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Abstract

Calibration can be used to correct for sample nonre-
sponse and frame undercoverage, as well as to assure
that weighted estimates of the calibration variables
match known or alternatively estimated population
totals, called benchmarks. The quasi-randomization
theory supporting this use treats response or cover-
age as an additional phase of random sampling (one
that takes place before the sample is drawn in the
case of undercoverage or after in the case of non-
response). The functional form of a quasi-random
response or coverage model is assumed to be known,
while its parameter values are estimated implicitly
through calibration. Unfortunately, the variables in
a reasonable quasi-random model are not necessar-
ily the same as the calibration variables for which
benchmark totals are available. Moreover, it is often
prudent to keep the number of explanatory variables
in a model small. We will address using calibra-
tion to adjust for nonreponse or undercoverage when
then number of calibration variables exceeds the to-
tal number of explanatory model variables. Data
from National Agricultural Statistical Service 2002
Census of Agriculture will be used to illustrate ad-
justment for nonresponse.

Keywords: Benchmarks; Quasi-random model;
Model variables.

1. Introduction

Suppose yi is a (column) p-vector of calibration vari-
ables for the i-th population element, and xi and zi

are vectors, of length q and r, of model variables for a
noncoverage model and nonresponse model, respec-
tively. For reasons that will be made clear later, we
assume that xi and zi have no components in com-
mon.

Suppose the probabilities of noncoverage and non-
response are of the form 1− p1(x

′

iβ) and 1− p2(z
′

iγ)
respectively, for some vector parameters β and γ. If
β and γ were known, the usual sample estimate of
the vector of totals of the calibration variables would
be

t̂0
y

=
∑

i∈R

wi

p1(x
′

iβ)p2(z
′

iγ)
yi, (1)

where wi is the sampling weight and R is the set of
respondents.

If Ty is a vector of calibration target values con-
sisting of known, or previously estimated, popula-
tion totals, then β and γ could be estimated from
the data using the calibration equations

Ty =
∑

i∈R

wi

p1(x
′

iβ̂)p2(z
′

iγ̂)
yi. (2)

If the number p of calibration variables equals the
number q + r of model variables, equations (2) will

usually be sufficient to determine β̂ and γ̂. On the
other hand, if p < q + r, β̂ and γ̂ will be underde-
termined by (2).

If β and γ were known, it is unlikely that t̂0
y

of
(1) would equal Ty exactly due to sampling variabil-
ity. The vectors t̂0

y
and Ty should be close, however.

With this in mind, we suggest that (1), and its child
(2), be viewed as nonlinear regression-type equations

Ty = t̂y(β, γ) + ε (3)

t̂y(β, γ) =
∑

i∈R

wi

p1(x
′

iβ)p2(z
′

iγ)
yi

where ε is a p-vector of “errors”. In this setup, it
is desirable that p > q + r and, indeed, the more
calibration targets the merrier. The parameters β

and γ can be estimated by minimizing an objective
function of the form

ρ(β, γ) = (Ty − t̂y(β, γ))
′

W(Ty − t̂y(β, γ)) (4)

for some appropriately chosen p× p positive definite
matrix W.

Under mild conditions, minimizing the objective
function will yield consistent estimators for the pa-
rameters no matter what one chooses for W. Nev-
ertheless, some choices will lead to more efficient es-
timators than others.

The nonlinear regression formulation of (3) sug-
gests setting W = V−1 for some suitably defined
variance-covariance matrix V of ε. When this choice
of W depends on knowing (β, γ), we propose an iter-

ative procedure. Given a guess θ̂0 of (β, γ), we can

linearize the regression (3) at θ̂0. The solution to

the linearized regression is the next guess θ̂1. This
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procedure is described more thoroughly in Section
2. It can be shown to be optimal under a criterion
given by Thompson (1997).

An obvious candidate for V is V̂ ardb(t̂y(β, γ)),
a sample estimate of the design-based variance of
t̂y(β, γ). If the sampling scheme is without replace-
ment so that t̂y(β, γ) of (3) is the Horvitz Thompson

estimator, then V̂ ardb(t̂y(β, γ)) is given by

V̂ ardb(t̂y(β, γ)) =
∑

i∈R

1 − pi

p2
i πi|C

yiy
′

i (5)

+
∑

i,j∈R

πij|C − πi|Cπj|C

πij|Cπi|Cπj|Cpipj

yiy
′

j ,

where pi = p1(x
′

iβ)p2(z
′

iγ)
In (5) we envision that the respondents R are

a three phase sample from the target population
U . In the first phase, the coverage population C
is a Poisson sample (see Särndal etal (1992), page
85) from U with sampling probabilities p1(x

′

iβ). In
the second phase, the sample S is a sample with-
out replacement from C with inclusion probabilities
πi|C = Pr[ i ∈ S | C] and πij|C = Pr[ i, j ∈ S | C].
These probabilities normally depend upon C and the
notation is meant to so indicate. Furthermore, in
this case, wi = π−1

i|C . Finally we assume that R is a

Poisson sample from S with sampling probabilities
p2(z

′

iγ).
Section 3 gives the derivation of (5) as well as

the formulas of V̂ ardb(t̂y(β, γ)) for other designs of
interest.

If the targets Ty are previously estimated popula-
tion totals, then it would be appropriate to set

V = V̂ ardb(t̂y(β, γ)) + V ar(Ty)

where V ar(Ty) is some estimate of the errors in Ty.
Notice that V ar(Ty) is not necessarily diagonal, so
that the components of the target vector Ty can be,
and usually are, correlated. In the case of the Na-
tional Agricultural Statistical Service surveys, the
targets are often derived from expert opinions, which
means that V ar(Ty) must be determined heuristi-
cally. The literature on the choice of informative
Bayesian priors gives many suggestions which can
be adapted for this purpose.

In Section 4, we give an estimator for the quasi-
design-based errors of calibrated estimates of the to-
tals of a (vector) variable of interest u. This variance
estimate will include the variability due to the sam-
pling design, the variability under the Poisson un-
dercoverage/nonresponse model, and the variability
in the estimates of β and γ.

Finally, in Section 5, we will give the results of an
experiment to calibrate the 2002 Census of Agricul-
ture for nonresponse.

2. Some Details

Recall that we assume that the probabilities of non-
coverage and nonresponse are of the form 1−p1(x

′

β)
and 1 − p2(z

′

γ) respectively for some known func-
tions p1 and p2 and unknown β and γ. We also as-
sume that the components of x in the nonresponse
model and those of z in the noncoverage model are
distinct. Indeed, the pair (x, z) should not be close
to collinear. We make this second assumption be-
cause otherwise

p1(x
′

β)p2(z
′

γ) ≈ p1(x
′

β0)p2(z
′

γ0)

+ p1(x
′

β0)p
′

2(z
′

γ0)z
′

(γ − γ0)

+ p
′

1(x
′

β0)p2(z
′

γ0)x
′

(β − β0)

As a result, (β, γ) cannot be nearly estimated with
a first-order approximation. In practice what would
happen will be a breakdown of the asymptotic ap-
proximations used here as well as slow numerical
convergence in the calculation of (β̂, γ̂).

Write θ = [β
′

γ
′

]
′

. Given a guess θ̂0 of θ and

matrix W(θ̂0) we linearize (3) at θ̂0 and obtain

Ty − t̂y(θ̂0) = Ĥ(θ̂0)
(
θ − θ̂0

)
+ ε (6)

where Ĥ(θ̂0) is the p × (q + r) matrix

Ĥ(θ̂0) =
∂t̂y(θ)

∂θ

∣∣∣
θ=bθ0

. (7)

The (weighted) linear regression estimate θ̂1 cor-
responding to (6) minimizes the objective function

U
′

W(θ̂0)U where U = Ty − t̂y(θ̂0)− Ĥ(θ̂0)(θ − θ̂0).
It is given by

θ̂1 − θ̂0 =
[
Ĥ

′

WĤ
]−1 [

Ĥ
′

W
(
Ty − t̂y(θ̂0)

)]
(8)

where the matrices H and W are evaluated at θ̂0.
θ̂1 is the next guess.

If W is an estimate V̂ ar(t̂y(θ̂)) of the covariance

matrix of t̂y(θ̂), an alternative derivation and justi-
fication of the update equation (8) can be provided
using the ideas of Thompson (1997). We consider
the equations t̂y(θ) − Ty = 0 as p estimating equa-
tions for the q + r coefficients θ. If A is a (q + r)× p

matrix of constants, let θ̂A denote the solution to
the estimating equations

At̂y(θ) = ATy. (9)
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We seek the matrix A∗ such that θ̂A∗ is optimal in
asymptotic variance. Numerical solution for A∗ and
θ̂A∗ leads to the update equation (8).

3. Some Design Based Covariance Matrices

We start with the proof of equation (5)
Proposition. Suppose that the coverage popula-

tion C is a Poisson sample from population U with
sampling probabilities p1i = p1(x

′

iβ), that the sam-
ple S is a sample without replacement from C with
inclusion probabilities πi|C = Pr[ i ∈ S | C] and
πij|C = Pr[ i, j ∈ S | C], and finally that the re-
sponding sample R is a Poisson sample from S with
sampling probabilities p2i = p2(z

′

iγ). Let wi = π−1
i|C .

Then

t̂y(β, γ) =
∑

i∈R

wi

p1(x
′

iβ)p2(z
′

iγ)
yi

is an unbiased estimate of Ty =
∑

i∈U yi and an
unbiased estimate of its variance is given by equation
(5).

Proof: Suppose temporarily that there is no non-
coverage and hence C = U and we write πi and πij

in place of πi|C and πij|C . Then Särndal etal (1992)
equation (9.3.7) yields

V̂ ardb(t̂y(γ)) =
∑

i6=j∈R

πij − πiπj

πijπiπjp2ip2j

yiy
′

j (10)

+
∑

i∈R

1 − p2i

p2
2iπ

2
i

yiy
′

i +
∑

i∈R

1 − πi

π2
i p2i

yiy
′

i

=
∑

i∈R

1 − p2i

p2
2iπi

yiy
′

i +
∑

i,j∈R

πij − πiπj

πijπiπjp2ip2j

yiy
′

j

Now returning to the general case and reviving
the notation πi|C and πij|C , let t̂C =

∑
i∈C

yi

p1(x
′

i
β)

.

Then
E
(
t̂y(β, γ)|C

)
= t̂C

V ar
(
t̂y(β, γ)

)
= V ar

(
t̂C
)

+ E
(
V ar

(
t̂y(β, γ)|C

))

V ar
(
t̂C
)

=
∑

i∈U

1 − p1i

p1i

yiy
′

i

= E

(∑

i∈R

1− p1i

p2
1ip2iπi|C

yiy
′

i

)

V ar
(
t̂y(β, γ)|C

)
=
∑

i∈R

1 − p2i

p2
2iπi|C

yi

p1i

y
′

i

p1i

+
∑

i,j∈R

πij|C − πi|Cπj|C

πij|Cπi|Cπj|Cp2ip2j

yi

p1i

y
′

j

p1j

,

where the last equation follows by applying (10) to
the variables p−1

1i yi. Thus (5) follows. 2

As a second example we note:
Proposition. Considered a stratified multistage

design with PSU’s chosen with replacement. Let
h = 1, . . . , H index the strata, and for each h, let
UIh denote the population of PSU’s in stratum h.
For i ∈ UIh, let Uhi denote the elements of U in
PSU (h, i) and let the sampling weights be whij for
j ∈ Uhi.

Suppose in stratum h, nh PSU’s are chosen
with replacement and probability (actually expected
count) nhzhi and let Rhi = Uhi ∩ R. Let

t̂yhi(β, γ) = nhzhi

∑

j∈Rhi

whij

p1(x
′

hijβ)p2(z
′

hijγ)
yhij

t̂yh(β, γ) = n−1
h

nh∑

i=1

z−1
hi t̂yhi(β, γ)

Then t̂y(β, γ) =
∑

h t̂yh(β, γ) is an unbiased esti-
mate of Ty and its variance can be unbiasedly esti-
mated by

∑
h n−1

h s2
h where

s2
h = (nh − 1)−1

nh∑

i=1

(z−1
hi t̂yhi(β, γ) − t̂yh(β, γ))2.

Proof: Let Tyhi =
∑

j∈Uhi yhij . Then

E[t̂yhi(β, γ) | (h, i) ∈ sample] = Tyhi. The result
follows from Särndal etal (1992), page 151. 2

Finally, notice that the estimates β̂ and γ̂ are un-
changed if V ardb(t̂y(β, γ)) is only estimated up to a
multiplicative constant. This suggests invoking the
spirit of design effects and using the variance from
simple random sampling:

y = n−1
∑

i∈R

p−1
i yi

V̂ =
N2

n(n − 1)

∑

i∈R

(p−1
i yi − y)

′

(p−1
i yi − y)

where, as before, pi = p1(x
′

iβ)p2(z
′

iγ). In practice,

the scalar multiple, N2

n(n−1) , can be dropped from V̂.

4. Variance of Calibrated Estimates of
Population Totals

Let ui be a vector of variables of interest. Our cali-
brated estimate for the total tu is t̂u(β̂, γ̂) where

t̂u(β, γ) =
∑

i∈R

wi

pi(β, γ)
ui
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with pi(β, γ) = p1(x
′

iβ)p2(z
′

iγ). Let

Ĥu =
∂t̂u(β, γ)

∂(β, γ)
(β̂, γ̂)

b = Ĥu

[
Ĥ

′

V−1Ĥ
]−1

A∗,

where Ĥ is the matrix of partial derivatives (7) and

A∗ = H
′

V−1. Here Ĥu, Ĥ, and A∗ are evaluated
at (β̂, γ̂).

Then to first approximation

t̂u(β̂, γ̂) ≈ bt̂y(β̂, γ̂) +
∑

i∈R

wi

pi(β, γ)
(ui − byi)

≈ bty +
∑

i∈R

wi

pi(β, γ)
(ui − byi).

This suggests that the design-based errors in t̂u(β̂, γ̂)
can be calculated using the earlier formulas for
V̂ ardb by substituting ui−byi for yk and estimating
all pi using (β̂, γ̂).

5. Example

We consider here the calibration of the 2002 Census
of Agriculture for nonresponse. Ignoring the incom-
pleteness of the list from which that agricultural cen-
sus was enumerated, we apply equation (5) with all
πi|C , πij|C , and coverage probabilities p1 set equal to
1. This is what the National Agricultural Statistics
Service (NASS) did when adjusting for unit nonre-
sponse.

Before enumeration, each farm in the frame was
assigned a value for its expected annual sales. To-
gether with whether or not the farm responded to a
survey since the 1997 Census of Agriculture, NASS
used expected annual sales to divide the farm-frame
population into five response groups. These groups
were farms with expected annual sales less than
$2,500, expected annual sales between $2,500 and
$10,000, expected annual sales between $10,000 and
$50,000 and a survey response since 1997, expected
annual sales over $50,000 and a survey response since
1997, expected annual sales over $10,000 and no sur-
vey response since 1997.

Table 1: Fitted Response Model Coefficients

CA DE

z1 intercept 3.748 2.316
z2 log sales -0.2341 -0.09644

z3 response 97 0.3841 0.1543

We use indicator variables for these five response
groups as our calibration variables. NASS used them
as both calibration and response-model variables.
See Kott (2005) for more details.

In contrast to NASS’s approach, we model re-
sponse using three z-variables: z1 an intercept, z2

the logarithm of the actual annual sales in 2002,
truncated to the range $1000 to $100,000, and z3

an indicator variable for whether or not the farm re-
sponded to a survey since the 1997 Census of Agri-
culture. Whereas the expected annual sales was cal-
culated by NASS, and hence known for all farms,
actual annual sales is calculated from 2002 Census
responses and hence known only for respondents. A
logistic link was used. Thus

p2(z
′

γ) = (1 + exp(−η))−1

η = γ0 + γ1z1 + γ2z2.

Two states were considered: California and
Delaware. These two states were chosen to be as
dissimilar as possible. The fitted response model co-
efficients γ̂ are given in Table 1.

The calibration targets Ty and their fitted values
t̂y(γ̂) are given in Table 2.

We use calibration to estimate the total number of
active farms. Hence our u variable is a 0-1 variable
for being an active farm. We compare our technique
here with postratification using the same five strata
as the response groups above. The results are given
in Table 3, with the standard errors, calculated as
in Section 4, in parentheses.

The calibration standard errors are slightly larger
than those given by poststratification. Notice, how-
ever, that the poststratification nonresponse weights
necessarily depend upon the NASS assigned expected
sales y and not upon the actual sales z. Further-
more, poststratification weights will change abruptly
as the expected sales goes through the boundaries
$2500, $10,000, and $50,000 and the poststratifi-
cation standard errors are calculated assuming this
somewhat unrealistic model. Thus the poststratifi-
cation standard errors are probably too low. Cali-
bration allows one to fit a more realistic nonresponse

Table 2: Calibration Targets Ty and Corresponding
Fitted Values t̂y(γ̂)

y1 y2 y3 y4 y5

CA Ty 21804 14622 14309 14777 4769

CA t̂y(γ̂) 21861 14578 14274 14816 4752
DE Ty 628 369 334 517 216

DE t̂y(γ̂) 638.9 370.3 311.5 535.4 207.9
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Table 3: Comparison of Estimates, with Standard Errors, of Total Number of Farms. Estimation by
Poststratification Using Expected Sales, Calibration (This Paper) Using Actual Sales, and Calibration (as
in Kott (2005)) Using Actual Sales as a Categorical Vairable.

Poststratification Calibration (This Paper) Calibration (Kott (2005))

t̂u(γ̂) s.e. t̂u(γ̂) s.e. t̂u(γ̂) s.e.

CA 45312.5 45.8 46178.8 56.3 46181.3 165.6
DE 1390.9 9.2 1400.6 11.0 1416.1 18.7

model with a very reasonable increase in standard
error.

We also give the breakdown of the example in Kott
(2005) to the states CA and DE. In that example
the model variables were 5 indicator variables cor-
responding to 5 classes defined analogously to the 5
calibration variable classes with actual sales replac-
ing expected sales in the definition of the 5 model
variable classes. Since, for this example, the model
variables are all mutually exclusive indicator vari-
ables, all link functions are equivalent. In this ex-
ample, the standard errors are substantially higher.

6. Concluding Remarks

A companion paper, Kott (2005), discusses calibra-
tion for nonresponse when there are exactly the same
number of calibration and nonresponse model vari-
ables. As Kott (2004) points out, a very similar
approach can be used to treat calibration for non-
coverage (or overcoverage with slight modification).

This paper provides extends Kott (2005) in allow-
ing the number of model variables to be less, but
not more, than the number of calibration variables.
In effect, these two papers allow for a complete
separation of the calibration and model variables.
Thus calibration to correct for nonresponse and/or
noncoverage is made more realistic through more
realistic modeling of the nonresponse/noncoverage
weights.

In practice, calibrations for nonresponse and non-
coverage are often done separately. This is because
nonresponse calibration uses benchmarks from an
incomplete list frame, while noncoverage calibra-
tion uses benchmarks wholly or partially determined
from outside sources.

An example of where nonresponse and noncover-
age calibration has been done simultaneously can
be found in Crouse and Kott (2004). Rather than
assuming the components of the response and cov-
erage models were distinct, Crouse and Kott sup-
posed that the components were, or could be, ex-
actly the same. They were able to do this by assum-

ing both models had the form p(.) = exp(.) so that
pi = p1(x

′

iβ)p2(z
′

iγ) was also of that form. Although
in their setup, the effects of nonresponse and non-
coverage can not separated, the focus of Crouse and
Kott (2004) was the primary goal of survey sampling
- the estimation of totals (or functions of totals) for
survey variables.

Much work is needed in determining how to se-
lect model and calibration variables in practice, es-
pecially when the benchmark targets are themselves
potentially subject to sampling and measurement er-
rors.
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