for comparing the various GVFs. 
 

4.  Comparing Models/Evaluation 
 
4.1 Study Methodology 
 
We chose 60 Arbitron markets and survey data from four 
quarterly surveys to form the basis of our empirical study.  
We calculated variance estimates, and corresponding 
standard error estimates, for thousands of possible radio-
schedules in each market/survey combination using a 
jackknife variance estimation methodology.  We also 
calculated AQH and GRP estimates calculated for each 
radio-schedule.  In this study, we examine only 
hypothetical radio-schedules that consisted of running 
advertising spots on only one station.  In practice, the 
methodology also needs to apply to multiple-station 
schedules. 
 
We fit each of the GVF models with the jackknife standard 
error estimate as dependent variable and GRP estimate, 
sample size, number of spots as independent variables.  
Each model was fit for estimates within each demographic 
and daypart group.  This allows for different parameters 

for each demo and daypart group.2  Even though we fit the 
models by daypart group, we look at results by daypart in 
what follows.  This allows us, among other things, to 
examine whether the particular daypart groupings we used 
make sense. 
 
Finally, we compared the various GVFs on their ability to 
model the jackknife standard error estimates using several 
different measures. 
 
4.2 Measuring the Ability To Estimate Standard Errors 
 
A standard error estimate is the quantity that will be 
reported to the user.  Thus, it is important that we compare 
the models on ability to estimate the standard error.  The 
following are the measures that we use in the comparisons: 
 

• The ratio of the GVF standard error to jackknife 
standard error, by demo and daypart: 

 

ijk

igvf
i se

se
r

,

,= , 

 
where i indicates the ith estimate within a given 
demo and daypart.  In particular, we will examine 
and compare the distributions of these ratios for 
each GVF model.  Examination of the 
distributions allows us to see how well the 
modeled standard errors cluster around the 
jackknife standard error and give an indication of 
a GVF’s propensity to over- and under-estimate. 

 
• The absolute relative deviation (ARD) of the 

GVF standard error from jackknife standard 
error, by demo and daypart: 
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We include this measure as it tells us something 
about how far the modeled standard error is from 
the jackknife standard error without allowing over 
and under-estimation errors to cancel out.  Both 
Krenzke and Navarro (1996) and Jang et al. 
(2000) use a form of absolute relative deviation to 
compare methods. 

 
• The propensity of the models to under-estimate 

standard errors. 
 

Recalling our conservative viewpoint, we want to 
take a very specific look at the propensity of the 
models to give modeled standard errors that are 

                                                                          
2 The daypart groups we used in this study are those given 
in the original Arbitron (1995) study. 
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large under-estimates – 20 percent or more of the 
jackknife standard error.  We also look at the 
propensity to under-estimate in general. 

 
One might then state the primary criteria for model 
evaluation as: 
 

• We don’t want to under-estimate the standard 
errors too badly too often. 

• We want our modeled standard errors to cluster as 
much as possible around the directly-estimated 
jackknife standard errors. 

 
The first criterion is satisfied if a small fraction (less than 
10 percent or so) of a model’s standard error estimates are 
large under-estimates.  In fact, we fit the GVF models with 
this in mind when we used the estimated 60th percentile of 
the conditional distribution as the standard error estimates. 
 
To establish which GVFs do best with respect to the 
second criterion, we use box-and-whisker plots of the ratio 
of the GVF standard error to jackknife standard error, as 
well as mean and median values of the ARD. 
 
4.3  Results 
 
An initial glance at the results of fitting the models showed 
that we could eliminate some of the models from 
contention quite easily.  We saw that the CPS GVF tended 
to produce modeled standard errors that were more 
variable than those of models that included sample size in 
their specification.  So, while on average the CPS GVF 
estimates are at about the same level as many of the other 
models, this GVF tends to give larger under- and over-
estimates. 
 
This result makes sense, because the GRP estimate is 
essentially a proportion times the number of spots.  Thus, 
its level tends not to vary with the size of the population 
base.  The sample size does, however, tend to be related to 
the population base – it has a positive correlation with it.  
Thus, we lose some information from the model when we 
don’t include the sample size in this situation.  Model 3 is 
intended to work in situations where most of the 
information given by the sample size is subsumed by the 
characteristic estimator itself.  For instance, it works well 
with estimators of totals, for which the level of the 
estimator tends to vary with the population base (and 
sample size).  So, we immediately can eliminate models 3 
and 7 from contention. 
 
The second thing that stood out immediately is that using 
the logarithmic transformation adds little to the ability of 
the models to fit the jackknife standard error estimates.  In 
fact, the logarithmic transformation makes the fit worse on 
our primary measures in many instances.  This further 
eliminates models 8 and 9 from consideration. Thus, we 
focus our attention on models 2, 4, 5, and 6. 

In Attachment A, we provide some box-and-whisker plots.  
These plots display the distribution of the ratio of modeled 
standard error to jackknife standard error estimate for 
models 2, 4, 5, and 6 for Persons 12+ for individual 
dayparts.  These plots give a graphical depiction of the 
ability of each of these models to produce standard error 
estimates that cluster around the jackknife standard error. 
 
From these plots, one can see that model 5 has the greatest 
ability to produce standard error estimates that cluster 
around the jackknife standard error.  Models 4 and 6 have 
similar ability in this respect and only slightly greater 
ability than model 2.  In general, one might also note that 
there is not a great difference in clustering ability across 
these models. 
 
Attachment B displays a graph of the median ARD for 
each of the models for Persons 12+ across all 18 dayparts.  
This graph shows that models 4, 5, and 6 offer some 
reduction over model 2 in median ARD, with model 5 
giving slightly lower ARD, in general.  Averaging percent 
reductions in median ARD over all dayparts, we find: 
 

• Model 5 provides a 13 percent reduction in 
median ARD on average over the 18 dayparts for 
Persons 12+ (11 percent, ignoring daypart 5). 

• Model 4 provides an eight percent reduction in 
median ARD on average over the 18 dayparts for 
Persons 12+ (seven percent, ignoring daypart 5). 

• Model 6 provides a nine percent reduction in 
median ARD on average over the 18 dayparts for 
Persons 12+ (eight percent, ignoring daypart 5). 

 
Attachment B also displays a graph of the percent of 
modeled standard errors that are large under-estimates for 
models 2, 4, 5, and 6 for Persons 12+ across all dayparts.  
In general, we see that model 2 has a slightly smaller 
percentage of standard error estimates that are large under-
estimates, but that the percentage is comparable over 
models. 
 
Results for other dayparts vary, but, considered in 
aggregate, give generally the same impression as those for 
the broad Persons 12+ demographic group. 
 
A caveat from our results is that some model fits are much 
better for some dayparts than for others in certain daypart 
groups.  For instance, daypart 5, which is in the same 
daypart group as daypart 3, shows relatively poor model 
fits.  This suggests that daypart 5 needs either a separate 
set of parameter estimates in the GVF models or belongs 
with another daypart group. 
 

5.  Discussion 
 
The premise of this study was that that the parameter 
estimates for model 1, the current Arbitron GVF, needed to 
be updated.  Additionally, beyond needing parameter 
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estimate updates, model 1 allows for too much under-
estimation for our conservative nature.  Thus, we want to 
update model 1 for two reasons: 
  

• to provide current parameter estimates for the 
model; 

• to reduce the propensity of the model to under-
estimate. 

 
The second objective is achieved by fitting model 2 using 
the 60th percentile of the conditional distribution as the 
modeled standard error. 
 
That done, we then focus on whether the current 
methodology can be improved upon.  To this end, we 
compared several other GVF models (models 3 through 9) 
to model 2.  The question we want to answer is, Do any of 
them provide a markedly better fit than model 2?   
 
The answer is that some of the models we examined do 
provide modest, but tangible, improvement over model 2 
in their ability to cluster standard error estimates around 
the jackknife standard error estimates.  In particular, model 
5, which uses lagged GRP estimates, has an advantage 
over model 2 in clustering ability.  It also provides for 
some reduction in ARD. 
 
In practice, model 5 has the drawback that a user would 
need to know the value of the GRP from the previous 
survey to calculate an estimated standard error.  While 
many users would, in fact, have these GRP estimates 
available, a sizable portion would not, or would consider it 
too burdensome to access this estimate.  This potentially 
limits the practicality of this model. 
 
Models 4 and 6 also provide some slight benefit over 
model 2.  These models are more likely to be candidates 
for replacing the current methodology, though, more 
extensive research (including, for multiple-station 
schedules) is needed to determine the appropriate form of 
model and the full range and magnitude of advantages of 
these models. 
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Attachment B        Median ARD and Percent Large Under-Estimates, Persons 12+, 
 Models 2, 4, 5, and 6 
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