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Abstract: In record linkage, or exact file matching, one compares
two or more files on a single population for purposes of undupli-
cation or production of an enhanced, merged database. Record
linkage has many applications, including in population enumera-
tion efforts, to create databases for epidemiological investigations,
and to improve survey sample frames. Latent class and mixture
models have been used to implement computerised record linkage
of large databases. Probabilities that pairs of records, one record
from each of two files, pertain to the same person (a match) or
to different people (a nonmatch) are estimated based on model
parameters and Bayes’ theorem. In some settings, there is experi-
ence with similar record linkage operations that can inform prior
opinions concerning model parameters. In this paper, Bayesian
record linkage alternatives are developed. A hierarchical Bayesian
model allows parameters to vary by file blocks, which are similar
to geographical blocks in census applications. Techniques for in-
corporating 1-1 matching between files into the likelihood itself
and computing posterior distributions of parameters and linkage
indicators are presented.

1. Introduction

Record linkage (e.g., Fellegi and Sunter 1969, Newcombe et al
1959) involves comparing two or more files on the same popu-
lation for purposes of unduplication of records and merging files.
Record linkage is used in many applications, including population
size estimation at the U.S. Bureau of the Census (Winkler 1994,
1995, and Jaro 1989, 1995), epidemiology and medical studies
(Newcombe 1988, Gill 1997), sociological studies (Belin et al
2004), and survey frame improvement. See also Alvey and Jamer-
son (1997) and references therein.

Latent class (McCutcheon 1987) and mixture models (McLach-
lan and Peel 2000) have been used to model the data arising from
comparing records in two files (Larsen and Rubin 2001, Winkler
1988, 1994, 1995, Jaro 1995). Although successful in many ap-
plications (Alvey and Jamerson 1997), the models used in these
applications have not accounted for all restrictions in the data. In
particular, forcing each record on one file to have at most a sin-
gle, matching record on the other file (“1-1 matching”) has been
implemented post-hoc with a linear-sum assignment procedure
(Burkard and Derigs 1980, Jaro 1989) to choose individual links.
The 1-1 assignment procedure can effectively eliminate many can-
didate links that have some degree of similarity, but actually are
nonlinks.

Experience from previous record linkage operations has been
used informally to select models (Larsen and Rubin 2001) and
restrict parameters (Winkler 1989, 1994). Bayesian approaches
have been suggested by Larsen (1999a, 2002), Forinti et al (2002,
2000), and McGlinchy (2004). A new procedure will be proposed
that explicitly uses the 1-1 matching assumption and allows pa-
rameter values to vary by file block.

2. Record Linkage

Suppose that there are two files,A andB, on a single population.
Consider recorda in file A and recordb in B. Do recordsa
andb correspond to the same person or entity? If filesA andB
do not have unique, accurately recorded identification numbers
for every unit in both files, then it is necessary to consider the
information recorded ina andb in order to answer the question.
Decennial census applications at U.S. Bureau of the Census
record variables including last name and first name, street number
and name, age, sex, race, and relation to head of household.
Files are extensively preprocessed before linkage is attempted.
For example, names are standardized and coded according to
Soundex codes or other scheme. Names and address fields are
parsed and standardized. In the case of simple comparisons, for
each pair of records(a, b) being considered, a vector of 1’s and
0’s indicating agreement and disagreement onK comparison
fields is recorded. That is, fora ∈ A and b ∈ B, define
γ(a, b) = {γ(a, b)1, γ(a, b)2, . . . , γ(a, b)K}, where γ(a, b)k

equals 1 (agreeement) or 0 (disagreement) on fieldk. Many
agreements (γ(a, b) mostly 1’s) are typical of matches. Many
disagreements (γ(a, b) mostly 0’s) are typical of nonmatches.

2.1. One-one Restrictions and Blocking

In some cases, it is assumed that the two data files do not con-
tain duplicate records for any person or entity. In the case of
the census, records are organized by geographical location, each
household should have only one form, and efforts are made at
unduplicating records. Insurance companies and medical records
systems are updated continuously and efforts are made to avoid
duplicate records. Record linkage could be of interest in these
cases, because census follow-up operations are conducted inde-
pendently in large areas and the National Death Index is matched
to to existing insurance, medical, and other databases for studies
such as Livingston and Ko (2005), Rauscher and Sandler (2005),
and Thompson et al. (2005).

In census and other operations, the files are divided geographi-
cally into groups of records or ’blocks’ that do not overlap. Block-
ing is used in other applications as well in order to reduce the

ASA Section on Survey Research Methods

3277



number of record pairs being compared. It is assumed that there
are no (or very few) matches across different blocks. Other op-
erations use first letter of last name (individuals) or industry code
(businesses) or state as blocking variables.

Let blocks be indexed bys = 1, . . . , S. Suppose that fileA
hasnas

records and fileB hasnbs
records, respectively, in block

s. For blockss = 1, . . . , S, as = 1, . . . , nas
andbs = 1, . . . , nbs

,
define I(as, bs) = 1 if a and b are matches, and0 if a and
b are nonmatches. The set of match-nonmatch indicators in
block s is Is = {I(as, bs)}. The 1-1 restrictions and blocking
assumptions mean that

∑
bs

I(as, bs) ≤ 1,
∑

as
I(as, bs) ≤ 1,

and
∑

as

∑
bs′

I(as, bs′) = 0 for s 6= s′. The number of matches
in block s, nms

is defined and restricted under 1-1 matching as
follows:

∑
as

∑
bs

I(as, bs) = nms ≤ min (nas , nbs).

2.2. Prior Beliefs and Logical Relationships

Prior experience and data often are available from previous record
linkage operations and sites. In previous record linkage studies,
clerks at the census looked at record pairs and determined whether
or not they truly were nonmatches or matches. Belin (1993, 1995),
Larsen (1999b), and Larsen and Rubin (2001) found that in some
census record linkage applications characteristics of populations
being studied varied by area in ways that made a significant im-
pact on estimates of parameters needed for record linkage. There
were, however, consistent patterns across areas. The percentage
of record pairs, one record from each of two files, under consider-
ation that actually are matches corresponding to the same person
is roughly similar across sites. The probability of agreeing on
some key fields of information among matches and nonmatches
are similar across sites. The probability of agreements are higher
among matches than among nonmatches.

It is expected that the probability of agreeing on an individual
field of comparison is higher for matches than for nonmatches:
P (γk(a, b) = 1|(a, b) ∈ M) > P (γk(a, b) = 1|(a, b) ∈ U).
Logically, the number of matches in blocks, nms , is smaller than
the smaller of the number of in filesA (nas

) andB (nbs
). So the

probability of a match in blocks, psM , is less than or equal to the
minimum size divided by the number of pairs:nas

nbs
.

3. Bayesian Record Linkage Model

3.1. Bayesian Latent Class Models

The mixture model approach to record linkage models the proba-
bility of comparison vectorγ using a mixture distribution:

Pr(γ) = Pr(γ|M)pM + Pr(γ|U)pU , (1)

where Pr(γ|M) and Pr(γ|U) are the probabilities of the patternγ
among the matches (M ) and nonmatches (U ), respectively, and
pM and pU = 1 − pM are marginal probabilities of matches
and unmatched pairs. In practice at census and Statistics Canada,
models using three classes often are useful when matching indi-
viduals because estimates based on them reflect household struc-
ture (see, e.g., Larsen and Rubin 2001, Armstrong and Mayda

1993, and Winkler 1995). Databases on businesses in general
would not reflect the household grouping typical of people. We
will consider the situation with two classes here.

The conditional independence assumption simplifies the model
by reducing the dimension within each mixture class from2K −1
parameters toK:

Pr(γ|C) =
K∏

k=1

Pr(γk|C)γk(1− Pr(γk|C))1−γk , (2)

with C ∈ {M,U}. Interactions between comparison fields have
been allowed in Larsen and Rubin (2001), Armstrong and Mayda
(1993), Thibaudeau (1993), Winkler (1989), and others. Here we
consider only the conditional independence model and extensions
of it to a hierarchical framework.

Previous approaches have not directly enforced 1-1 linkage in
the likelihood and have used the following likelihood function:

S∏
s=1

∏
a∈As,b∈Bs

Pr(γ(a, b)), (3)

where Pr(γ(a, b)) is a comparison vector modeled using the mix-
ture assumption (1). When the parameters determining Pr(γ|M)
and Pr(γ|U) do not depend on the block from which the pairs orig-
inate andnγ is the number of pairs of records with comparison
patternγ, the simple likelihood can be written as

∏
γ∈Γ Pr(γ)nγ .

Assuming the conditional independence model (2) and global
parameters that do not vary by block, a prior distribution on pa-
rameters can be specified conveniently as the product of inde-
pendent Beta distributions as follows:pM ∼ Beta(αM , βM ),
Pr(γk(a, b) = 1|M) ∼ Beta(αMk, βMk), k = 1, . . . ,K, and
Pr(γk(a, b) = 1|U) ∼ Beta(αUk, βUk), k = 1, . . . ,K.

The match/nonmatch indicatorsI = {I(a, b), a ∈ As, b ∈
Bs, s = 1, . . . , S} are unobserved. By Bayes’ theorem, if the pa-
rameters were known and one does not consider restrictions from
1-1 matching, one could calculate for a pair(a, b) the probability
thata andb match (Pr(M |γ(a, b))):

Pr(I(a, b) = 1|γ(a, b)) = pMPr(γ(a, b)|M)/Pr(γ(a, b)). (4)

If the match indicatorsI were known, the posterior distribu-
tions of individual parameters given values of the other parameters
would be as follows:pM |I has a Beta distrbution

B(αM +
∑
(a,b)

I(a, b), βM +
∑
(a,b)

(1− I(a, b)) (5)

and, fork = 1, . . . ,K, Pr(γk(a, b) = 1|M, I) ∼

B(αMk +
∑

Iabγk(a, b), βMk +
∑

Iab(1− γk(a, b))) (6)

and Pr(γk(a, b) = 1|U, I) ∼

B(αUk +
∑

(1− Iab)γk(a, b), (7)

βUk +
∑

(1− Iab)(1− γk(a, b))),
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whereIab = I(a, b) and sums are over all pairs allowed within
the blocking structure.

The posterior distribution of parameters is simulated by sam-
pling from alternating conditional distributions (Gibbs sampling;
Geman and Geman 1984, Geland and Smith 1990) as follows.

1. Specify parameters for the prior distributions. Choose initial
values of unknown parameters.

2. Repeat four steps numerous times until the distribution of
draws has converged to the posterior distribution:

(a) Draw values for the components ofI independently
from Bernoulli distributions with the probability that
I(a, b) = 1 given by (4).

(b) Draw a value ofpM from the distribution specified in
(5) and calculatepU = 1− pM .

(c) Draw values of Pr(γk(a, b) = 1|M, I) independently
for k = 1, . . . ,K from distributions specified in (6).

(d) Draw values of Pr(γk(a, b) = 1|U, I) independently for
k = 1, . . . ,K from distributions specified in (7).

3. Stop once the algorithm has converged.

Once the algorithm has converged, it is necessary to decide
which pairs of records to designate links and nonlinks and which
to leave undecided. If 1-1 restrictions are not enforced, then one
could calculate the proportion of times that a record pair(a, b)
hasI(a, b) = 1 and for each record in fileA assign the record in
file B that has the largest proportion. If 1-1 matching is desired,
the simulated probabilities (4) of matching could be supplied to a
linear-sum-assignment algorithm.

There are somerestrictions on parametersthat could improve
the performance of this model for record linkage. First, the range
of pM logically should be restricted to be less than or equal to
the smaller of the two file sizes divied by the number of pairs
under the blocking structure. Second, logically the probability of a
record pair agreeing on a comparison field should be larger among
matches than among nonmatches. That is, Pr(γk|M) > Pr(γk|U),
for k = 1, . . . ,K.

There are several significant limitations to this model. First,
there is no explicit 1-1 matching in the likelihood (3) and without
subsequent processing some records could be involved in more
than one designated link. As a consequence, it was not necessary
to model the number of matches overall or within individual
blocks. In many applications, some records in fileA and some in
file B might not have any matches. One-one matching then is the
assumption that records have at most one match in the other file.
Second, the parameters are global and do not vary across blocks
despite the fact that populations can vary greatly across blocks.
Third, the conditional independence assumption was made for
convenience and is not realistic. It has been relaxed in the case
of maximum likelihood estimation (see Larsen and Rubin 2001

and references therein). Interactions between comparison fields
within the matches and nonmatches could be allowed in the
Bayesian approach as well. It is the belief of the author, however,
that explicitly modeling 1-1 matching and allowing parameters to
vary by block will be more beneficial than modeling interactions
globally.

3.2. A Hierachical Bayesian Model

A hierarchical model for record linkage will specify distributions
of parameters within blockss = 1, . . . , S. The likelihood used
in this section is given by likelihood (3) with parameters vary-
ing by block. The probabilities of agreeing on fields of informa-
tion are allowed to vary by block as followspsMk = Pr(γk =
1|M, s) ∼ Beta(αsMk, βsMk) andpsUk = Pr(γk = 1|U, s) ∼
Beta(αsUk, βsUk) independently across blocks, fields, and classes
(M andU ). The restriction thatpsMk ≥ psUk will be assumed.

Hyperpriors distributions are placed on transformed versions
of the Beta parameters. The distributions are independent
across blocks, fields, and groups. These transformations ap-
peared in Larsen (2004):θsMk = logit(αsMk/(αsMk +
βsMk)) ∼ N(µθMk, σ2

θMk), θsUk = logit(αsUk(αsUk +
βsUk)) ∼ N(µθUk, σ2

θUk), τsMk = log(αsMk + βsMk) ∼
N(µτMk, σ2

τMk), and τsUk = log(αsUk + βsUk) ∼
N(µτUk, σ2

τUk). Note that there is a unique bivariate inverse
transformation: αsCk = eτsCk logit−1(θsCk) and βsCk =
eτsCk logit−1(1 − θsCk) for C = M,U . The restriction noted
in the previous paragraphdoes notmean that, fork = 1, . . . ,K,
θsMk ≥ θsUk; the restriction only constrains the parameterspsMk

andpsUk. It would be possible to use a prior distribution with the
constraint thatθsMk ≥ θsUk as well.

The probability of belonging to classM in block s, psM , is
given a Beta(αsM , βsM ) prior distribution. The hyperprior distr-
butions areθsM = logit(αsM/(αsM + βsM )) ∼ N(µθM , σ2

θM )
andτsM = log(αsM + βsM ) ∼ N(µτM , σ2

τM ), and are indepen-
dent of the other hyperpriors. The restriction thatpsM is smaller
than the minimum ofnAs

andnBs
divided by the number of pairs

nAs
nBs

is enforced in this model. If it were not, the small sample
size and great variability across blocks would surely produce poor
results for some blocks. Note thatαsM = eτsM logit−1(θsM ) and
βsM = eτsM logit−1(1− θsM ).

3.3. Simulating the Posterior Distribution

The posterior distribution of parameters and unobserved
match/nonmatch indicators will be simulated using Gibbs sam-
pling. The conditional distributions for the hyperparameters will
be sampled using the Metropolis-Hastings (MH) algorithm (Hast-
ings 1970) within the Gibbs sampling framework. The procedure
iterates through draws of full conditional distributions:

1. Choose hyperparameter distributions. That is, specify
(µθM , σ2

θM ) and, fork = 1, . . . ,K, specify(µθMk, σ2
θMk),

(µθUk, σ2
θUk), (µτMk, σ2

τMk), and(µτUk, σ2
τUk).
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2. Generate initial values of (αsM , βsM ) and, fork = 1, . . . ,K,
(αsMk, βsMk), (αsUk, βsUk) from their prior distributions.

3. Assign an initial match/nonmatch configurationI. Since 1-1
matching is not being forced, but constraints on the parame-
ters and proportion of matches are, the algorithm of Section
3.1 with analogous parameter constraints could be run for
several iterations.

4. Cycle through the following steps numerous times until con-
vergence. LetIab denoteI(a, b).

(a) For s = 1, . . . , S, draw psM from its conditional
distribution given the current indicatorsIs and val-
ues of(αsM , βsM ). Specifically,psM |Is, αsM , βsM ∼
Beta(αsM +

∑
Iab, βsM + nas

nbs
−
∑

Iab), where
the sum is over all pairs(a, b) in block s. Enforce the
constraint:psM ≤ min(nas , nbs)/(nasnbs).

(b) For s = 1, . . . , S, k = 1, . . . ,K, draw psMk

and psUk from their conditional distribution given
the current indicatorsIs, the comparison vectors
γs in block s, and values of(αsCk, βsCk), C ∈
{M,U}. Specifically, psMk|Is, γs, αsMk, βsMk ∼
Beta(αsMk +

∑
s Iabγk(a, b), βsMk +

∑
s Iab(1 −

γk(a, b))), psUk|Is, γs, αsUk, βsUk ∼ Beta(αsUk +∑
s(1 − Iab)γk(a, b), βsUk +

∑
s(1 − Iab)(1 −

γk(a, b))), andpsMk ≥ psUk, where sums are over all
pairs(a, b) in blocks.

(c) For s = 1, . . . , S, use the MH algorithm (Hastings
1970; see also Gelman 1992 and Gelman et al 2004,
chapter 11) to draw values of hyperparametersθsM and
τsM from their full conditional distributions. See Ap-
pendix A for details of this and the next two steps.

(d) Fors = 1, . . . , S, k = 1, . . . ,K, use the MH algorithm
to draw values of hyperparametersθsMk andτsMk.

(e) Fors = 1, . . . , S, k = 1, . . . ,K, use the MH algorithm
to draw values of hyperparametersθsUk andτsUk.

(f) For s = 1, . . . , S, a = 1, . . . , nas , and b =
1, . . . , nbs

, given values ofpsM and, fork = 1, . . . ,K,
psMk and psUk, draw a value ofI(a, b) from a
Bernoulli distribution with the following probability:

psM

∏K
k=1

[
p

γk(a,b)
sMk (1− psMk)1−γk(a,b)

]
/den, where

den = psM

∏K
k=1

[
p

γk(a,b)
sMk (1− psMk)1−γk(a,b)

]
+

(1− psM )
∏K

k=1

[
p

γk(a,b)
sUk (1− psUk)1−γk(a,b)

]
.

5. Stop once the algorithm has converged.

Note that 1-1 restrictions are not imposed on theI matrix. The
size of the candidate match class in each block is controlled in
4(a) by keepingpsM small. Once the algorithm has converged,
it is necessary to decide which pairs of records to designate

links and nonlinks and which to send to clerical review or leave
undecided. Suggestions were made at the end of Section 3.1.
Metropolis-Hastings and algorithm details are in Appendix A.

3.4. Hierachical Bayesian 1-1 Model

In this section, the 1-1 linkage assumption will be enforced in
the set of indicatorsI. The hierarchical specification of Section
3.2 will continue to be used. In order to use the non-hierarchical
model with 1-1 restrictions, one would need to combine the appro-
priate modeling assumptions and prior distributions from Section
3.1 and this section.

Define nms
to be the number of matches in blocks, s =

1, . . . , S. By definition,nms
≤ min (nas

, nbs
). The prior dis-

tribution fornms , independently for eachs, is taken to be

nms
∼ Binomial(min (nas

, nbs
), ps), (8)

whereps ∼ Beta(αp, βp). If αp = 4 andβp = 1, thenEps =
0.8, SDps = 0.16, and the distribution is skewed strongly left.
If αp = 4.5 andβp = 1.5, thenEps = 0.75, SDps = 0.16,
and the distribution is skewed left, but not quite so strongly. The
parameterspsM do not play a role in this model.

Let Is = {I(a, b), a ∈ As, b ∈ Bs} for s = 1, . . . , S. The prior
distribution forIs is taken to be uniform on the space of possible
matching configurations:

P (Is|nms) =
[(

nas

nms

)(
nbs

nms

)
nms !

]−1

. (9)

Without examining the data to some degree, it would not be possi-
ble to assign another prior distribution. In the census application,
it would be reasonable if records are grouped by household to
place higher probability on records in the same household within
blocks.

Given values forI, the likelihood for parameters is Pr(γ|I):

S∏
s=1

 ∏
a∈As,b∈Bs

(
K∏

k=1

p
γk(a,b)
sMk (1− psMk)1−γk(a,b)

)I(a,b)

(
K∏

k=1

p
γk(a,b)
sUk (1− psUk)1−γk(a,b)

)1−I(a,b)


=
S∏

s=1

 ∏
a∈As,b∈Bs,(a,b)∈M

K∏
k=1

p
γk(a,b)
sMk (1− psMk)1−γk(a,b)

∏
a∈As,b∈Bs,(a,b)∈U

K∏
k=1

p
γk(a,b)
sUk (1− psUk)1−γk(a,b)

 (10)

As mentioned before, the parameterspsM are not used in
this model. Let the prior distributions forpsMk and psUk,
s = 1, . . . , S, k = 1, . . . ,K and their associated hyperprior
distributions be the same as in Section 3.2.
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3.5. Simulating the 1-1 Posterior Distribution

The posterior distribution of parameters and unobserved
match/nonmatch indicators will be simulated using Gibbs sam-
pling with Metropolis-Hastings (MH) steps. The procedure iter-
ates through draws of full conditional distributions.

1. Choose hyperparameter distributions by specifyingαp and
βp and, fork = 1, . . . ,K, (µθMk, σ2

θMk), (µθUk, σ2
θUk),

(µτMk, σ2
τMk), and(µτUk, σ2

τUk).

2. Generate initial values in blockss = 1, . . . , S for matching
variablesk = 1, . . . ,K of (αsMk, βsMk) and(αsUk, βsUk)
from their prior distributions.

3. Assign an initial match/nonmatch configurationI. Since 1-1
matching is being forced, the algorithms of Sections 3.1 and
3.2 with appropriate constraints on parameters followed by a
linear sum assignment procedure (Burkard and Derigs 1980)
could be used to produce an initialI. In block s, nms =∑

a∈As

∑
b∈Bs

I(a, b).

4. Cycle through (a)-(e) until the distribution of drawn values
converges to the target posterior distribution.

(a) Fors = 1, . . . , S, drawps from its conditional distri-
bution given the current indicatorsIs (and hencenms

)
and values of(αp, βp). Specifically,ps|Is, αp, βp ∼
Beta(αp + nms , βp + min(nas , nbs)− nms).

(b) For s = 1, . . . , S andk = 1, . . . ,K draw psMk and
psUk from their conditional distribution as described in
step (4b) of Section 3.3.

(c) For s = 1, . . . , S andk = 1, . . . ,K, use the MH al-
gorithm to draw values of hyperparametersθsMk and
τsMk as described in Appendix A step (d).

(d) Fors = 1, . . . , S andk = 1, . . . ,K, use the MH algo-
rithm to draw values of hyperparametersθsUk andτsUk

as described in Appendix A step (e).

(e) Fors = 1, . . . , S, use the MH algorithm to draw values
of Is andnms

from their full conditional distributions.
See Appendix B for details of this step.

5. Stop once the algorithm has converged.

Note that 1-1 restrictions are imposed on theI matrix. The size
of the match class in blocks is explicitly controlled by the fact
that nms

≤ min(nas
, nbs

); 0 < ps < 1. Once the algorithm
has converged, it is necessary to decide which pairs of records to
designate as links and nonlinks.

4. Conclusions and Future Work

A novel hierarchical Bayesian model for record linkage has been
presented and implemented. The model allows probabilities to

vary by block and reflect local information. 1-1 matching restric-
tions are imposed in the likelihood. Indicators of match status are
sampled using Gibbs sampling and Metropolis-Hastings.

It will be interesting to apply these methods to data from cen-
sus, NCHS, and other sources. An automated system for applying
these models to new sets of files would be useful in this regard. In
a real application, one could consider better specifications of prior
distributions for the record linkage model parameters and the use
of training data. In some applications, the size of the files will be
a challenge. In order to speed computations, one might consider
parallel computations by, for example, block.

The algorithm’s perfomance could be improved by study-
ing tuning parameters and the order of sampling cycles within
Metropolis-Hastings (MH) and Gibbs algorithms. One could
study the sensitivity of results to the specification of hyperprior
distributions. If some MH draws for some parameters and ele-
ments ofI infrequently lead to changes in the values, then one
could examine methods for increaseing the frequency of accept-
ing MH moves. In particular, one could consider combining two
or more attempted moves into one step.

Two extensions related to the record linkage model can be stud-
ied. First, one can consider expanded definitions of the agree-
ment/disagreement comparisons for the matching variables. That
is, one could allow partial agreement, missing values, and string
comparator metrics (Winkler 1993, 1994). Second, in some appli-
cations, one could consider more fully using household structure.
In some applications at census, household structure is reflected in
part by the use of three latent classes in the mixture model (Larsen
and Rubin 1999 and references therein).

Another direction for development in the future is the Bayesian
analysis of files that are created through record linkage operations.
Lahiri and Larsen (2005) extended Scheuren and Winkler (1993)
on adjusting for the bias that arises due to errors in matching.
One could imagine a feed-back loop, as in Scheuren and Winkler
(1997), where points with large residuals in a linear regression
model are more likely than their agreement patterns alone suggest
to be nonmatches and points that are very certain to be matches
have more influence on a linear regression fit.
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Appendix A. MH for the Hierarchical Model

Details of the three Metropolis-Hastings (Hastings 1970) steps in
the simulation procedure of Section 3.3 are presented below.

(c). For s = 1, . . . , S, use the Metropolis-Hastings algorithm
(Hastings 1970; see also Gelman 1992 and Gelman et al 2004
chapter 11) to draw values of hyperparametersθsM andτsM

from their full conditional distributions. Specifically, given
current values ofθsM andτsM (and henceαsM andβsM ),
Is, and other parameters,

(i) Define tuning constantshθM > 0 andhτM > 0.

(ii) Draw u ∼ Uniform(0, 1), θ∗ ∼ N(θsM , σ2
θM/hθM ),

andτ∗ ∼ N(τsM , σ2
τM/hτM ).

(iii) Calculate α∗ = eτ∗
logit−1(θ∗) and β∗ =

eτ∗
logit−1(1− θ∗).

(iv) Calculater as the minimum of 1 andpα∗−αsM

sM (1 −
psM )β∗−βsM × exp (−hθM

σ2
θM

(θsM − θ∗)2)

exp (−hτM

σ2
τM

(τsM − τ∗)2).

(v) If u ≤ r, let θsM = θ∗ andτsM = τ∗.
Otherwise, letθsM andτsM remain the same.

(d). For s = 1, . . . , S andk = 1, . . . ,K, use the Metropolis-
Hastings algorithm to draw values of hyperparametersθsMk

and τsMk. Specifically, given current values ofθsMk and
τsMk (and henceαsMk andβsMk), Is, and other parameters,
follow the steps outlined in step (c) above but with allM
indexes replaced byMk’s.

(e). Fors = 1, . . . , S andk = 1, . . . ,K, use the Metropolis-
Hastings algorithm to draw values of hyperparametersθsUk

andτsUk. Specifically, given current values ofθsUk andτsUk

(and henceαsUk andβsUk), Is, and other parameters, follow
the steps outlined in step (c) above but with allM indexes
replaced byUk’s.

The tuning parametershθM and hτM are chosen so that the
drawn values of the parameters are accepted approximately 23-
44% of the time (Gelman et al. 2004 chapter 11.9). Thus the
algorithm could be run for several iterations to assess the accep-
tance rate, adapting the tuning paramters as necessary. A second
phase then could be initiated with fixed values.

Appendix B. Hierarchical 1-1 Model MH Steps

Here the updating step for the number of matches,nms , and the
configuration of matches and nonmatches,Is, for blocks s =
1, . . . , S is described. It is assumed that current values of pa-
rameters and hyperparameters are given. Each block is updated
separately. Given the value of a match/nonmatch configuration
Is, the unknown parameters of the model are drawn as described
in Section 3.5.

Let γs = {γ(a, b), a ∈ As, b ∈ Bs} be the collec-
tion of comparison vectors for all pairs in blocks. For
notational convenience, letαs = (αsMk, αsUk), βs =
(βsMk, βsUk), µ = (µθMk, µθUk, µτMk, µτUk), and σ2 =
(σ2

θMk, σ2
θUk, σ2

τMk, σ2
τUk) (k = 1, . . . ,K in each case) be col-

lections of hyperparameters. For blocks, the full conditional
distribution of (nms , Is, γs) is Pr(nms , Is, γs|{psMk, psUk, k =
1,K}, ps, αs, βs, µ, σ2), which equals

Pr(nms |ps)Pr(Is|nms)Pr(γs|Is, {psMk, psUk, k = 1,K}), (11)

which is non-zero if and only if the 1-1 and match class size re-
strictions of Section 2.1 are fulfilled. The distributions listed in
(11) are discrete.

Here we propose incremental ways of modifyingnms and
Is to cover the space of possible configurations and to produce
higher probabilities of change across iterations. Three basic
“moves” or modifications ofnms

and Is will be considered.
First, one matching pair can be turned into a nonmatching pair:
n∗ms

= nms − 1 andI(a, b) changes from one to zero for some
(a, b) in block s. Second, one nonmatching pair is grouped with
the matches:n∗ms

= nms
+ 1 and I(a, b) changes from zero

to one for some(a, b) such that, before changing the indicator
to one,

∑
a∈As

I(a, b) = 0 and
∑

b∈Bs
I(a, b) = 0. Third,

n∗ms
= nms

is unchanged, butI∗s is different from Is. The
changes inIs that will be considered will involve at most two
records fromAs and two fromBs. Ideas behind such moves are
described here; see Larsen (2005) for more details.

B.1. Move 1:n∗ms
= nms − 1

In this movement, one pair currently designated to be a match
is changed to a nonmatch designation. One option chooses a
matched pair from blocks with uniform probability. This op-
tion likely is not too efficient. Option 2 chooses a matched pair
based on the probability that the pair is a nonmatch given that one
among the matches is a nonmatch.
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That is, pick a matched pair(ai, bj) at random with the proba-
bility of dropping pair(ai, bj) as given in Larsen (2005).

Given thatnms in some blocks might not be too large, the
computation of probabilities above in some applications might be
reasonable. Pairs of records that agree on all or almost all com-
parisons and that have low levels of agreement with other poten-
tial matches likely would not be selected to be dropped. Pairs
of records that have more disagreements and that have alternative
matches should be dropped more readily.

As for option 1, the inverse move is to add the deleted pair of
records to the set of designated matches (see Move 2 below). Let
Pr(drop pair(ai, bj)) be the probability of dropping pair(ai, bj)
from the match set. Let Pr(add pair(ai, bj)) be the probability
of adding pair(ai, bj). The acceptance probability for the MH
algorithm is the minimum value of 1 and

Pr(n∗ms
, I∗s|param. values) Pr(add pair(ai, bj))

Pr(nms
, Is|param. values) Pr(drop pair(ai, bj))

.

B.2. Move 2:n∗ms
= nms + 1

In this movement, one pair currently designated to be a nonmatch
is changed to a match designation. A first option chooses a non-
matched pair from blocks with uniform probability. Such an
approach also is not likely to be efficient. Option 2 chooses a
nonmatched pair based on the probability that the pair is a match
given that one among the nonmatches is a match. The probability
of adding pair(ai, bj) is given in Larsen (2005).

Pairs of records that disagree on all or almost all comparisons
are not likely to be added. Pairs of records that are current non-
matches but agree on many fields are likely to be added. As for
option 1, the inverse move is to delete the added pair of records
from the set of designated nonmatches (see Move 1 above). The
acceptancer value for the MH algorithm is

Pr(n∗ms
, I∗s|param. values) Pr(drop pair(ai, bj))

Pr(nms , Is|param. values) Pr(add pair(ai, bj))
.

B.3. Move 3:nms
unchanged butIs altered

In this movement, three things can happen: two matches can
switch pairs, a matched pair can replace one of its units with an
unmatched pair, or a matched pair can be dropped and replaced
with another matched pair.

Variation 1: Two matches switch pairings
Randomly select two matched pairs,(ai, bj) and (ak, bl),
with probability 2/(nms

(nms
− 1)) and switch the pairings:

(ai, bl) and (ak, bj). That is, changeI(ai, bj) and I(ak, bl)
from one to zero andI(ai, bl) and I(ak, bj) from zero to
one. The reverse move is to undo the switch. The ac-
ceptance probability of the MH algorithm is the minimum
of one and(P (γil|M, s)P (γkj |M, s)P (γij |U, s)P (γkl|U, s)) /
(P (γij |M, s)P (γkl|M, s)P (γil|U, s)P (γkj |U, s)) .

It would be possible to select two matched pairs with non uni-
form probabilities, but doing so could be computationally expen-
sive (see Larsen 2005). A less computationally intense approach
would randomly choose one matched pair, say(ai, bj), with uni-
form probability (1/nms

) and a second matched pair with non-
uniform probability. Given that pair(ai, bj) is going to be bro-
ken and switched with another pair from the current matches, one
could select the pair(ak, bl) with probability

P (γil|M, s)P (γkj |M, s)P (γij |U, s)P (γkl|U, s)∑
(k′,l′) 6=(i,j) P (γil′ |M, s)P (γk′j |M, s)P (γij |U, s)P (γk′l′ |U, s)

.

If a similar reverse move is considered, then the MHr value is∑
(k′,l′) 6=(i,j) P (γil′ |M, s)P (γk′j |M, s)P (γij |U, s)P (γk′l′ |U, s)∑
(i′l′) 6=(k,j) P (γi′j |M, s)P (γkl′ |M, s)P (γi′l′ |U, s)P (γkj |U, s)

.

Variation 2: A matched pair replaces one of its matching
records with a nonmatching record
In this move, a matched pair of records is randomly chosen and
one of its component records is replaced with a record from the
same file in the same block that does not have a designated match.
That is, supposeI(ai, bj) = 1 and the matched pair(ai, bj) is
chosen. One of the matched pairs can be chosen with uniform
probability: 1/nms

. A recordak in file A without a match satis-
fies

∑
j′ I(ak, bj′) = 0. A recordbl in file B without a match sat-

isfies
∑

i′ I(ai′ , bl) = 0. There arenas
+nbs

−2nms
nonmatched

records in blocks. One option is to choose a nonmatched record
randomly. The reverse move would involve switching to the initial
pairings. If theA-recordai is replaced through random selection
with A-recordak, the MH acceptance probability is the minimum
of one andP (γkj |M, s)P (γij |U, s)/ (P (γij |M, s)P (γkj |U, s)) .
If the B-recordbj is replaced through random selection withB-
recordbl, the MH acceptance probability is the minimum of one
andP (γil|M, s)P (γij |U, s)/ (P (γij |M, s)P (γil|U, s)) .

Another way to choose the replacement record is to compute
the probability given current parameter values that a particular
nonmatching record is a match, assuming that pair(ai, bj) is a
nonmatching pair. See Larsen (2005) for details.

Var. 3: Delete a matched pair; Pair 2 unmatched records
The last move that will be contemplated is the deletion of a
matched pair and the joining of two unmatched records. If(ai, bj)
is a match andak andbl are unmatched records, the move entails
settingI(ai, bj) = 0 andI(ak, bl) = 1. This is in effect almost
the combination of the first two moves: removal of a match and
addition of a new match other than the one that was removed.
An acceptance probability for the MH algorithm can be computed
as the product of appropriately modified probabilities associated
with Moves 1 and 2.
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