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Abstract:

Calibration estimation, which can be roughly de-
scribed as a method of adjusting the original design
weights to incorporate the known population totals
of the auxiliary variables, has become very popular
in sample surveys. The calibration weights are cho-
sen to minimize a given distance measure while sat-
isfying a set of constraints related with the auxiliary
variable information.

Under simple random sampling, Chen and Qin
(1993) suggested that the calibration estimator max-
imizing the constrained empirical likelihood can
make efficient use of the auxiliary variables. We ex-
tend the result to unequal probability sampling and
propose an algorithm to implement the proposed
procedure. Asymptotic properties of the proposed
calibration estimator are discussed. Results from a
limited simulation study are presented.
Key Words: Generalized regression estimator, Non-
parametric maximum likelihood estimator, Optimal
regression estimator, Weighting procedure.

1. Introduction

In the samples selected from a finite population, aux-
iliary variables with known population totals are of-
ten observed. The known population totals usually
come from external sources such as administrative
data or census. Calibration estimation, which can be
roughly described as a method of adjusting the orig-
inal design weights to incorporate the known popu-
lation totals of the auxiliary variables, has become
very popular in sample surveys. Generally speak-
ing, the calibration procedure chooses the adjusted
weights that minimize a distance between the orig-
inal weights and the adjusted weights, while satis-
fying a set of constraints related with the auxiliary
variable information. Fuller (2002) provides a com-
prehensive overview of the calibration procedure in
sample surveys.

In a purely mathematical point of view, the cali-
bration estimation problem is a standard optimiza-
tion problem with constraints and, given the same
constraints, the choice of the objective function

Department of Applied Statistics, Yonsei University,
Seoul, 120-749, Korea.

determines the properties of the resulting estima-
tor. The classical regression estimator described in
Cochran (1977) uses a Euclidian distance function.
Deville and Särndal (1992) gave conditions for the
distance functions to produce the calibration esti-
mators that are asymptotically equivalent to the re-
gression estimator.

In addition to the above interpretation of mini-
mizing a distance function, the calibration estima-
tor can also be viewed as a maximum likelihood es-
timator in some cases. Anderson (1957) derived the
regression estimator as a solution to the maximum
likelihood estimation under the bivariate normal dis-
tribution assumption. Hartley and Rao (1968) used
a multinomial distribution for distinct sample val-
ues and proposed a scale-load estimator that can
be obtained through a constrained maximum likeli-
hood estimation. The empirical likelihood, termed
by Owen (1988), is essentially the likelihood of the
multinomial distribution used in Hartley and Rao
(1968), where the parameters are the point masses
assigned to the distinct sample values. Under simple
random sampling, Chen and Qin (1993) proposed
a calibration estimator that maximizes the empir-
ical likelihood with constraints. Chen and Sitter
(1999) extended the method to unequal probability
sampling designs but, as discussed in Section 2, the
Chen-Sitter estimator lacks the maximum likelihood
interpretation. One advantage of having a maximum
likelihood interpretation is that the resulting estima-
tor will be asymptotically optimal.

In this paper, we propose a calibration estimator
that preserves the maximum likelihood interpreta-
tion under unequal probability sampling. The ob-
jective function we consider is different from that of
Chen and Sitter (1999) and thus has different asymp-
totic properties.

The paper is organized as follows. In Section
2, the basic setup is introduced and the proposed
method is described. In Section 3, asymptotic prop-
erties of the proposed estimator are discussed. Vari-
ance estimation is also discussed in Section 4. In
section 5, results from a simulation study are pre-
sented.
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2. Empirical likelihood calibration
method

We begin by introducing the notion of empirical like-
lihood in a simple setup. Let y1, y2, · · · , yn be the
outcomes of the independently and identically dis-
tributed random variables from a continuous distri-
bution function F0 ∈ F . We consider a class F1 ⊂ F
of distribution functions that have support on the
convex hull of {y1, y2, · · · , yn}. Thus, the elements
in F1 can be written as

Fw (x) =
n∑

i=1

wiI (yi ≤ x) (1)

with
∑n

i=1 wi = 1 and wi ≥ 0, where I (yi ≤ x) takes
the value one if yi ≤ x and takes the value zero other-
wise. The parameter wi is the amount of point mass
that unit yi represents in the population. That is,
wi = F0 (yi) − F0 (yi−). Note that Fw (y) is a dis-
tribution function, not an estimator, indexed by the
set of parameters w1, w2, · · · , wn. For any parame-
ter of the form θ = θ (F ), the estimator F̂ of F0 can
be used to estimate θ by θ̂ = θ

(
F̂

)
. For a param-

eter θ linear in y in the population, the estimator θ̂
using the class of distributions (1) leads to a linear
estimator that is linear in y in the sample. Linear
estimation is very popular in sample surveys because
it provides internal consistency between estimators
for several items.

The empirical distribution function, defined for
wi = n−1 in (1), given no ties, is the nonparamet-
ric maximum likelihood estimator (NPMLE) of F0,
since it maximizes the following likelihood function,

L (w) =
n∏

i=1

wi (2)

over all wi’s satisfying
∑n

i=1 wi = 1 and wi ≥ 0.
Note that if the wi are known functions of a fixed
number of unknown constants then (2) is the usual
parametric likelihood function. For any parameter
of the form θ = θ (F ), the NPMLE F̂ of F0 can be
used to compute the NPMLE of θ by θ̂ = θ

(
F̂

)
.

If we observe the auxiliary variable xi in the sam-
ple and the population mean of xi is known, de-
noted by µx, the additional information of µx can
be used to construct a constrained NPMLE of F0.
Chen and Qin (1993) proposed computing the con-
strained NPMLE of F0 by solving

maximize
n∑

i=1

log (wi) (3)

subject to
n∑

i=1

wixi = µx and
n∑

i=1

wi = 1. (4)

The constrained NPMLE for the population total of
y is

Ŷcm =
n∑

i=1

w∗i yi,

where w∗i is the solution to the optimization problem
in (3) and (4). Also, the constrained NPMLE for the
p-th quantile of the distribution of y is

Q̂cm,y (p) = inf
{

x; F̂cm,y (x) ≥ p
}

where

F̂cm,y (x) =
n∑

i=1

w∗i I (yi ≤ x) .

We now consider an extension of the constrained
NPMLE to samples selected from a finite population
with unequal selection probabilities. Assume that
unit i is selected with known probability πi. Recall
that wi in (1) is a parameter value, so the distribu-
tion function (1) indexed by w does not depend on
the sampling design. However, under unequal prob-
ability sampling, the empirical likelihood will be dif-
ferent from (2) because the amount that the i-th unit
represents has been changed by unequal probability
sampling. We suggest the empirical likelihood

L (w) =
n∏

i=1

(
πiwi∑n

j=1 πjwj

)
, (5)

with
∑n

i=1 wi = 1 and wi ≥ 0. The maximum likeli-
hood estimator of wi using the empirical likelihood
(5) is

w∗i =
π−1

i∑n
j=1 π−1

j

, (6)

which reduces to the Hájek estimator of the popula-
tion mean.

Using the likelihood function (5), the empirical
likelihood calibration estimator can be derived as a
constrained NPMLE for the distribution function of
the finite population. The constrained maximiza-
tion problem can be formulated as maximizing (5)
subject to the constraints in (4). Using the Lagrange
multiplier method, the objective function to be min-
imized is

Q (w) =
n∑

i=1

log (πiwi)− n log

(
n∑

i=1

πiwi

)

+λ1

(
n∑

i=1

wi − 1

)
+ λ2

(
n∑

i=1

wixi − µx

)
.
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Setting the partial derivative of Q with respect to
wi equal to zero gives

∂Q

∂wi
=

1
wi
− nπi∑n

i=1 πiwi
+ λ1 + λ2xi = 0.

Using
∑n

i=1 wi (∂Q/∂wi) = 0, we have

wi =
1

λ1πi + λ2 (xi − µx)
, (7)

where the λi, i = 1, 2, are the solutions to

g1 (λ1, λ2) =:
n∑

i=1

1
λ1πi + λ2 (xi − µx)

= 1 (8)

and

g1 (λ1, λ2) =:
n∑

i=1

xi − µx

λ1πi + λ2 (xi − µx)
= 0. (9)

The notation A =: B means that B is defined to be
equal to A. A modified Newton-Raphson method
can be used to solve the nonlinear equations (8) and
(9). See Appendix A.

Chen and Sitter (1999) also considered unequal
probability sampling and proposed the pseudo em-
pirical likelihood estimator. Instead of maximizing
(5), they proposed maximizing

L (w) =
n∑

i=1

1
πi

log (wi) , (10)

subject to the same constraints (4). The result-
ing pseudo empirical maximum likelihood estimator
(PEMLE) for the mean of y is ȳPEMLE =

∑n
i=1 wiyi

where
wi =

1
πi (λ1 + λ2xi)

(11)

where λ1 and λ2 satisfy (4). Because the Chen and
Sitter (1999) method lacks the maximum likelihood
interpretation, we expect that our method is more
efficient in large samples. Efficiency will be investi-
gated further in the next section.

3. Asymptotic Properties

We now study the asymptotic properties of the cal-
ibration NPMLE estimator of the population mean.
To discuss the asymptotic properties of the empiri-
cal likelihood estimator, assume a sequence of finite
populations with finite fourth moments of as defined
in Isaki and Fuller (1982).

Assume the sampling mechanism satisfies

K1 < max
i

{
n−1Nπi

}
< K2 (12)

for some positive constants K1 and K2, where N is
the number of elements in the finite population. Let
ui = xi − µx and assume that

max
i
|ui| = op

(
n−1/2

)
(13)

and ∑n
i=1 π−1

i ui∑n
i=1 π−1

i u2
i

= Op

(
n−1/2

)
. (14)

Although assumptions (13) and (14) can be derived
from the existence of the second moment and from
the consistency of the Horvitz-Thompson estimator,
we state them for convenience in the derivation.

Under assumptions similar to (12) - (14), Chen
and Sitter (1999) proved that their pseudo empir-
ical likelihood estimator is asymptotically equiva-
lent to the generalized regression (GREG) estimator
ȳGREG, where

ȳGREG = x̄π + (µx − x̄π) B̂ (15)

and

(x̄π, ȳπ) =

(
n∑

i=1

π−1
i

)−1 n∑

i=1

π−1
i (xi, yi)

B̂ =
∑n

i=1 π−1
i (xi − x̄π) (yi − ȳπ)∑n

i=1 π−1
i (xi − x̄π)2

.

The following theorem states some asymptotic
properties of the calibration NPMLE using the
weights in (7) with (8).

Theorem 1 Under the assumptions (12)-(14),
the NPMLE of the mean of y is asymptotically equiv-
alent to

ȳopt = ȳπ + (µx − x̄π) B̂∗ (16)

where

B̂∗ =
∑n

i=1 π−2
i (xi − µx) (yi − ȳπ)∑n

i=1 π−2
i (xi − µx)2

.

Here, (x̄π, ȳπ) is defined after (15).
The proof of the Theorem is given in Appendix B.
Roughly speaking, the B̂ in the GREG esti-

mator (15) estimates the population slope for the
regression of y on x. On the other hand, in
many sampling designs, the B̂∗ in (16) estimates
[V ar (x̄π)]−1

Cov (x̄π, ȳπ), which leads to the ‘opti-
mal’ estimator discussed by Rao (1994). Zhong and
Rao (2000) also derived an optimal estimator very
similar to (16) under stratified random sampling.
The idea of using π−2

i to compute the regression co-
efficient also appears in Isaki and Fuller (1982).
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4. Variance estimation

For variance estimation, we use the linearization
method of Binder (1983). When the parameter of
interest is the population mean, the NPMLE can be
written as the solution to the estimating equation

U1 (θ, λ1, λ2) ≡
n∑

i=1

diyi

λ1 + λ2diui
− θ = 0 (17)

where di = π−1
i and (λ1, λ2) is the solution to the

simultaneous estimating equation :

U2 (θ, λ1, λ2) ≡
n∑

i=1

di

λ1 + λ2diui
− 1 = 0 (18)

and

U3 (θ, λ1, λ2) ≡
n∑

i=1

diui

λ1 + λ2diui
= 0. (19)

Using the linearization method of Binder (1983),

the variance-covariance matrix of
(
θ̂, λ̂1, λ̂2

)′
can be

written
J−1ΣU (θ, λ1, λ2)

(
J−1

)′
(20)

where

J =




∂U1/∂θ ∂U1/∂λ1 ∂U1/∂λ2

∂U2/∂θ ∂U2/∂λ1 ∂U2/∂λ2

∂U3/∂θ ∂U3/∂λ1 ∂U3/∂λ2




and ΣU (θ, λ1, λ2) is the variance-covariance matrix
of (U1, U2, U3)

′ treating θ, λ1, λ2 as constants. Using
∂U2/∂θ = ∂U3/∂θ = 0, we have

J−1 =
(

A−1
11 −A−1

11 A12A
−1
22

0 A−1
22

)
.

where A11 = ∂U1/∂θ, A12 = (∂U1/∂λ1, ∂U1/∂λ2)
and

A22 =

(
∂U2
∂λ1

∂U2
∂λ2

∂U3
∂λ1

∂U3
∂λ2

)
.

Thus, after some algebra, we have

V
(
θ̂
)

= A−1
11

[
(1,−B12) ΣU (θ, λ1, λ2) (1,−B12)

′]
A−1

11 .

(21)
where A11 = −1, B12 = A12A

−1
22 and

A12 = −
n∑

i=1

di

(λ1 + λ2diui)
2 (1, diui) yi (22)

A22 = −
n∑

i=1

di

(λ1 + λ2diui)
2

(
1 diui

ui diu
2
i

)
. (23)

Let V̂ =
∑n

i=1

∑n
j=1 Ωij be the design unbiased

variance estimator of N−1
∑n

i=1 diyi. Using (21), a
“plug-in” variance estimator can be derived as

V̂
(
θ̂
)

= Â−1
11

[(
I,−B̂12

)
Σ̂U

(
I,−B̂12

)′]
Â−1

11 ,

(24)
where Â−1

11 = 1, B̂12 = Â12Â
−1
22 , and Â12 and Â22

are derived from (22) and (23), respectively, with
(λ1, λ2) replaced by

(
λ̂1, λ̂2

)
. Since the compo-

nent ΣU should represent the sampling variance of
U terms only, we propose that Σ̂U be computed as

Σ̂U =
n∑

i=1

n∑

j=1

Ωijhih′j (25)

where hi = (yi, 1, ui). Therefore, combining (24)
and (25), we have

V̂
(
θ̂
)

=
n∑

i=1

n∑

j=1

Ωijeiej (26)

where ei = yi − ŷi with ŷi = Â12Â
−1
22 (1, ui)

′. In
some calibration literature, this method has been
called the residual technique because the standard
variance estimator is applied to the residuals. The
only difference here is that the regression coefficients
are computed differently.

5. Simulation Studies

To study the properties of the proposed calibration
estimator, we performed a limited simulation study.
In the simulation study, four artificial finite popula-
tions for (xi, yi, zi) of size N = 10, 000 are generated.
The populations are

[A] zi ∼ χ2 (2)

xi = ai + 0.5zi + 2
yi = 1 +

√
0.5 (xi − 3) + ei

[B] (xi, zi) are the same as in population [A] and
yi = (xi − 3)2 + ei

[C] zi ∼ χ2 (2) + 2

xi = ai + 0.5zi + 1
yi = 1 +

√
0.5 (xi − 3) + ei

[D] (xi, zi) are the same as in population [C] and
yi = (xi − 3)2 + ei

ASA Section on Survey Research Methods

3198



where ai ∼ N (0, 1), independent of zi, and ei ∼
N (0, 1), independent of (ui, ai, zi), in the four pop-
ulations.

From each of the finite population generated
above, Probability Proportional to Size (PPS) sam-
ples of size n = 200 and n = 500 are generated
where the probability of selecting a single element
pi is proportional to zi. We assume that the popu-
lation mean of xi is known and is used for the cal-
ibration. From each sample, four estimators of the
population mean of y are computed. The estima-
tors are the Hansen-Hurwitz (HH) estimator for the
PPS sampling using weight di = N−1n−1p−1

i , where

pi = zi/
(∑N

i=1 zi

)
, the GREG estimator defined

in (15), the pseudo empirical likelihood estimator
(PEMLE) of Chen and Sitter (1999) defined in (11),
and the proposed NPMLE defined in (7).

Variance estimators are also computed for the last
two point estimators. The variance estimator for
the PEMLE estimator, derived using the same ar-
guments in Section 4, is computed by the residual
method with the residual

ei = yi − ŷi

where ŷi = Â12Â
−1
22 (1, ui)

′

Â12 = −
n∑

i=1

di(
λ̂1 + λ̂2ui

)2 (1, ui) yi

Â22 = −
n∑

i=1

di(
λ̂1 + λ̂2ui

)2

(
1 ui

ui u2
i

)
.

The variance estimator for the NPMLE is computed
using the residual method described in (26).

Table 1 reports the simulation results of the four
point estimators. Table 2 reports the relative biases
and the t-statistics of the two variance estimators.
The relative bias is the Monte Carlo bias divided
by the Monte Carlo variance of the point estima-
tor. The t-statistic is the statistic used to test the
significance of the Monte Carlo bias of the variance
estimator.

From the results in Table 1 and in Table 2, we
have the following conclusions.

1. The HH estimators in population A and B have
bigger variances than those in population C
and D. Since the z-variables are highly variable
in population A and B, the resulting sampling
weights for the HH estimator are also highly
variable and increase the variances of the re-
sulting HH estimators.

2. In population C, the three calibration esti-
mators show similar performances because the
weights are relatively homogeneous. The ratio
of the variance of the calibration estimator to
the variance of the HH estimator is about 0.5,
which is consistent with the theory because the
population correlation between x and y is equal
to
√

0.5.

3. In population A and B, the NPMLE shows bet-
ter performance than the other calibration esti-
mators. Note that the two empirical likelihood
estimators can be written

θ̂PEMLE =
n∑

i=1

diyi

λ1 + λ2ui

θ̂NPMLE =
n∑

i=1

diyi

λ1 + λ2diui
.

Thus, the PEMLE will be efficient if yi ∝ d−1
i xi,

while the NPMLE will be efficient if yi ∝ xi. If
the design weights di are highly, the PEMLE
can be very inefficient. Therefore, the NPMLE
will be less sensitive to extreme design weights.

4. In population D, where the design weights are
relatively homogeneous and the linear relation-
ship between y and x does not hold, the cali-
bration estimators do not improve the efficiency
of the HH estimator. In population B, the
NPMLE is more efficient than the HH estima-
tor because the efficiency of the HH estimator
is mitigated by the extreme weights.

5. The variance estimator for the NPMLE shows
good performances in terms of the relative bi-
ases. The variance estimator for PEMLE shows
significant biases for population B. Roughly
speaking, when some of the design weights are
extremely large, the condition (14) does not
hold and the second order term in the Taylor
linearization is no longer negligible unless lin-
ear relationship between the study variable and
the control variable holds.

Appendix

A. Algorithm

We propose solving the nonlinear equations (8) - (9)
by a modified Newton-Raphson method as follows:

[Step 1] Set λ
(0)
1 =

∑n
i=1 π−1

i and λ
(0)
2 = 0. Also,

set γ = 1.
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[Step 2] Compute the updated values of λ’s itera-
tively as

λ(k+1) = λ(k) + γ
[
∆(k)

]−1 (
g∗ − g(k)

)

where λ(k) =
(
λ

(k)
1 , λ

(k)
2

)′
, ∆(k) is a 2×2 matrix

of ∂gi/∂λj evaluated at λ = λ(k), g∗ = (1, 0)′,

and g(k) =
[
g1

(
λ(k)

)
, g2

(
λ(k)

)]′
.

[Step 3] If λ
(k+1)
1 πi + λ

(k+1)
2 (xi − µx) < 0 for some

i = 1, 2, · · · , n, then set γ = γ/2 and go to Step
2.

[Step 4] If maxi

∣∣∣λ(k+1)
i − λ

(k)
i

∣∣∣ < ε for sufficiently
small ε > 0, stop and compute the final weights
from (7) using λ(k+1). Otherwise, set k = k +1
and γ = 1, and go to Step 2.

Step 2 essentially describes a Newton-Raphson solu-
tion to the nonlinear equations (8) through (9). Step
3 guarantees that the resulting calibration weights
be always positive. If we further want to restrict
the weights to be wi ∈ [Lw, Uw] for given Lw and
Uw values, it is enough to check U−1

w ≤ λ
(k+1)
1 πi +

λ
(k+1)
2 (xi − µx) ≤ L−1

w in Step 3. See also Chen et
al (2002).

B. Proof of Theorem 1

First note that the two constraints, (8) and (9), can
be written

n∑

i=1

wi = 1 (A.1)

n∑

i=1

wiui = 0. (A.2)

The NPMLE of the population mean of y can be
written

ȳNPMLE =
N−1

∑n
i=1

(
1 + δπ−1

i ui

)−1
π−1

i yi

N−1
∑n

i=1

(
1 + δ π−1

i ui

)−1
π−1

i

(A.3)
where δ = λ2/λ1 and N is the size of the finite pop-
ulation. By (A.2), the δ satisfies

n∑

i=1

π−1
i ui

1 + δπ−1
i ui

= 0. (A.4)

Using the argument of Owen (1990, p 100-101), it
can be shown that δ = Op

(
n−1/2

)
and

δ =

(
n∑

i=1

π−2
i u2

i

)−1 n∑

i=1

π−1
i ui + op

(
n−1/2

)
(A.5)

Let γi = δπ−1
i ui. The numerator part of (A.3)

can be written

N−1
n∑

i=1

yi

πi

(
1− γi +

γ2
i

1 + γi

)

= N−1
n∑

i=1

yi

πi
(1− γi) + op

(
n−1/2

)
.

Similarly, the denominator part can be written

N−1
n∑

i=1

1
πi

(
1− γi +

γ2
i

1 + γi

)

= N−1
n∑

i=1

1
πi

(1− γi) + op

(
n−1/2

)
.

Hence, the NPMLE is asymptotically equivalent to
∑n

i=1 yiπ
−1
i (1− γi)∑n

i=1 π−1
i (1− γi)

and is also asymptotically equivalent to (16).
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Table 1: Monte Carlo Biases, Variances, and Mean
squared errors of the point estimators for the sample,
based on 5,000 samples.

n Pop’n Estimator Bias MSE
HH 0.00 0.0522

A GREG 0.00 0.0183
PEMLE 0.00 0.0188
NPMLE 0.00 0.0179

HH 0.01 0.2877
B GREG -0.08 0.1872

PEMLE 0.05 0.3860
NPMLE -0.01 0.0972

200 HH 0.00 0.00926
C GREG 0.00 0.00612

PEMLE 0.00 0.00612
NPMLE 0.00 0.00615

HH 0.00 0.0414
D GREG -0.02 0.0537

PEMLE 0.01 0.0546
NPMLE 0.00 0.0459

HH 0.00 0.01905
A GREG 0.00 0.00840

PEMLE 0.00 0.00850
NPMLE 0.00 0.00804

HH 0.00 0.4911
B GREG -0.04 0.0873

PEMLE 0.03 0.1718
NPMLE -0.01 0.0427

500 HH 0.00 0.00359
C GREG 0.00 0.00236

PEMLE 0.00 0.00236
NPMLE 0.00 0.00236

HH 0.00 0.0161
D GREG -0.01 0.0211

PEMLE 0.01 0.0212
NPMLE 0.00 0.0179
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Table 2: Monte Carlo relative bias and the t-
statistics of the variance estimators for the sample,
based on 5,000 samples.

n Pop’n Estimator Rel. Bias t-statistic
A PEMLE 0.012 0.41

NPMLE -0.005 -0.08
B PEMLE 1.561 8.55

200 NPMLE -0.054 -1.49
C PEMLE -0.030 -1.51

NPMLE -0.035 -1.79
D PEMLE 0.046 2.26

NPMLE -0.014 -0.68
A PEMLE 0.035 1.62

NPMLE -0.016 -0.42
B PEMLE 1.693 7.12

500 NPMLE -0.009 -0.24
C PEMLE 0.010 0.52

NPMLE 0.008 0.38
D PEMLE 0.029 1.48

NPMLE 0.007 0.34
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