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Abstract

Sometimes benchmark constraints in a calibration
problem cannot be met if there are range restric-
tions on the calibration weights. There are various
approaches to this problem that involve either allow-
ing the benchmark constraints to be adjusted within
a specified tolerance, or to determine a minimal lin-
ear adjustment of the benchmark constraints. In
this paper we propose an optimization problem that
explicitly incorporates into the objective function a
measure of the amount by which the benchmark con-
straints are missed.
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1. Introduction

The basic calibration problem in survey sampling is
to adjust data so that certain totals or other sum-
mary statistics match benchmark values. The data
may suffer from incorrect coverage by the frame,
from nonresponse, or from other nonsampling errors.
The purpose of the calibration is usually to improve
the accuracy of other quantities computed from the
given data. The benchmark targets for the “cali-
bration variables” are usually obtained from other
sources that are believed to be more accurate for
these specific values. Calibration is performed by
adjusting weights of the individual records in the
given data set. This adjustment of the weights is
done in such a way that the new weights are close
to the previous weights, by some measure of the dis-
tance of the change.

To state this more precisely, but without making
assumptions about the nature of the sampling or of
the analysis, let [X |Y ] be the n×m data matrix par-
titioned into an n× p matrix X containing observa-
tions on the calibration variables and an n× (m−p)
matrix Y containing observations on the other vari-
ables. We assume all elements of X are real (that is,
no missing values). Let d be the n-vector of weights
or “expansion factors”. We assume d > 0. We as-
sume that for a quantity of interest, say, tX , a p-
vector of population totals for the calibration vari-

ables, a good estimate (in some sense) is

t̂X = XTd. (1)

Given a vector of targets for the calibration vari-
ables TX , the requirements of calibration are ex-
pressed in the system of calibration equations,

TX = XTw, (2)

for some vector of weights w. These are the “bench-
mark constraints” (BC) to be satisfied. If X is of
full column rank, it is a relatively simple matter to
find a w so that the BC are satisfied. Generally, we
seek a w that does not differ much from d.

There may also be “range restrictions” (RR) on
the elements of w; for example, they may be required
to be positive.

The problem becomes well-posed with the require-
ment that the extent of the adjustment, as measured
by the differences in w and d, is minimized, subject
of course to a formal definition of the “extent of the
adjustment”. Informally, a statement of the calibra-
tion problem is

minimize differences in w and d
w

subject to
{

BC
RR

(3)

This problem was considered in detail by Deville
and Särndal (1992), who proposed various measures
of the differences in w and d. Singh and Mohl (1996)
discussed the problem further, described computa-
tional approaches, and reported empirical results
from using various measures and constraints.

If the minimum of the differences in w and d (ac-
cording to some measure) occurs within the BC and
the RR, the problem (3) has a simple solution and
the approach is clearly appropriate.

In this paper we consider situations in which ei-
ther the BC or the RR (or both) is not satisfied at
the minimum of the differences (that is, when the
extent of the adjustment is minimized). We also
exhibit situations in which the BC and/or the RR
cannot be satisfied. We formulate an optimization
problem that is more appropriate than problem (3)
in those cases.

We represent the (scalar) difference between w
and d by δ(w, d). The distance measure δ(w, d) is
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nonnegative, but it may not be a metric. (It may
not be symmetric in w and d.) Also, the summary
function δ(w, d) may not give the same weights to
all elements of w and d. One distance measure con-
sidered by Deville and Särndal (1992) is

δQ(w, d) = (w − d)T (DQ)−1 (w − d), (4)

where D = diag(d), the n × n diagonal matrix
whose entries are the elements of d, and Q is an
n × n diagonal matrix with positive entries, per-
haps all equal to 1, or perhaps scaled so as to allow
the weights of some records to change more than
others. Minimizing the expression in equation (4)
subject to TX = XTw is a linearly equality con-
strained least squares problem, and if a solution to
XTDQXλ = TX − t̂X exists, it is a solution to the
minimization problem.

1.1 Conditions for Satisfying the Calibra-
tion Equations

A necessary and sufficient condition that the cali-
bration equations can be satisfied by some value of
w is that the system TX = XTw is consistent, that
is, that rank(XT) = rank(XT|TX).

If X is of full column rank this condition is always
met.

A common way that a data matrix of less than full
rank arises is in the case of categorical variables that
have been coded as binary variables; for example,
race, instead of being a single value with, say, three
possible values is coded as three 0-1 variables.

In practice, a non-full-rank data matrix is rarely a
problem. When it occurs, the statistician is usually
aware of it and knows that any reasonable vector
of targets must satisfy the same linear relationships
as the data; therefore the calibration equations are
consistent and a solution the exists. In some meth-
ods of calibration a system of equations with the
Gramian XTX coefficient matrix must be solved,
and so there may be practical problems with a non-
full-rank data matrix. The solve function in both
R/S-Plus and SAS IML, for example, requires non-
singular coefficient matrices. (This lack of software
is perhaps understandable, because the solution to
a non-full-rank, consistent system is an infinite set
of vectors.)

We will not address the problem of inconsistent
calibration equations. If the targets cannot be met,
there is likely some misspecification of the the tar-
gets or else there were major nonsampling errors.
Although we will not consider this problem sepa-
rately, if indeed it is desired to address this problem

with the given data and targets, then the reformu-
lation of Section 4. may be appropriate.

1.2 Conditions for Satisfying Both the Cal-
ibration Equations and the Range Re-
strictions

There are p calibration equations in n unknowns,
so typically whether or not the data matrix is of
full (column) rank, there are multiple vectors w that
satisfy TX = XTw.

A problem that may arise in applications is that
none of the solutions to the calibration equations
satisfy the range restrictions. If W is the set of all
solutions of the calibration equations, and R is the
set of all n-vectors that satisfy the range restrictions,
then obviously

W ∩R 6= ∅ (5)

is a necessary and sufficient condition that both sets
of constraints and restrictions be satisfied simulta-
neously.

In principle, this is an easy condition to check
by determining whether the space of solutions to
TX = XTw contains elements of R. In practice,
however, it is not always easy to determine whether
two spaces intersect. Furthermore, because of the
dearth of software that computes general solutions
to TX = XTw, this is not always a trivial problem.

2. Calibration When Not All Targets Can
Be Met

Without range restrictions, the calibration prob-
lem (3) above can be formulated as an equality-
constrained minimization problem:

min
w

δ(w, d) (6)

s.t. TX = XTw.

2.1 Meeting Calibration Targets without
Range Restrictions

A common distance function is δQ(w, d) given in
equation (4). The optimization problem with this
distance function is a weighted linear least squares
problem with linear equality constraints. The solu-
tion, which is easy to obtain by standard Lagrangian
methods (see Deville and Särndal, 1992), is

w = d + DQXλ, (7)

where λ is such that

XTDQXλ = TX − t̂X , (8)
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if a solution to these equations exists. It is not nec-
essary that XTDQ be of full rank.

If X is full column rank (and DQ is full rank), a
solution exists, and it is given by equation (7). If X
is not of full column rank, that is, if some columns
of X can be expressed as linear combinations of oth-
ers, a solution exists if and only if those same rela-
tionships exist within the targets. If the targets are
inconsistent with the linear dependencies in XTDQ,
it is likely that there is something wrong with the
targets, and the statistician should examine them
more closely.

If there are no restrictions on the weights, if the
calibration equations are consistent, a solution ex-
ists, and it is given by equation (7). Solutions for
other distance functions, δ(w, d), may be somewhat
harder to obtain, but the existence of solutions is de-
termined by the consistency of the calibration equa-
tions.

2.2 Meeting Calibration Targets with
Range Restrictions

The solution to the calibration problem (6) may have
either negative or very large elements in w, and nei-
ther of these cases may be acceptable. We therefore
often impose range restrictions on the weights.

We reformulate the minimization problem as the
weighted least squares problem with both linear
equality constraints and other constraints,

min
w

δ(w, d) (9)

s.t. TX = XTw

w ∈ R,

where R is some set of n-vectors, perhaps <n
+, the

positive real numbers. More often, R is a set of
positive numbers less than some given value. The
set may even be restricted to positive integers less
than some value.

The restrictions on the weights is the main prac-
tical problem in implementing calibration method-
ology.

The simple Lagrange multiplier solution of prob-
lem (6) no longer is a solution. Both Deville and
Särndal (1992) and Singh and Mohl (1996) suggest
iterating to the solution for problem (9) by sequen-
tial solutions for problem (6) with d replaced in the
jth iteration by w

(j−1)
∗ , the solution at the (j − 1)th

iteration and beginning with w
(0)
∗ = d. This fails,

of course, if a solution to the equations (8) does not
exist, but more perniciously it fails if W ∩R = ∅.

This approach may be slow to converge even if
there is a solution. It is perhaps a more serious

problem that the existence of a solution is difficult
to establish.

If there is no solution, the problem must be
changed in some reasonable way. Rao and Singh
(1997) propose a “ridge-shrinkage” method to re-
lax the benchmark constraints within a prespecified
tolerance so that the range restrictions can be sat-
isfied. Chen, Sitter, and Wu (2002) use bisection to
find the smallest adjustments to the targets in the
benchmark constraints that will allow the range re-
strictions to be met. The bisection occurs between
the solution to the problem without the range re-
strictions and a solution to the problem without the
benchmark constraints.

One way that depends on a relaxation of the BC
within a prespecified tolerance is to replace the point
targets with intervals; that is, the calibration equa-
tions are replaced by the calibration intervals,

TX − LT ≤ XTw ≤ TX + UT , (10)

where LT and UT are p-vectors with nonnegative
elements. This has the effect of enlarging W , thus
making it less likely that W ∩R = ∅. One can show
by toy counterexamples that so long as the intervals
on the targets and on the weights are finite, there
are cases in which no solution exists.

This approach was used by the National Agricul-
tural Statistics Service (NASS) of USDA in calibra-
tion of data arising from the 2002 Census of Agricul-
ture. Even by relaxing the calibration targets to rea-
sonable prespecified intervals, however, there were
situations in which solutions could not be found.

3. Measuring the Extent to Which Targets
Are Missed

If the calibration targets cannot be met, we need a
scalar measure, say φ(w, TX ), of the extent to which
they are missed whether the targets are points or
intervals.

An obvious candidate for φ(w, TX ) is the sum
of squares of differences. The sum of absolute
differences or any other norm applied to (TX −
XTw) would also be obvious candidates. Any such
φ(w, TX ) would of course be a metric, but there is
no reason to require that it be a metric. Just as
with δ(w, d) we may scale the differences based on
the magnitude TX . It may also be appropriate to
include in φ(w, TX) the variances and covariances
associated with each observational variable and/or
the variances and covariances associated with each
element of TX . If TX comes from a previous sur-
vey, it may be possible to have a good measure of
its variance.
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Let VX and VT be the p × p variance-covariance
matrices, respectively, of the calibration variables
and of the calibration targets (or realized consistent
positive definite estimators of them), and P be a
p× p diagonal matrix with positive entries, perhaps
all equal to 1, or perhaps scaled so as to attach differ-
ential weights of importance to the various calibra-
tion variables. A reasonable measure of how much
the targets are missed is

φQ(w, TX) =
(TX − XTw)T ((VX + VT )P )−1 (TX − XTw).

(11)
If the calibration equations are replaced by cali-

bration intervals, the measure of how much the tar-
gets are missed would be of similar form, but would
be based on how far outside of the interval the com-
puted values lie:

φQ(w, TX ) = eT ((VX + VT )P )−1 e, (12)

where ej = min(0, max((TX)i−(LT )i−yT
i w, yT

i w−
(TX)i − (UT )i)) with yj the jth column of X .

The distances in equations (11) and (13) are for-
mulated in terms of the extent to which each target
variable contributes to the measure of the overall
deviation from the targets. More precisely, in equa-
tion (11), the contribution of the jth calibration vari-
able to the measure is the jth diagonal element of the
matrix

(TX − XTw) (TX − XTw)T ((VX + VT )P )−1.

The sum of the p measures for the individual target
variables is φQ(w, TX).

We can also formulate these distances in terms of
squares of scaled differences of a given target and the
corresponding computed value. Let V − 1

2 be such
that (V − 1

2 )2 = ((VX + VT )P )−1. (Such a matrix
exists because the matrix ((VX +VT )P )−1 is positive
definite. Furthermore such a matrix is symmetric.)
Now write φQ(w, TX ) in equation (11) as

trace
((

V − 1
2 (TX − XTw)

) (
V − 1

2 (TX − XTw)
)T

)
.

The jth diagonal of this matrix is a measure, say rj ,
of the extent to which the jth target is missed. It
is square of the jth element in the vector that forms
the outer product, that is,

rj =
(
V − 1

2 (TX − XTw)
)2

j
. (13)

The sum of the p measures for the individual targets
is φQ(w, TX ).

4. A Reformulation of the Problem

If no solution to the problem exists, because of either
of the situations we have described, we must modify
the problem in a reasonable way (or just quit!). We
are faced with the situation that the targets cannot
be met while satisfying range restrictions. Note that
this nonexistence of a solution has nothing to do with
the objective function δ(w, d).

If both TX = XTw and w ∈ R cannot be sat-
isfied simultaneously, a reasonable approach might
be to relax the calibration equations, and formulate
an objective function that measures how much we
miss the targets. Let φ(w, TX ) be such a function.
We still have the objective of making a minimum
adjustment to the weights, so we might form an ob-
jective function that is a weighted average of the
two separate objective functions. An appropriate
optimization problem would be of the form

min
w

αδ(w, d) + (1 − α)φ(w, TX ) (14)

s.t. w ∈ R,

where α is some number between 0 and 1.
An important difference in this problem and the

optimization problem (9) is that this problem always
has a solution under the usual conditions that δ and
φ are continuous, positive functions, and R is com-
pact.

A possible form of φ(w, TX ), analogous to δQ(w, d)
in equation (4), is given by equation (11). With this
measure of the amount that the targets are missed,
and δQ(w, d) as the measure of how much the weights
are changed, the objective function to be minimized
in problem (14) is

α(w − d)T (DQ)−1 (w − d) +
(1 − α)(TX − XTw)T ((VX + VT )P )−1 (TX − XTw)

or

wT
(

α(DQ)−1 + (1 − α)X((VX + VT )P )−1)XT
)

w

−2wT
(
α(DQ)−1d + (1 − α)X((VX + VT )P )−1

)
TX

+constant.
(15)

At a minimum within <n
+, we have

(
(α(DQ)−1 + (1 − α)X((VX + VT )P )−1)XT

)
w

=
(α(DQ)−1d + (1 − α)X((VX + VT )P )−1)TX .

(16)

The second derivative is nonnegative definite; insur-
ing that a solution to equation (16) is indeed a min-
imum.
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The second component of the coefficient matrix
in equation (16) is singular. (This component is ex-
actly the same matrix we would have in the sim-
ple problem of determining weights so as to satisfy
the calibration equations without any constraints at
all.) The whole coefficient matrix may or may not
be singular. If the matrix is singular, any solution
to equation (16) is a solution to the unconstrained
minimization problem.

A minimum within <n
+ may or may not be a mini-

mum within R, however, and some iterative method
must be used to satisfy the range restrictions.

In calibration problems, R is generally a product
of intervals, usually equal intervals. Indeterminancy
in equation (16) may help to insure that some unre-
stricted minimum satisfies the range restrictions.

There are various possible approaches for obtain-
ing a solution that satisfies interval range restric-
tions. An exact solution solution may require com-
putations over all combinations of weights at bound-
ary values.

5. Computational Issues and Further
Discussion

While the optimization problem (14) always has a
solution, it may not be easy to obtain. The problem,
of course, is not the objective function, but rather
the restrictions on the weights.

It is interesting to observe that without the re-
strictions on the weights, the problem of determining
the calibration weights was a problem in p dimen-
sions. With restrictions on the weights the problem
is in n dimensions. This is because each one of the
n weights must be within a given range.

The iterative scheme for problem (9) is likely to
be even less effective for problem (14) because one
component of the objective function does not pull
the iterations toward convergence.

The difficulties in solving the problem with the
range restrictions suggests a decomposition of the
problem into subproblems with the hope that the
sequence of solutions leads to a solution to the over-
all problem. For example the rj in equation (13)
may be used to suggest individual targets or groups
of targets to begin to address. There is, of course, no
guarantee that a sequential process will be any sim-
pler, because the restriction w ∈ R is still present,
and it is this restriction that presents the computa-
tional challenge.

A stochastic method such as simulated annealing
or a genetic algorithm may be used. The steps in
the stochastic algorithm would be constrained to lie
within R. An efficient stochastic algorithm would

need to have a good method for moving from w(k)

to a good candidate point for w(k+1).
When both components of the objective function

are sums of squares, the problem is a quadratic pro-
gramming problem, and standard software is avail-
able for its solution. Although the formulation and
solution of the problem is straightforward, our pre-
liminary studies indicate that the method is not suf-
ficiently fast enough to address the problems with
multiple tens of thousands of records, as in the NASS
Census of Agriculture. We are currently continuing
experimenting with a quadratic programming ap-
proach for various subproblems.
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