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Abstract

Replication methods are used frequently to con-
struct variance estimators under complex sampling
designs. We develop a replication variance estima-
tor for the situation in which some of the sample
elements are unobserved and their information is im-
puted. The method relies on fractional hot-deck im-
putation and adjusts the variance replicates to ac-
count for the imputation mechanism. The properties
of the method are discussed.
Keywords: Hot deck imputation, fractional impu-
tation, jackknife variance estimation.

1 Introduction

Item nonresponse occurs frequently in surveys. In
many situations, hot deck imputation procedures are
used to impute the missing values. These procedures
replace the missing values by values randomly se-
lected from respondents. In that case, a full dataset
without missing values is obtained, with some values
actually observed and other imputed. If variance es-
timates using standard formulas are then used for
estimating variances, it can lead to underestimation
of the variability of the survey estimates. An ap-
proach for reducing imputation variance is to use
fractional imputation as described by Kalton and
Kish (1984), Fay (1996), and Kim and Fuller (2004).
Fractional imputation involves using more than one
donor for a nonrespondent, with each donor having
fractional weights. This approach was designed to
reduce the variance of the imputation procedure, but
it also provides an opportunity to estimate the vari-
ability of the procedure by considering the between-
imputation differences, as will be further explored
below.

Several other procedures have been proposed for
estimating the variance of an estimated total after
hot deck imputation. Rao and Shao (1992) proposed
a jackknife variance estimator for hot deck imputa-
tion in which the donors are selected with probabil-
ity proportional to the sampling weights. Tollefson
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and Fuller (1992) proposed a variance estimator for
without replacement hot deck imputation. Särndal
(1992), Fay (1996) and Chen and Shao (2001) also
proposed variance estimators for certain types of hot
deck imputation. For more references, see Little and
Rubin (2002).

The impetus for the current research come from
the involvement of the authors in the development
of variance estimation procedures for the National
Resources Inventory (NRI). The NRI is a two-phase
longitudinal survey designed to assess conditions and
trends of soil, water and related natural resources
on nonfederal lands in the United States. The NRI
is being conducted by the US Department of Agri-
culture’s Natural Resources Conservation Service, in
cooperation with the Center for Survey Statistics
and Methodology at Iowa State University. Nusser
and Goebel (1997) describe the NRI in more detail.
Originally conducted every five years, the current
NRI is conducted annually, with the 1997 NRI used
as a first phase sample and the annual samples se-
lected as second phase samples. While a portion
of the sampled elements have complete data records
for all survey years, another portion has incomplete
records over time. For the latter portion, a hierarchi-
cal hot deck procedure is used to impute the missing
data. Regression and calibration estimation proce-
dures are used to construct annual estimates, and a
grouped jackknife procedure is used to estimate the
variance. This variance estimation procedure does
not currently fully account for the variance inflation
due to imputation, so there is a need for an improved
procedure that can account for that effect.

The estimation procedure described in the fol-
lowing sections proposes an “idealized” version of a
procedure that might eventually be adapted for the
NRI. In this simplified version, the sampling design
is simple random sampling without replacement,
the response mechanism is simple random sam-
pling without replacement within groups, and the
imputation mechanism is through equal-probability
with-replacement sampling within the same groups.
These simplifications were chosen to make it easier
to explain the approach and to formally derive its

ASA Section on Survey Research Methods

2844



statistical properties. In the future, we intend to
expand the study of the proposed estimation proce-
dure to account for more complex sampling designs
and imputation mechanisms.

In Section 2 we describe the fractional imputation
based estimator. In Section 3 we discuss the proper-
ties of this estimator and related results. In Section
4, we propose an adjusted variance estimator and
in Section 5 we show the results of a small simula-
tion study and finally in Section 6, we present our
conclusions.

2 Fractional Imputation Estimator

We assume that a without replacement sample of
size n is drawn from a (large) population U contain-
ing N elements. In this sample there are nR respon-
dents and nM missing values. For the purpose of
imputing the missing values, assume that we are con-
structing G imputation cells, in such a way that the
observations are approximately homogenous within
each cell. We denote the sample of size n as s. We
assume that these G imputation groups extend into
the population U and in the gth group there are
Ng elements, with

∑G
g=1 Ng = N . The sample s of

size n has ng elements drawn from the gth group for
all g = 1, . . . , G. Hence the ng’s are random and∑G

g=1 ng = n.
Among the ng elements sampled out of the gth

group, there are nRg
respondents and nMg

missing
values with, nRg

+ nMg
= ng. We assume that

these nRg respondents are drawn without replace-
ment from the ng elements with the response set in
any group being independent of any other group. We
denote the set of responding units (sample) from the
gth group as Rg. The combined set of respondents
over all groups is denoted as

R = ∪G
g=1Rg.

Also, call the full set of missing values as M , with
Mg the set of missing values in group g.

We will maintain a design based framework and
study the proposed imputation method with re-
spect to the (random) imputation mechanism, the
response mechanism and the sampling design. The
imputation mechanism we will consider in this paper
is with-replacement partial fractional hot deck impu-
tation within cells.

Under fractional imputation, the missing values
are replaced by several randomly imputed values
with fractional weights. In partial fractional impu-
tation, some missing values will be fractionally im-
puted while others will only be imputed once. We
divide the elements in the class Mg into two classes

denoted by M
(1)
g and M

(2)
g , where the values in the

former class are imputed by using only one ran-
domly chosen obsevation from Rg and those in the
latter class are imputed by selecting two observa-
tions with replacement from Rg. The sample sizes
in these classes are denoted by n

(1)
Mg

and n
(2)
Mg

, re-
spectively, and we denote their totals over the cells
as n

(1)
M =

∑G
g=1 n

(1)
Mg

and n
(2)
M =

∑G
g=1 n

(2)
Mg

. Also,

nM = n
(1)
M + n

(2)
M = n − nR =

∑
g ng −

∑
g nRg

,

and, nRg + n
(1)
Mg

+ n
(2)
Mg

= ng. We assume that, after

the respondents Rg are selected, n
(1)
Mg

units are ran-
domly selected from the set of nMg

nonrespondents.
Thus, the set of missing values which are imputed
using only one observation is a random sample (of
size n

(1)
Mg

) from the full set of nonresponding units.

The other set of n
(2)
Mg

elements which are imputed
using two observations is automatically chosen.

To further simplify the notation, we assume that
the following proportionality conditions hold over all
groups g,

nRg
= α1ng and n

(1)
Mg

= α2ng ∀ g (1)

for some constants α1, α2 ∈ (0, 1) with (α1+α2) < 1.
This condition means that the proportion of respon-
dents and units imputed with one (or two) respon-
dents remain the same over all groups. This assump-
tion can be readily relaxed, but would make our no-
tation significantly more cumbersome.

We consider the estimation of

ȳN =
1
N

N∑
i=1

yi ≡
1
N

G∑
g=1

Ng∑
j=1

ygj .

The estimator we will study is,

ȳI =
1
n

∑
g

∑
j

y∗∗gj . (2)

where

y∗∗gj =


ygj : j ∈ Rg

y∗gj : j ∈ M
(1)
g

1
2 (y∗gj1 + y∗gj2) : j ∈ M

(2)
g

and the values y∗gj , y
∗
gj1, y

∗
gj2 are drawn with replace-

ment and with equal probability from those in Rg.

3 Properties of the Estimator

We study the properties of the estimator (2) with
respect to the sampling design, the response mecha-
nism and imputation mechanism. Let Eim

(
.
∣∣R) de-

note the expectation with respect to the imputation
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mechanism given the response set R and Vim

(
.
∣∣R)

denotes the corresponding variance (conditioning on
the response set R trivially conditions on the sam-
ple s as well). Similarly, ER

(
.
∣∣s) and VR

(
.
∣∣s) de-

note the expectation and variance with respect to
the ’second phase’ sample R given the first phase
sample s. Es(.) and Vs(.) denote expectation and
variance with respect to the first phase sampling. Fi-
nally, E(.) and V(.) denote overall expectation and
variance. We can write

E(ȳI) = Es

(
ER

(
Eim

(
ȳI

∣∣R) ∣∣s)) ,

and

V(ȳI) = Vs(ER(ȳI

∣∣s)) + Es(VR(ȳI

∣∣s))
= Vs(ER(Eim(ȳI

∣∣R)
∣∣s))

+ Es

[
VR(Eim(ȳI

∣∣R)
∣∣s)

+ ER(Vim(ȳI

∣∣R)
∣∣s)] . (3)

Conditioning on R,

Eim

(
y∗∗gj

∣∣R) =
{

ygj : j ∈ Rg

ȳRg
: j ∈ Mg

and

Vim

(
y∗∗gj

∣∣R) =
{

0 : j ∈ Rg

s2
Rg

: j ∈ Mg
,

with ȳRg
= 1

nRg

∑
j∈Rg

ygj and s2
Rg

=
1

nRg−1

∑
j∈Rg

(
ygj − ȳRg

)2
. Since the imputa-

tion is done with replacement, the covariance
between any two imputed values is zero, so that
under the assumptions made in (1),

ER(Eim(ȳI

∣∣R)
∣∣s) = ER

(
1
n

∑
g

ng ȳRg

∣∣s)

=
1
n

∑
g

ng ȳng
, (4)

VR(Eim(ȳI

∣∣R)
∣∣s) = VR

(
1
n

∑
g

ng ȳRg

∣∣s)

=
1
n2

∑
g

n2
g

(
1−

nRg

ng

)
s2

ng

nRg

=
1
n

nM

nR

∑
g

ng

n
s2

ng
(5)

and

ER(Vim(ȳI

∣∣R)
∣∣s) =

1
n2

∑
g

ñMg
s2

ng

=
ñM

n2

∑
g

ng

n
s2

ng
. (6)

where s2
ng

= 1
ng−1

∑ng

j=1

(
y∗∗gj − ȳng

)2 and

ñMg
=

n
(1)
Mg

+
n

(2)
Mg

2

 .

Since s was a without replacement sample, we can
deduce from (3) and (4),

Vs(ER(Eim(ȳI

∣∣R)
∣∣s)) = Vs(ȳn) =

(
1− n

N

) s2
N

n

where s2
N = 1

N−1

∑G
g=1

∑Ng

j=1 (ygj − ȳN )2 and ȳN =
1
N

∑G
g=1

∑Ng

j=1 ygj . Combining (5) and (6) we get

Es(VR(ȳI

∣∣s)) =
(

ñM

n2 + 1
n

nM

nR

)
Es

(∑
g

ng

n s2
ng

)
.

Hence, (3) reduces to

V(ȳI) =
(
1− n

N

) s2
N

n
+

(
nM

n2
−

n
(2)
M

2n2
+

1
nR

− 1
n

)

× Es

(∑
g

ng

n
s2

ng

)
. (7)

Under the first sampling design s, the quantities ng

are random and so we keep the terms ng

n inside the

expectation. The term Es

(∑
g

ng

n s2
ng

)
is a weighted

average of the within group variances. We would like
to develop an estimator for the variance in (7). A
possible (naive) estimator can be defined as,

V̂(ȳI) =
1

n(n− 1)

∑
g

∑
j

(y∗∗gj − ȳI)
2
. (8)

To find the expectation of this estimator we write

y∗∗gj − ȳI =
(

ȳRg
−
∑

g ng ȳRg

n

)
+
{

y∗∗gj − ȳRg
−
(

ȳI −
∑

g ng ȳRg

n

)}
,

and

Eim

∑
g

∑
j

(y∗∗gj − ȳI)
2∣∣R
 = A + B (9)

where

A =
∑

g

ng

(
ȳRg −

∑
h nhȳRh

n

)2

=
∑

g

ng ȳ
2
Rg
− 1

n

(∑
g

ng ȳRg

)2

(10)

ASA Section on Survey Research Methods

2846



and

B = Eim

∑
g

∑
j

(
y∗∗gj − ȳRg

)2∣∣R


+ Eim

(
n

(
ȳI −

∑
g ng ȳRg

n

)2∣∣R)

− Eim

(
2
(

ȳI −
∑

g ng ȳRg

n

)

×
∑

g

∑
j

(y∗∗gj − ȳRg )
∣∣R


= Eim(B1 + B2 −B3

∣∣R). (11)

In the term B3, the sum is actually over the units
in j ∈ Mg. Taking expectations of these three terms
separately and using the fact that the imputation is
done with replacement, we find from B1,

Eim(B1

∣∣R) = Eim

∑
g

∑
j

(
y∗∗gj − ȳRg

)2∣∣R


=
∑

g

∑
j∈Rg

(
ygj − ȳRg

)2
+
∑

g

∑
j∈Mg

Eim

((
y∗∗gj − ȳRg

)2∣∣R)
=

∑
g

nRg
s2

Rg
+
∑

g

∑
j∈Mg

Vim(y∗∗gj

∣∣R)

=
∑

g

(nRg + ñMg )s2
Rg

. (12)

And from B2, we get

Eim(B2

∣∣R) = nEim

{(
ȳI −

∑
g ng ȳRg

n

)2∣∣R}
= nVim

(
ȳI

∣∣R)
=

1
n

∑
g

ñMgs2
Rg

. (13)

Note that in B3,

ȳI −
1
n

∑
g

ng ȳRg
=

1
n

∑
g

∑
j∈Mg

(y∗∗gj − ȳRg
).

Hence, B3 reduces to 1
n

(∑
g

∑
j∈Mg

(y∗∗gj − ȳRg )
)2

,

and

Eim(B3

∣∣R) =

Eim

 2
n

∑
g

∑
j∈Mg

(y∗∗gj − ȳRg )

2∣∣R


=
2
n

Vim

∑
g

∑
j∈Mg

y∗∗gj

∣∣R


=
2
n

∑
g

ñMg
s2

Rg
. (14)

Hence, from (10)-(14) we get

Eim

∑
g

∑
j

(y∗∗gj − ȳI)
2∣∣R
 =

∑
g

ng ȳ
2
Rg

− 1
n

(∑
g

ng ȳRg

)2

+
∑

g

(
nRg

+ ñMg
−

ñMg

n

)
s2

Rg
.

(15)

The next stage is to find the conditional expec-
tation with respect to the second phase sample R
given the first phase sample s. Thus, from (8) and
(9), taking expectation of (15),

ER(
∑

g

∑
j

(y∗∗gj − ȳI)
2|s) =

∑
g

ng

(
1−

nRg

ng

)
s2

ng

nRg

+
∑

g

ng ȳ
2
ng
− 1

n

[∑
g

n2
g

(
1−

nRg

ng

)
s2

ng

nRg

+ n2ȳ2
n

]

+
∑

g

(
nRg

+ ñMg
−

ñMg

n

)
s2

ng
.

Under the assumptions in (1), the right side of the
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above expression reduces to

ER(
∑

g

∑
j

(y∗∗gj − ȳI)
2|s) =

(
1− nR

n

) n

nR

∑
g

s2
ng

+
∑

g

ng ȳ
2
ng
−
(

1
nR

− 1
n

)∑
g

ngs
2
ng
− nȳ2

n

+
∑

g

(
nRg

+ ñMg
−

ñMg

n

)
s2

ng

=
nM

nR

∑
g

(
1− ng

n

)
s2

ng
−
∑

g

ngs
2
ng

+ ns2
n

+

(
1−

n
(2)
M

2n

)∑
g

ngs
2
ng
− 1

n

∑
g

ñMg
s2

ng

=
nM

nR

∑
g

s2
ng

+ ns2
n −

(
nM

nR
+

n
(2)
M

2

)∑
g

ng

n
s2

ng

− 1
n

∑
g

ñMg
s2

ng
. (16)

Finally, we need to calculate the expectations with
respect to the first phase sampling design s, but since
the ng are random, the expression cannot be further
simplified. If the divisor n(n − 1) is included, then
(16) immediately becomes

E(V̂(ȳI)) =
nM

n(n− 1)nR
Es

(∑
g

s2
ng

)
+

s2
N

n− 1

−

(
nM

nR
+ n

(2)
M

2

)
n(n− 1)

Es

(∑
g

ng

n
s2

ng

)

≈ s2
N

n
−

n
(2)
M

2n2
Es

(∑
g

ng

n
s2

ng

)
. (17)

It should be mentioned that we are dropping terms
of order 1

n2 or smaller in our calculations.
An approximate expression for the asymptotic

bias of V̂(ȳI) is obtained from (17) and (7) as

B(V̂(ȳI)) = E(V̂(ȳI))− V̂(ȳI)

=
s2

N

N
−
(

nM

n2
+

1
nR

− 1
n

)
× Es

(∑
g

ng

n
s2

ng

)
. (18)

The first term will be further ignored for the present
article. It is of smaller order if n

N = o(1). We will
propose an adjusted variance estimate that corrects
for the bias (18). The bias correction wil be obtained
by modifying an existing replication variance that
produces unbiased variance estimators when there
is no nonresponse.

4 Adjusted Variance Estimator

We start from a (possibly grouped) jackknife pro-
cedure. The jackknife procedure is carried out as
follows. We delete a set of units from the whole set
of n units. Suppose a deleted set has d units. We
do not necessarily consider all possible subsets of d
units out of n units in our sample. Some appropri-
ate set is chosen, call it as H. Thus, H consists of
all d-tuples of indices such that the corresponding
d-tuple of units was deleted in one of the jackknifed
samples. Formally,

H = {(i1, . . . , id) : 1 ≤ i1 < . . . < id ≤ n

: (i1, . . . , id) is deleted} .

A jackknife variance estimator can then be defined
as

V̂JK =
∑
h∈H

c[h]

(
ȳ[h] − ȳI

)2
, (19)

where ȳ[h] is the sample mean of the hth jackknife
replicate, and the c[h] are appropriate weights cor-
responding to the hth deleted set in H. In case
of delete-1 jackknife and with no nonresponse, this
jackknife estimator is equivalent to the estimator
V̂(ȳI) defined earlier and is asymptotically unbiased
for V(ȳI). We are going to adjust this estimator to
account for nonresponse and imputation.

Any missing observation that was imputed by us-
ing two randomly selected observations from the re-
sponse set (i.e. those in the M

(2)
g ) can be written

as

y∗∗gj =
y∗gj1 + y∗gj2

2
: j ∈ M (2)

g .

Suppose we modify this imputed value by removing
one of the two values and only using the remaining
one. After changing the imputation weights assigned
to y∗gj1 and y∗gj2 to reflect this change, the new value
is

ỹ∗∗gj = ygj2.

The difference between the original and the modified
imputed values is

y∗∗gj − ỹ∗∗gj =
y∗gj1 − y∗gj2

2
.

This difference, averaged over a carefully selected set
of imputed sample elements, can be used to mea-
sure the additional variability caused by the nonre-
sponse and imputation mechanisms, as will now be
explained.

Depending on a deleted d-set h = (i1, . . . , id) re-
moved from the original sample, we need to choose
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qg elements from the remaining elements in set M(2)
g

(for all g) on which we will modify the imputed val-
ues as described above. The numbers qg are to be
determined. So, let us denote the set of units (in-
dices) in M(2)

g on which the weights are changed (de-
pending on our choice of h ∈ H) as Eh,qg and denote
the union of this sets over g as

Eh,q = ∪G
g=1Eh,qg .

Define the mean of a jackknifed sample after
changing weights as

ȳ
′

[h,q] =
1

n− d

∑
g

∑
j 6∈h, 6∈Eh,q

y∗∗gj +
∑

g

∑
j∈Eh,qg

ỹ∗∗gj


= ȳ[h] +

1
2(n− d)

∑
g

∑
j∈Eh,qg

(
y∗gj1 − y∗gj2

)
= ȳ[h] + f[h,q], (say)

where ȳ[h] = 1
n−d

∑
g

∑
j 6∈h y∗∗gj . Define the modified

jackknife variance estimator as

V̂
′

JK =
∑
h∈H

c[h]

(
ȳ

′

[h,q] − ȳI

)2

,

which is written as

V̂
′

JK =
∑
h∈H

c[h]

(
ȳ[h] − ȳI

)2 +
∑
h∈H

c[h]f
2
[h,q]

+ 2
∑
h∈H

c[h]f[h,q]

(
ȳ[h] − ȳI

)
= T1 + T2 + T3, (say) (20)

where {c[h] : h ∈ H} are the originally defined
weights for this jackknife estimator in (19). These
weights do not depend on the choice of units which
are being modified, as they only depend on the
deleted units h. In the expression for f[h,q], the terms
y∗gj1 and y∗gj2 are i.i.d and hence Eim(T3

∣∣R) = 0.
Since, |Eh,qg | = qg we have

Eim(f2
[h,q]

∣∣R) =
1

2(n− d)2
∑

g

qgs
2
Rg

.

Hence,

ER

(
Eim

(
T2

∣∣R) ∣∣s) =
q

2(n− d)2
∑
h∈H

c[h]

∑
g

ng

n
s2

ng
.

Write
∑

h∈H c[h] = CH. From (20), taking expecta-
tion of both sides we find

E
(

V̂
′

JK

)
= E

(∑
h∈H

c[h]

(
ȳ[h] − ȳI

)2)

+ CH
q

2(n− d)2
Es

(∑
g

ng

n
s2

ng

)
.

(21)

Equating the last term in (21) with the first term
in (18) we find q depending on H as

q =
2(n− d)2

CH

(
nM

n2
+

1
nR

− 1
n

)
.

In case of delete one jackknife, we will have d = 1
and c[h] = n−1

n , which gives CH = (n − 1), and in
that case the formula for q reduces to

q = 2
(

nM

n
+

n

nR
− 1
)

.

Moreover, under the assumption of (1),

q = 2
(

1
α1

− α1

)
. (22)

5 Simulation Study

We conduct a small simulation study. Consider G =
3, with N(µg, σ

2
g) as population groups. Fix the val-

ues, α1 = 0.6 and α2 = 0.2. Also fix (N1, N2, N3) =
(500, 600, 650) and n = 350. Thus the sampling frac-
tion is 0.2. We do a Monte Carlo simulation to find
the MC estimates of V(ȳI), E(V̂(ȳI)) and E(V̂

′

JK).
The Monte Carlo simulation size is B = 5000. We
consider two cases corresponding to low and high
imputation bias.

1. Population 1: with the groups µ = (−10, 0, 10)
and σ2 = (1, 1, 1), shown in Figure 1.

2. Population 2: with the groups µ = (−1, 0, 1)
and σ2 = (1, 1, 1), shown in Figure 3.

The simulation is carried out by repeating the fol-
lowing steps B times:

1. From the set of N = 1750 units, draw a without
replacement sample of size n = 350.

2. Within the sample from the gth group of size ng,
draw without replacemt samples of sizes nRg

=
α1ng and n

(1)
Mg

= α2ng.

3. Impute the missing values using the described
procedure. Compute the jackknife estimator
V̂JK in (19), which is equivalent to V̂(ȳI). Also
calculate the imputed mean ȳI .

4. Find q using (22) and compute qg’s as a multi-
nomial sample from a population of size q and
proportions ng

n .

5. Within each delete-1 jackknife replicate created,
draw a random sample of qg elements from n

(2)
Mg

elements and change weights on them. Carry
out this procedure for n jackknife replicates,

and compute V̂
′

JK .

ASA Section on Survey Research Methods

2849



µ σ2 V(ȳI) E(V̂(ȳI)) E(V̂
′

JK)
(−10, 0, 10) (1, 1, 1) 0.1540 0.1511 0.1535
(−1, 0, 1) (1, 1, 1) 0.0064 0.0035 0.0059

Table 1: MC Estimates for the two different popu-
lations.
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Figure 1: µ = (−10, 0, 10) and σ2 = (1, 1, 1): His-
togram for true data of size N = 1750 generated
from the populations.

Table 1 shows the MC estimates obtained in the
simulation study. Figures (2) and (4) displays the

histograms for V̂(ȳI) (left) and V̂
′

JK (right) with the
MC estimate of the true variance V(ȳI) (shown as
a vertical line) for the two populations. It can be
seen that for Population 1, which has widely sepa-
rated population groups, the bias due to imputation
is low and the naive variance estimator performs as
well as the modified jackknife estimator in estimat-
ing the true variance. But for Population 2, with
largely overlapping population groups, the bias due
to imputation is high and hence the modified esti-
mator performs better than the naive one, which un-
derestimates the true variance. This shows that the
suggested imputation method performs well, both
when significant bias is present and when it is not.

6 Conclusion

In this paper, we have presented a jackknife based
variance estimator of the sample mean that adjusts
for nonresponse and imputation, when observations
are selected from a grouped population and nonre-
spondents are imputed using fractional imputation.
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Figure 2: µ = (−10, 0, 10) and σ2 = (1, 1, 1): His-
torgram showing MC distribution of naive jackknife
(left side) and modified jackknife (right side) vari-
ance estimators. The vertical line denotes the MC
expected value of true variance.
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Figure 3: µ = (−1, 0, 1) and σ2 = (1, 1, 1): His-
togram for true data of size N = 1750 generated
from the populations.
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Figure 4: µ = (−1, 0, 1) and σ2 = (1, 1, 1): His-
torgram showing MC distribution of naive jackknife
(left side) and modified jackknife (right side) vari-
ance estimators. The vertical line denotes the MC
expected value of true variance.

The proposed method does this by adjusting the im-
putation weights on a certain number of imputed
values in each jackknife variance replicate. Under
a simple sampling and imputation scheme, we de-
rived a formula for the number of replicates to be
adjusted, and we applied this approach in a simula-
tion experiment. The simulation results show that
the method works well in different settings. Specif-
ically, the proposed method adjusts for the imputa-
tion bias and works much better than the unadjusted
variance estimator in case where there is high impu-
tation bias (overlapping population groups). In case
where there is low bias (clearly delineated popula-
tion groups) and hence no need to adjust the esti-
mator, the method works no worse than a naive vari-
ance estimator that ignores the imputation mecha-
nism. In the future, we wish to apply the method to
more complex situations where the sampling design
and the imputation methods are more complex, such
as the NRI.
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