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Abstract:

To select n sampling units out of N population units
to predict the population quantity of interest in spa-
tial statistics, an appropriate spatial sample design
is required to recognize and account for the spatial
auto-correlation in the spatial process; for example,
a spatial systematic design traditionally would be
used for better prediction results. This is, however,
only effective under certain population covariance
structures, such as an isotropic population model.
For more general cases, the optimal sampling strate-
gies can be used to select the optimal sample with
which the mean-square error is minimized. Never-
theless, the practical interest of such optimal sam-
pling strategies is seriously restricted by the inten-
sive computational load and model assumption re-
quired to select the optimal sample. The object of
this study is to construct spatial sampling designs
under an anisotropic population to predict the pop-
ulation quantity of interest, such as population mean
level, with lower prediction error. The performances
of the proposed designs based on the relative ef-
ficiency of the proposed designs to simple random
sampling will be illustrated with simulation study.

Keywords: Model-based Sampling; Optimal Sam-
pling Strategy; Eigensystem; Gaussian Model; Log-
Gaussian Model.

1 Introduction

Under a finite population setting, the population
consists of N units labelled 1,2,. . . ,N . From the
model-based view point, the vector of the val-
ues of the population variable of interest, y =
(y1, y2, . . . , yN )′, is considered as a realization of a
random vector Y = (Y1, Y2, . . . , YN )′. Let s be the
sample of n units selected from the population and
ys, the vector of y values associated with s, be the
vector of observed values. Then the data d is a col-
lection of the sample s and the observed values ys,
d = (s,ys). The inference problems ni sampling can
be categorized into two approaches, design-based
and model-based approaches. In the rather more
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traditional design-based approach, y is considered
as a constant vector and the inference is established
based on the design probability only. In the model-
based approach, on the other hand, y is considered
as a realization of a random vector Y with density
function f(y; θ), and the inference is based on the
population stochastic model as well as the design
probability. Notice that the design probability some-
times can be ignored depending on difference types
of inference (Thompson and Seber 1996).

One major difference between the design-based
and model-based is the existence of the optimal sam-
pling strategy. Under the design-based approach,
there is no so-called optimal sampling strategy which
is always better than any other design among all
possible populations(Godambe 1955, Thompson and
Seber 1996). Intuitively it is not such a surprising
result since an optimal sampling design-based strat-
egy has to be better than any other design under
any possible population, which is impossible because
no population model is assumed. With an assumed
population distribution, however, it is possible to
established a model-based optimal sampling strat-
egy. Furthermore, with an given or Bayesian popu-
lation model and a fixed sampling size n, the opti-
mal model-based sampling strategy is in general an
n-stage adaptive one. That is, each sampling units
should be selected based on what have been observed
during the survey (Zacks 1969).

Such an n-stage adaptive strategy is in fact very
complicated and computational consuming. Sacks
and Schiller (1988) proposed an optimal conven-
tional sampling strategy under a given population
model. They utilized a modified annealing algo-
rithm to search for the optimal sample under a fixed
sample size n. The selection of sampling units by
this conventional strategy does not take the ob-
served value into account. For making use of the
observed values obtained during the survey, Chao
and Thompson (2001) proposed a two-stage optimal
adaptive strategy under a given population model
to further improve the optimal conventional strat-
egy proposed by Sacks and Schiller (1988) and com-
promise with the optimal n stage strategy. For the
purpose of a more practical application, Chao (2003)
described the extension of this two-stage optimal
strategy to a Bayesian population model. In this
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extension, the optimal sample is selected by Markov
chain Monte Carlo method as well as the modified
annealing algorithm. Nevertheless, all these strate-
gies share the common disadvantages, such as inten-
sive computation required to determine the optimal
sample and dependence of the optimal sampling se-
lection on the assumed population model and pre-
dictor. Chao (2004) proposed two sampling designs
that are based on the eigensystem of the population
covariance to select sampling units. These two de-
signs required less population information than the
optimal strategies proposed in the past. Only the
population covariance structure, but not the the ex-
act population distribution, is assumed. Further,
the selection is free of the predictor to be used. Also,
the selection procedure of the sampling units is much
easier to be implemented in practice. The prediction
results are usually than what provided by the simple
random sampling.

The covariance is a function of both the distance
and direction in an anisotropic population, which
is often seen in practice especially in a large area
survey (Arbia and Lafratta 2002). Under such a
population, the usual systematic or symmetric sam-
pling locations which are widely used in a spatial
sampling situation would become more difficult or
even impossible depending on whether the type of
anisotropic structure is geometric, which can be
transformed back to an isotropic one with certain
linear transformation of the coordinate system, or
zonal anisotropic. In this research, we will exam-
ine the performances of these two designs under the
anisotropic populations. Based on the result, we will
evaluate the possibilities of further modification to
improve the designs proposed in Chao (2004).

The intuition and algorithms of the proposed sam-
pling designs will be briefly described in Section 2.
The proposed methods are examined by simulation
results in terms of the sampling locations and their
relative efficiencies to Simple Random Sampling
(SRS). Both of the geometric and zonal anisotropic
population are considered in this research. For bet-
ter visual evaluation, the sampling locations with a
small population size selected by the proposed sam-
pling methods are illustrated in Section 3. Section 4
presents the results of the relative efficiency to SRS
with a larger population size. Results show that
these two designs should be utilized depending in
different population covariance structures. Applica-
tions and further research are discussed in Section 5.

2 Sampling Selection Methods

Let Y be the population random vectors with mean
vector µ = (µ1, µ2, . . . , µN )′, E(Yi) = µi, and co-
variance matrix

Var(Y) = Σ = {σij}i,j=1,...,N ,

where

σij =

{
Var(Yi) if i = j

Cov(Yi, Yj) if i 6= j

The objective is to select n sampling units out of the
N population units to predict the population quan-
tity of interest T (Y) with some unbiased predictor
T̂ (d). In particular, we consider the prediction of
population total T (Y) =

∑N
i=1 Yi, and the best un-

biased predictor, T̂ = E[T |d] in this research
To select sampling units that can give lower mean-

square prediction error, the units that have better
prediction ability to other unselected units or higher
variance themselves are preferred. In other words,
one would like to select the units that account for
as much total population variability as possible. Let
λ1, λ2, . . . , λN be the ordered eigenvalues of Σ,

λ1 ≥ λ2 ≥ · · · ≥ λN , (1)

and e1, e2, . . . , eN be the associated normalized
eigenvectors. Then the original N -dimensional co-
ordinate system can be rotated into a new N -
dimensional orthogonal coordinate system, in which
the N axes are the linear combinations of the orig-
inal variables, such that the coefficients of the ith
linear combination, denoted as Xi, i = 1, . . . , N , are
the components of the ith eigenvectors ei. That is

Xi = e′iY = ei1Y1 + ei2Y2 + . . . + eiNYN ,

where eij is the jth component in the ith eigenvec-
tors. Xi is also known as the ith principal component
in Principal Component Analysis (PCA). The orig-
inal covariance structure can then be explained by
Xi’s. The variability in Y is extracted into the vari-
ances of uncorrelated random variables, Xi’s, and
(e.g. Anderson 1984)

N∑

i=1

Var(Xi) =
N∑

i=1

Var(Yi).

In addition, the variance of Xi is

Var(Xi) = λi, ∀i = 1, . . . , N

Hence, if one would like to select the units that can
account for more variability in Y, then the unit that
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is associated with component having a large abso-
lute value in the leading eigenvectors are reasonable
candidates. Based on this intuition, we propose the
following sampling designs to select

s = {i1, i2, . . . , in}, ij ∈ {1, 2, . . . , N}, ij 6= ij′ , ∀j 6= j′

with a fixed sample size n.
Chao (2004) proposed two design, denoted as I

and II which make use of the information provided
by the eigensystem of the population covariance
structure. For detailed procedures and insights of
these designs, please refer to Chao (2004). In short,
design I makes use of the magnitudes/absolute val-
ues of the components in the eigenvectors, and de-
sign II also takes the sign of the components into
account.

3 Sampling Locations

The sampling locations selected by sampling designs
proposed in Section 2 are illustrated under different
spatial survey situations in this section. The popu-
lation random vector Y is assumed to follow a mul-
tivariate normal distribution

Y ∼ N(µ,Σ) (2)

where

µ = (µ1, . . . , µN )′, Σ = {σij}, i, j = 1, . . . , N.

In this article. The covariance matrices are gener-
ated by two different anisotropic models, geomet-
ric anisotropic and zonal anisotropic, are consid-
ered. The population and sample sizes are set to
be N = 25 and n = 5, respectively.

3.1 Geometric Anisotropic

In the spatial geometric anisotropic population, the
covariance matrix can be transformed to an isotropic
one by a linear transformation. Equation 3 is the
geometric covariance function used in this section
(Eriksson and Siska 200).

σij = σ2 exp(−||h||2/c2)Cov(Yi, Yj)

= σ2 exp
[
h2 cos2(φ− θ) + λ2 sin(φ− θ)2

amax

] (3)

where h is the Euclidean distance between site i and
j, θ is the angle of rotation of the coordinate system,
amax is the range on the direction of θ, φ is the
separation angle, and λ > 1 is the ratio of anisotropy
of the ellipse. Equation 3 indicates that the larger
h is or the closer φ to θ, the stronger the covariance
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Figure 1: The covariance structure given in Equa-
tion 3 with σ2 = 1, λ = 7, θ = π/3, and amax = 3.
and the sampling locations selected by design I and
II.

between population units is, and vice versa. First
we consider that the possible sampling sites (also
the population units) are the cross points of a 5× 5
rectangular grid. Figure 1 illustrates the covariance
structure and the sampling locations selected by the
designs described in Section 2 with n = 5. It is clear
that design II seems be able to select more plausible
sample.

3.2 Zonal Anisotropic

In contrast to the geometric anisotropic model, the
zonal anisotropic covariance matrix cannot be trans-
formed to an isotropic one by a linear transforma-
tion. Equation 4, which is essentially a sum of
two different geometric covariances, is the zonal co-
variance function used in this section (Eriksson and
Siska 200).

Cov(Yi, Yj) = σ2
1 exp

[
h2 cos2(φ− θ1) + λ2

1 sin(φ− θ1)2

a1,max

]

+ σ2
2 exp

[
h2 cos2(φ− θ2) + λ2

2 sin(φ− θ2)2

a2,max

]

(4)

Figure 2 shows the covariance structure and the sam-
pling locations selected by the designs described in
Section 2 with n = 5. Again, design II seems be able
to select more plausible sample.
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Figure 2: The covariance structure given in Equa-
tion 4 with σ2

1 = σ2
2 = 1, λ1 = 3, λ2 = ∞, θ1 = π/3,

θ2 = 0, a1,max = 4, and a2,max = ∞. and the sam-
pling locations selected by design I and II.

4 Relative Efficiency to SRS

The performances of the proposed designs are ex-
amined under some moderate correlated populations
based on the relative efficiencies of designs I and II
to SRS. The cases studied are essentially the same
as those in Section3, only with a larger study region
and population size. The population size used in
this section is N = 81. The population quantity of
interest is the population total.

T (Y) = 1′NY =
N∑

i=1

Yi,

where 1N is a vector of length N in which all ele-
ments are 1. The Best Linear Unbiased Predictor
(BLUP) for the population total (cf. Bolfarine and
Zacks 1992 p.25).

The relative efficiency of a design to SRS is defined
as the ratio of the mean-square prediction error ob-
tained with SRS to that obtained with the design,
so that a value greater than 1 indicates the proposed
design is more efficient. In this article, mean-square
prediction error was estimated with simulation by
producing K realizations of the model and design
and calculating

E(T − T̂ )2 =
1
K

K∑

j=1

(Tj − T̂j)2,
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Figure 3: Geometric and Zonal Anisotropic Covari-
ance structure
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Figure 4: Relative Efficiencies of Design 1 and 2 to
SRS on a region with sampling sites on the cross
points of a 9× 9 rectangular grid.

where Tj and T̂j are the true and predicted pop-
ulation total of the jth realization. For each case,
K = 15, 000 realizations are simulated for each case.
Figures 3 describes the covariance structures under
geometric and zonal anisotropic model used in this
section.

Shown in Figures 4 are the relative efficiencies of
design I and II to SRS. Design II is always better
than SRS, but the performance of design I is not as
good and it is often even worse than SRS.

In fact, design I is known to perform better with
non-homogeneous population variances and ran-
domly distributed possible sampling locations (Chao
2004). We also examine the performance of design
I and II under such a situation. Figure 5 is the
possible sampling locations as well as the variances.
Figure 6 is the relative efficiencies of these two de-
signs to SRS, and it indicates that both are better
than SRS. In addition, design I is always better than
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design II as expected.
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Figure 5: Randomly distributed possible sampling sites with

nonhomogeneous variance.
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Figure 6: Relative Efficiencies of Design 1 and 2 to SRS on a

region with random distributed sampling sites and nonhomoge-

neous population variance.

5 Discussions and Future Research

Design I and II should be used under different sam-
pling situations. With homogeneous population
variance, design II is always better than SRS and
should be suggested. On the other hand, both can be
used instead of SRS when when the population vari-
ance is nonhomogeneous. Notice that with randomly
distributed possible sampling locations and/or non-
homogeneous population variance, the usual system-
atic/symmetric spatial sampling designs are not able
to select ”good” sample.

The performance of these two designs are not sta-
ble, and sometimes can be worse then SRS, espe-
cially when the population units are regularly lo-
cated in the study region with homogeneous popu-
lation variance. Further modification of these two

design is certainly necessary and worthy for the fu-
ture research. Related work and results are expected
to be proposed in the near future.
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