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1. Introduction 
The Quarterly Financial Report (QFR) is a sample survey of 
large companies from the mining, wholesale trade, retail trade, 
and manufacturing sectors.  The QFR sample is divided into 
panels that are rotated into and out of the survey, and each 
non-certainty sampled company is interviewed for eight 
consecutive business quarters.  For any given quarter, eight 
panels selected from up to three different frame years are in 
the survey. Each year, a new sample of corporate tax returns is 
selected from the most recent tax-year data.  Often, the 
sampling fractions are non-trivial (greater than 0.20).  This 
new sample is split into four panels.  Each quarter, one of the 
four new panels is introduced, and the panel that has 
completed all eight interviews is dropped from the survey.   
  
It is possible for a QFR company to conduct business in a 
different industry than indicated by the sampling frame.  QFR 
estimates are tabulated by the company-reported industry (the 
enumerated industry), not the sample (frame) industry.  
Estimates of quarterly totals are unweighted means multiplied 
by an estimate of population size for the enumerated 
industry/size-classification.  This population estimate 
incorporates both industry changes (from the sampling frame) 
and the rotation scheme.   
 
Currently, the QFR uses an approximate sampling formula 
variance estimator that treats the enumerated industry as if it 
were the sampling industry in all calculations, including 
applying an estimated finite population correction for the 
enumerated industry.  The validity of this variance estimator 
relies on modeling assumptions about the industry 
reclassification procedure.   Use of replication to estimate the 
variance of the QFR estimators does not make such 
assumptions and incorporates the original sample finite 
population correction factors.     Our evaluation considers the 
delete-a-group jackknife variance estimator, which is 
employed in a variety of business and household surveys: see 
Thompson, Sigman, Goodwin (2002), Kott (2001), Kott 
(1998), Smith (2001), and Bell (2000). 
 
The delete-a-group jackknife is usually applied to survey 
designs with negligible sampling fractions and more sampled 
units per stratum than random groups.  When these conditions 
are not met, then the delete-a-group jackknife variance 
estimator is positively biased.  Kott (2001) proposes the 
extended delete-a-group jackknife variance estimator as a 
reduced-bias variance estimator for stratified designs where 
there are several strata that contain fewer sampled units than 
random groups.  
 
This paper compares the statistical properties of two versions 
of the delete-a-group and extended delete-a-group jackknife 

variance estimators to the current approximate sampling 
formula variance estimates for several QFR estimators.     

2. Background 
The Quarterly Financial Report (QFR) is a quarterly survey of 
mining, wholesale trade, and retail trade corporations with 
total assets of $50 million or more and manufacturing 
corporations with total assets $250 thousand or more.   The 
QFR collects income statement (e.g. sales, net income, 
depreciation, etc.) and balance sheet (cash, inventories, current 
assets, long term debt, retained earnings, total liabilities, etc.) 
data from each surveyed company.  From this data, the QFR 
publishes several key economic statistics, including quarter-to-
quarter percentage change in sales (CHANGE).  Other key 
QFR estimates include estimates of total quarterly sales and 
total net income after taxes (NIAT), and the quarterly ratio of 
NIAT/sales (RATIO).   
 
The sampling frame for the QFR survey is developed from the 
file of United States Internal Revenue System (IRS) corporate 
tax returns.  Every year, the Census Bureau receives a list of 
corporate tax returns for the previous year from the IRS and 
classifies all the companies by reported industry (sample 
industry) and total assets.  Companies that have total assets of 
$250 million or more are included with certainty and are in the 
survey indefinitely. The remaining companies are stratified 
within sample industry.  Units in the manufacturing sectors are 
further stratified within sample industry code by size; the 
within-industry size strata are referred to as the asset classes.  
The other sectors have one non-certainty stratum per sample 
industry.   
 
This QFR sample is randomly split into four panels, each of 
which is introduced in a given quarter.  The first panel from 
this new sample is introduced in the fourth quarter of the 
sampling year.  At this point, companies in the four panels 
from the previous sample (selected from IRS returns two years 
prior) are mailed a questionnaire, as are three of the four 
panels from the previous previous sample. In each quarter, as 
a new sample panel is introduced, the oldest sample panel 
(which has completed eight questionnaires) is dropped.  So for 
any given quarter, there are up to three different sampling 
frames represented.  At best, the QFR sample is drawn from 
sampling frames that are one and two years old.  Thus, the 
QFR sample is subject to coverage bias because of eligible 
cases not included on the sampling frame. 
 
A QFR company may conduct business in a different industry 
than indicated on the sampling frame.  Classification changes 
are determined via a nature of business questionnaire, 
administered after sample selection and generally completed 
by the first interview.  The asset classification is rarely 
changed as a result of survey data.  Subject-matter experts 
refer to enumerated industry “types” as “high mover,” 
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“medium mover,” or “low mover,” depending on the 
proportion of reclassified sample units. The industry 
reclassification adds variability to the QFR estimates, since 
sample sizes in the enumerated industries/asset classes (nki) are 
random variables.  The original sampling industry/asset class 
sample sizes (nhi) are fixed values determined by optimal 
allocation.  
 
The QFR does not use a Horvitz-Thompson estimator to 
produce estimates of quarterly totals (LEVELS).  The formula 
for a QFR LEVEL estimate of item X in enumerated industry k 
and asset class i at time t is given by 

 where ,ˆ )0(
kitN   ,ˆ )1(−

kitN  and ,ˆ )2(−
kitN  are the estimated population 

sizes at time t in enumerated industry k and asset class i for the 
sample from the current  year frame (0), sample from prior 
year’s frame (-1), and sample from prior-prior year’s frame (-

2); ,)0(
kitn ,)1(−

kitn and )2(−
kitn  are the number of sampled cases in 

currently-interviewed panels at time t in enumerated industry k 
and asset class i from the (up to) three eligible sample frame 
years; Qkit  is the number of active panels at time t in 
enumerated industry k and asset class i (usually 8); bkit  is the 
number of active panels in the sample from the corresponding 
sample years;Ihkijt is an indicator variable indicating that 
company j that was sampled in sampling industry h and 
enumerated in industry k/asset class i at time t ; and xhkijt is the 
current data. 
 

The enumerated industry level “weight” ( )kitW
~

 approximates a 
sampling interval, using a weighted average of population 
estimates in the numerator and the actual sampled cases in the 
denominator.  The population estimates for the year-1 and 
year-2 samples are Horvitz-Thompson (HT) estimates; the 
population estimate from the most recent sample frame year 
are frame totals from the sampling industry and asset class 
adjusted with survey estimates of in-movers (companies in an 
enumerated industry that were sampled from a different 
industry) and out-movers (companies sampled in a different 
industry than enumerated).  An in-mover in one industry is by 
definition an out-mover in another.  The latter estimate also 
includes an adjustment for number of active panels.  We refer 

to kitW
~

as a “variable weight,” and the QFR estimator of 
LEVELS as a variable-weight estimator, denoted by a tilde 
(~).  The variable weight estimator can also be written as 

,
ˆ

kitkit xN where kitN̂ is the weighted-average population 

estimate defined above and kitx  is the unweighted cell mean 
at time t. 
 
The QFR variable-weight estimates are further adjusted for 
non-response in the enumerated industry and asset class, using 
unweighted inverse response rates as advocated by Vartivarian 
and Little (2002).  The response rates for QFR in the large 

company strata are generally quite high (near 1) and are not 
discussed further. 
 
The QFR variable-weight estimator has been the subject of 
several different studies:  see Chapman and Biemer (1985) 
Chapman (1993), Kott (1992), and Caldwell et al (2005).  The 
latter paper uses a Monte Carlo simulation to compare the 
QFR estimator to a variety of other estimators and concludes 
that this estimator has the best statistical properties of the 
considered methods.  Caldwell et al (2005) develops 
reasonable simulated populations that assess the effects of 
population size-change on the QFR variable weight estimator.  
This paper uses data from two “low mover” industries, four 
“medium mover” industries, and one “high” mover industry 
in the following simulated populations: 
• Population 1 – monotone increasing population size by 

8% per year within enumerated industry 
• Population 2 – monotone decreasing population size by 

8% per year within enumerated industry 
• Population 3 – monotone increasing population size for 

eight quarters (8% per year, 16% increase total), followed 
by monotone decreasing population size (“see-saw”) for 
eight quarters (again, 8% per year, 16% increase total) 

• Population 4 – no change in population size within 
enumerated industry  

 
We compute estimates in 16 of the simulated 60 quarters of 
data for LEVEL (variable-weight estimator) and RATIO 
estimates and 15 quarters for the CHANGE estimates.  The 
population models were created with unrealistically large 
increases and decreases in population size to exaggerate the 
differences between alternative estimators for the LEVEL 
estimates.  Consequently, estimates from these populations 
should be more biased than expected in the QFR sample data. 
 
The QFR currently uses the following approximate sampling 
formula variance estimator (S2 estimator) to estimate LEVEL 
variances: 
   
 
 

where kitN̂ and nkit are the enumerated industry/asset class 
level estimates of population and sample size defined  above, 
and  
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where akit/rkit is the unweighted inverse response rate of 
enumerated industry k and asset class i ( the akit are the number 
of active sampled cases and rkit are the number of respondent 
cases), and xkijt are the unweighted sample data totals. The 
original sampling fractions are not used in this variance 
estimator, and it does not include a component for the 
variability caused by industry reclassification.  Moreover, the 
approximated enumeration industry/asset class sampling 

fractions in 2s
v do not in any way approximate the true 

sampling fractions. Thus, this S2 estimator was a known 
underestimate, although the degree of underestimation had not 
been previously investigated. 
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The QFR employs the following Taylor linearization 
approximation to estimate variances of the non-linear 
CHANGE and RATIO estimators. 

[ ])~
()

~
(2)

~
()

~
(~

~

~~
)

~
,

~
(

2~
)

~
var(

~
)

~
var(

~

~

~

~
var

,
22

2

22

2

ktktYXktkt

kt

kt

ktkt

kitkt

kt

kt

kt

kt

kt

kt

kt

kt

YcvXcvYcvXcv
Y

X

YX

YXCov

Y

Y

X

X

Y

X

Y

X

ρ−+⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
−+⎥

⎦

⎤
⎢
⎣

⎡
≈⎥

⎦

⎤
⎢
⎣

⎡

This approximation is extremely conservative, using an 
assumed level of autocorrelation of (ρSALES,1) = -1 in the 
CHANGE estimates and a correlation of zero for the within-
quarter RATIO of NIAT/SALES. 

3. Methodology 

3.1. Replicate Variance Estimators 
The delete-a-group jackknife variance estimation method is an 
appealing replication method for both theoretical and 
operational reasons.  From a theoretical perspective, the 
correctly applied delete-a-group jackknife variance estimator 
produces “nearly unbiased” variance estimators for a variety 
of estimators (Kott, 2001).  The computational advantages are 
in the number of replicates:  usually 15 or 16, compared to one 
replicate per sample unit with the stratified jackknife. 
 
To correctly perform delete-a-group jackknife replication 
(hereafter referred to as DAG replication), the non-certainty 
portion of parent sample is divided into G random groups 
using the same sampling methodology used to select the 
parent sample (Wolter, 1985, pp. 31-32).   A jackknife 
replicate estimate is computed for each replicate g by 
removing the gth random group from the full sample and 
reweighting the remaining units to represent the full sample, 
either by simply multiplying the replicate by G/(G-1) or by 
developing replicate weights for each unit and using these 
weights in subsequent estimation [Note: G sets of replicate 
weights are assigned to each sample unit j, where the gth 
replicate weight is zero when unit j is in random group g].   
We refer to this method of constructing replicate weights as 
simple delete-a-group jackknife (DAGS) replication. All 
certainty cases are included in each replicate with their full-
sample weight (equal to 1 without non-response adjustment).  
Certainty totals for each enumerated industry k for 

characteristic X at time t are denoted .C
ktX  The sample 

estimation procedure is then applied to each of the replicate 
weights (e.g., non-response adjustments, industry 
reclassification) or to the replicate estimates (e.g., expansion 
or ratio estimates). 
 
Our applications use fifteen random groups.  We attempted to 
make sure that all fifteen random groups were represented in 
each panel in each sample industry and asset class cell by 
using the random group assignments in the rotated-out panel 
to inform the random group assignments in the incoming panel 
as panels rotate out of sample.  This did not strictly follow the 
procedures outlined in Wolter (1985), but yielded far more 
stable replicate estimates. 

The QFR variable weight estimator of quarterly totals 
(LEVELS) is a ratio estimator.  The sample size term (nkit) in 
the variable weight denominator is a random variable.  The 
DAGS replicate variable weight g for enumerated industry k 

and asset class i ( g
kitW

~
) uses replicate-factor adjusted survey 

weights to estimate the numerator’s population estimates and 
estimating the replicate enumerated industry sample size 

( )g
kitn as 

∑
∉∈ gjkij

hkijtI
q

,

where qg = G/(G-1). 

Kott (2001) states that the DAGS method is “reasonable” 
under two conditions:  (1) sampling fractions are all less than 
0.20 and (2) all sample stratum sizes and G are large.  The 
following paragraphs address the condition (2), assuming 
condition (1).  In this context, the DAGS estimator is unbiased 
if units from each sample stratum are represented in each 
replicate (i.e., if nhi ≥ G for all hi combinations).  Kott (2001) 
develops the extended delete-a-group jackknife (DAGE) to 
account for the situation where condition (1) is true and 
condition (2) is not, specifically where nhig = 0 in several strata 
(a frequent occurrence with the QFR, whose panel design 
would require a minimum of 60 sampled elements per stratum 
for complete representation in each random group and panel).  
Let nhi be the number of sampled units in sample industry h 
and asset class i, whij be the sampling weight associated with 
unit j in sample industry h and asset class i , and Shig be the set 
of nhig sample units in stratum hi and random group g.  For the 
QFR design, the extended delete-a-group jackknife (DAGE) 

weights are 
 
 
where Z2 = G/[(G-1)nhi(nhi –1)].   
 
The DAGE replicate estimate for an expansion estimate of the 

form ∑∑=
hi

n

j
hijhi

hi

xwX̂ is given by 
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where HI(g) is the set of strata with empty Shig, HIg is the set of 
strata with at least one sample element in Shig, and j* are 
sample units that are not in random group g. We use the 
DAGE estimator specified in (3.2) to compute the Horvitz-

Thompson component estimates of )0(
,

ˆ
kiN )1(

,
ˆ −

kiN and )2(ˆ −
kiN in 

the numerator of the variable weight.  To obtain the replicate 
denominator sample sizes, we dropped the survey weight (whij) 
from the DAGE computations; we obtain the unweighted 
enumerated industry/asset class cell totals for characteristic x 
in the same way.  Notice that these estimates are computed 
within enumerated industry and asset class and are domain 
estimates, not the sampling stratum estimates. 
 
Both variations of the delete-a-group jackknife estimators 
assume negligible sampling fractions in all strata.  In many of 
the non-certainty strata, the QFR optimal allocation program 
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selects more than 20 percent of the stratified units.  Thus, any 
variance estimate that does not incorporate finite population 
correction factors (fpcs) from without-replacement samples is 
an overestimate. Correctly applying the sampling fpc to the 
enumerated industry replicate estimates is difficult.   
Following Wolter (1985, p.43), we incorporate the sample-
industry fpc’s into the replicate estimates by applying the 

square-root of the fpc ( hihi Nn /1 − ) to the replicate totals 

for each unweighted characteristic before summing to the 
enumerated-industry and asset-class level, then applying the 
appropriate replicate variable weights.  The DAGS and DAGE 
variable weight estimates for enumerated industry k are  

( )∑ ∑ ∑
∈ ∈ ∈

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+=

ki kihi hkij
hkijthihi

mg
kit

C
kt

mg
kt xNnWXX /1

~~ ,,

where m denotes the variance estimation method (DAGS or 
DAGE). 
 
Finally, the delete-a-group (and extended delete-a-group) 

jackknife variance for the variable weight estimate ktX̂  is  

( )∑
=

−−=
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t
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ktktm XX
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Xv
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Here, tX 0
~

is the fpc-adjusted full-sample estimate in the non-

certainty strata so that .ˆ~
0t

C
ktkt XXX +≠  

 
The delete-a-group jackknife variance estimator has G-1 
degrees of freedom, where G = 15 for QFR.  Bell (2000) 
proposes increasing the available degrees of freedom by 
further dividing the replicates into disjoint groups (“zones”), 
computing replicate variances at the “zoned” level, then 
summing these zoned replicate variances.  If estimates from 
each zone are independent, then the zoned estimator should 
have decreased bias and be less variable than its unzoned 
counterpart.  The independence condition is not necessarily 
true for the QFR estimates because they are computed by asset 
class within enumeration (not sampling) industry.  We use 
asset class (size strata originally assigned within sampling 
industry) as zone in the evaluation discussed in Section 4.   
 
Bell (2000) notes that zoned jackknife variance estimators 
must be restricted to estimates of totals, stating that functions 
of totals must use linearized variance estimates.  Moreover, 
Thompson, Sigman, and Goodwin (2002) demonstrate that 
directly replicating ratio-type estimators with the fpc-
adjustment overestimates the variance.  Consequently, we use 
the Taylor linearization formula with replicate variance and 
covariance estimates and full-survey variable weight estimates 
in the relative variance and covariance terms for our 
“replicate” CHANGE and RATIO variance estimates. 

3.2. Evaluation Statistics 
To examine the statistical properties of the five different 
variance estimation methods, we selected 2,500 stratified 
random samples apiece from our four simulated populations 
using the QFR stratification and sampling design.  We used 
these 2,500 random samples to construct the empirical 

variance of each estimate pktθ̂  in population p in enumerated 

industry k at time t ( ).)ˆ( pktV θ  This is our “gold standard” 

(truth). 
 
In 1,000 of the 2,500 samples, we assigned sample units to 
random groups.  Then, in each sample s, we computed five 

variance estimates per estimate )ˆ( pktsmsv θ .  For the remainder 

of this paper, we denote the currently-used variance estimator 
as S2, the simple delete-a-group jackknife variance estimate as 
DAGS, the zoned simple delete-a-group jackknife variance 
estimate as ZDAGS, the extended delete-a-group jackknife 
variance estimate as DAGE, and the zoned extended delete-a-
group jackknife variance estimate as ZDAGE. 
 
We compared these quarterly variance estimates within 
population and enumerated industry in terms of  
 
Relative Bias for variance estimation method m 

 1
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Stability for variance estimation method m   
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Confidence Interval Coverage:  Percentage of 90% confidence 
intervals using standard errors that contain pktθ , the true 

population value for the estimator.  The S2 confidence 
intervals use z-statistics; the replicate variance confidence 
intervals use t14 statistics. 
 
The optimal variance estimator will have relative bias and 
relative stability values near zero and will have coverage rates 
equal to 90%.  We rely primarily on relative bias as our 
measurement of accuracy.  The S2 estimator approximates the 
conditional variance (conditioned on the actual enumeration 
industries) of the total estimates of the enumerated 
(reclassified) industries and does not account for the variance 
component due to industry reclassification.  This missing 
component can be quite large, especially in certain industries.  
Including it will worsen the stability (i.e., increase the 
variance of the variance).   
 
The analysis of coverage rates is somewhat complicated by 
known properties of the variable weight estimator. The QFR 
variable weight estimates (LEVELS) are not unbiased.  First, 
they are (average) combined ratio estimates.  Second, they 
have known negative coverage bias in non-decreasing 
populations, caused by eligible businesses that came into 
existence after the construction of the sampling frame 
(Caldwell et al 2005).  Finally, all QFR estimates are subject 
to non-response bias, although the degree of this bias is often 
negligible due to the high survey response rate.  Caldwell et al 
(2005) showed that the combined biases of the QFR LEVEL 
estimator tend to be negative; there is a canceling effect of 
coverage bias in the CHANGE and RATIO estimates.   
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Cochran (1977, p.12 – 15) discusses the effect of bias in the 
estimator on confidence interval coverage, assuming an 
unbiased estimate of standard error, providing a working rule 
that “the effect of bias on the accuracy of the estimate is 
negligible if the bias is less than one tenth of the standard 
deviation of the estimate.”  This explanation assumes an 
unbiased variance estimate. If the QFR variable weight 
estimator were unbiased, then the coverage rates would be 
strongly related to the relative bias properties of the alternative 
variance estimators (where m = S2, DAGS, DAGE, ZDAGS, 
ZDAGE), and we could derive a mathematical expression 
relating the degree of bias in the standard error estimate to the 
coverage.  Intuitively, we would expect the confidence 
intervals constructed with negatively biased variance 
estimates to be too narrow (anti-conservative) with less-than-
nominal coverage rates.  Conversely, we would expect 
positively biased variance estimators to yield overly wide 
(conservative) confidence intervals with greater-than-nominal 
coverage rates.  However, the QFR variable weight estimator 
as well as all considered variance estimates are biased, so 
confidence interval coverage is dependent on both the 
proximity of the estimate to the true value and the bias of the 

variance estimate mσ̂ .  Consequently, we cannot directly 

relate the bias of the variance estimates to their coverage rates:  
we might expect close to nominal coverage in industries with 
little industry reclassification (low-mover industries), but have 
no way to gauge variance estimator bias effects otherwise. On 
the other hand, because the combined biases generally cancel 
in CHANGE and ratio estimates, we expect close to nominal 
coverage in these estimates if their variance estimates have 
low bias.   

4. Results 

4.1. Effect of Zoning on Replicate Variance Estimation 
When viewing time-series plots of the relative biases and 
stabilities of each estimator, we noticed that – regardless of 
population and industry – the DAGS and ZDAGS time-series 
plots were indistinguishable, as were the DAGE and ZDAGE 
time-series plots.  We hypothesized that the zoned/not zoned 
variance estimates were not statistically different in the 
majority of applicable industries.  We tested this hypothesis 
with a simple ANOVA approach, using the repeated measures 

model pktspktpktsmsv ξµθ +=)ˆ(  in the manufacturing 

enumerated industries.  After verifying the omnibus 
hypothesis (at least one effect is significant), we tested 
individual contrasts between DAGS/ZDAGS and 
DAGE/ZDAGE effects within quarter.   
 
We were unable to find any evidence of a zoning effect for the 
simple delete-a-group jackknife variance estimators, 
regardless of estimator (CHANGE, LEVEL, or RATIO), 
enumerated industry, or population.  We did find minor 
evidence of a zoning effect for the extended delete-a-group 
jackknife variance estimators.  Neither variation of extended 
delete-a-group jackknife variance estimator showed any 
advantage over the other variance estimation methods in terms 
of relative bias and relative stability (see Section 4.2).  This is 
not entirely dissimilar from the simulation results in Bell 
(2000), who found that the zoned jackknife variance estimator 
had less variability compared to the standard delete-a-group 

jackknife variance estimator only when the post-strata and 
strata were very similar, although the bias of the variance 
estimator increased regardless. 
 
The main advantage of using a zoned estimator would be to 
increase the degrees of freedom in variance estimation and in 
confidence interval construction.  An application of the zoned 
estimator to the manufacturing industries in QFR does 
increase the available degrees of freedom, since these the 
companies in these sampling industries are stratified into five 
non-certainty strata.   The same benefits do not apply to 
industries from other sectors in the QFR design:  these sectors 
have one non-certainty stratum per sampling industry.  We 
found no variance estimation benefits from the zoned 
estimates and could not consistently incorporate the additional 
degrees of freedom into our confidence intervals.  
Consequently, we dropped both zoned variance estimators 
from our analysis.  As an aside, in all industries and scenarios, 
the contrasts between corresponding simple and extended 
delete-a-group jackknife were always significant.   

4.2. Comparison of the Current Variance Estimation 
Method to the Replication Variance Estimation 
Methods 

This section compares the statistical properties of the replicate 
variances (DAGS and DAGE) to the corresponding currently-
used variance estimator (S2), considering each type of 
estimator (CHANGE, LEVEL, RATIO) separately.  In the 
discussion below, for simplicity we use the same notation for 
all estimators, recalling that the CHANGE and RATIO 
estimators use Taylor linearization with relative variances and 
covariances of input LEVEL estimates computed via the 
referenced method.  For brevity, we do not include computed 
summary statistics; they are available from the authors upon 
request. 
 
CHANGE The major difference between the replicate and 
non-replicate variance estimates is in the covariance term of 
the Taylor Linearization.  The currently-used linearization 
assumes an autocorrelation term of ρ = -1, thus maximizing 
the covariance term of the variance estimate.  This assumption 
is unrealistic, since three-quarters of the QFR sample do not 
change from quarter to quarter because of the rotating panel 
design.  Our replicate estimates computed large positive 
correlations (usually between 0.60 to 0.80), reducing the 
estimated variances.  We found that 
 
• In all scenarios, the simple-delete-a-group jackknife 

variance estimates for CHANGE are the least biased, the 
most stable, and have the best coverage (closest to 
nominal), and the S2 estimates performed the worst in all 
three measures. This improvement in precision from non-
replicate to replicate estimates is primarily due to the 
improved estimates of covariance used in the linearization 
formula [Note:  CHANGE variances constructed with 
replicate variance estimates and same assumed covariance 
estimates as current method have approximately the same 
bias properties as the current method].   

• The bias of all three CHANGE variance estimators is 
positive, regardless of scenario or industry.  The relative 
biases for all S2 variance estimates are well over 200%, 
regardless of industry or population scenario.  The two 

ASA Section on Survey Research Methods

3128



sets of relative biases for the replicate estimates are quite 
close in the low-mover industries and are generally 
around 20%.  The DAGE relative biases are considerably 
larger than their DAGS counterparts in the medium- and 
high-mover industries, although the degree of bias in the 
DAGE estimators is still considerably smaller than in the 
corresponding S2 variance estimates. 

• The instability in the S2 variance estimates may be 
attributable to the treatment of the variance estimates as 
independent in the Taylor Linearization.  The replicate 
estimates have induced covariance by design because of 
the balanced method used for assigning sample units to 
random groups.  The DAGS and DAGE stabilities are 
very close in the low- and medium-mover industries; the 
DAGE stability is much larger (more variable) than the 
DAGS stability in the high-mover industry. 

• Coverage rates are closer to the nominal 90% for the 
replicate methods; coverage rates are close to 100% for 
the S2 variance estimators (due to the large positive bias). 

 
LEVELS Recall that LEVEL estimates are combined ratio 
estimates and are consequently not unbiased. We found that 
 
• The S2 variance estimator is always negatively biased, 

whereas the replicate estimators are all positively biased.  
This result is expected:  the S2 estimator does not account 
for the industry reclassification and the replicate variance 
estimators do.  In the low-mover industries, the DAGS 
and DAGE relative biases are approximately the same for 
both NIAT and SALES; in the medium- and high-mover 
industries, the DAGE biases are considerably larger than 
their DAGS counterparts (this effect is more pronounced 
for SALES than NIAT, although this may be an artifact of 
the different modeling assumptions for the two variables).  
Since the DAGE method is designed to reduce the bias of 
the replicate variance estimator, this result was somewhat 
unexpected. 

• Because they do not account for variability due to 
industry reclassification, the S2 variance estimators are the 
most stable.  The same pattern of stability seen in the 
replicate biases holds here, namely equivalent DAGE and 
DAGS stabilities in the low-mover industries and 
worsening DAGE stabilities in the medium- and high-
mover industries. 

• Coverage is affected by both magnitude of relative bias in 
the variance estimates and the bias in the variable weight 
estimates. The replicate variance estimators are more 
biased (in magnitude) than the S2 variance estimators.  In 
addition, the replicate confidence intervals are constructed 
using t-statistics instead of z-statistics, making them 
slightly wider than corresponding intervals constructed 
from the S2 variance estimators.   
 
Regardless of variance estimator, the coverage rates for 
SALES are much smaller than expected; coverage rates 
are extremely poor in most scenarios and industries, 
although the DAGE and DAGS confidence intervals are 
always closer to nominal than the S2 confidence intervals.  
Coverage rates for NIAT constructed with replicate 
variance estimates and t-statistics are, however, often 
close to nominal in all populations and industry-types.  As 

discussed in Section 2, the variable weight estimates of 
SALES are negatively biased in non-decreasing 
populations, whereas the variable weight estimates of 
NIAT are essentially unbiased in all populations.  Recall 
that the degree of bias in the SALES estimates is greatly 
exaggerated by design.  For SALES, the high negative 
bias in the estimator is consistently offsetting the positive 
bias in the variance estimates, leading to poor coverage.  
In contrast, confidence interval coverage for NIAT is 
more dependent on the bias in the variance estimator (see 
Section 3.2). 
 

RATIO As with CHANGE, the variance estimates for RATIO 
use Taylor Linearization.  In this application, the replicate 
correlations (ρNIAT,SALES) are all approximately equal to zero, 
the assumed covariance level in the current estimator.  Thus, 
the differences in the three sets of approximations are due 
primarily to the different variance estimation methods.  The 
patterns in the measurement statistics are very similar to those 
for LEVELS.  NIAT is a much more variable item than 
SALES, and consequently the estimated relative variance of 
NIAT used in the Taylor Linearization is the dominant term. 
We found that 
• As with the LEVEL estimates, the relative biases of the S2 

variance estimators are all negative, and the replicate 
estimates are always positively biased.  In the medium- 
and high- mover industries, the DAGE relative biases are 
much larger than the DAGS statistics 

• The increase in stability (in variability) from the S2 
variance estimators to the DAGS estimators is about 0.01 
in most populations and industries.  The increase in 
stability from DAGS to DAGE is much larger, although 
this effect appears to be more pronounced in the medium- 
and high-mover industries and may be dependent on 
population scenario. 

• Again, the coverage rates are closer to nominal with the 
DAGS and DAGE estimates.  The proximity to nominal 
coverage rates depends on industry type (low-mover 
industries have nominal coverage; others have less than 
nominal coverage).   

 
In all cases, the DAGS estimators yield closer to nominal 
coverage rates than the corresponding S2 estimators.  
Moreover, for CHANGE estimates, the DAGS variance 
estimates show substantial improvements over the S2 variance 
estimates in terms of magnitude of the relative bias and 
stability statistics.  For LEVEL and RATIO estimates, the 
magnitude of the DAGS and S2 variance estimates’ biases are 
generally comparable, as are the computed stability statistics.  
For these two statistics, however, the DAGS biases are always 
positive (overestimates) and the S2 biases are always negative.  
Regardless of estimator (CHANGE, ratio, level), the DAGE 
variance estimates have larger relative bias and stability than 
the corresponding DAGS variance estimates.  The improved 
coverage rates using DAGE variance estimates over the two 
other variance estimators is due to the larger bias in the DAGE 
variance estimator.  The often marginal improvement in 
coverage rates constructed with DAGE variance estimators did 
not offset the losses in statistical precision, so we eliminated 
the DAGE method from consideration for QFR. 
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Subject-matter experts had some initial concerns about the 
“practical” impact of replacing the negatively biased S2 
variance estimates with the positively biased DAGS estimates.  
To assess this, we computed coefficient of variation (c.v.) 
values for all estimators using both sets of variance estimates.  
For RATIO and LEVEL estimates, the two sets of c.v.’s were 
virtually identical (equal to the second or third decimal place).  
For CHANGE estimates, the c.v.’s computed from DAGS 
variance estimates were much smaller than corresponding S2 
variance estimate c.v.’s. 

5.  Discussion 
Prior to this study, it was known that the currently used S2 
variance formula for LEVEL estimates used by QFR 
underestimated the variance.  Conversely, it was known that 
the Taylor Linearization estimates for CHANGE – at least – 
were overestimates, due to the assumed correlation.   
 
The primary goal of our research was to provide compelling 
evidence to replace the current method of estimating LEVEL 
variances with replication, specifically with a form of delete-a-
group replication.  We believe that given the very complicated 
design and estimation procedure used, replication is simply 
more justifiable from a statistical perspective.  These methods 
directly account the industry reclassification and ratio 
estimation in the variable weights, include some non-response 
variance, and use the true sampling fpcs.  As expected, the 
replicate methods did not exhibit any gains in statistical 
properties in the low-mover industries, since the industry 
reclassification component is negligible, and the replicate 
estimates are essentially equivalent to the S2 estimates.  Any 
gains would be expected in medium and high-mover 
industries, where the industry reclassification effects can be 
quite large. 
 
Designing balanced delete-a-group jackknife replicates with a 
panel survey was quite challenging.  Despite our best efforts, 
not all strata from all panels and frames are represented in 
each random group.  We hoped to reduce the resultant bias in 
the replicate variance estimates by using the extended delete-
a-group jackknife variance estimator.  This estimator has 
optimal properties for survey samples selected with negligible 
fpcs in all strata where “number of sample units per first-
phase stratum (is) large in all strata.” (Kott, 2001).  In this 
context, “large” means that all strata are represented in each 
random group.  Neither of these conditions is true for the QFR 
design, which may explain why using the extended delete-a-
group jackknife instead of the simple delete-a-group jackknife 
did not reduce the bias.  Furthermore, Kott (2001) does not 
discuss the properties of the DAGE variance estimator for 
panel surveys (or how to best assign units to random groups in 
a panel survey setting), nor does he discuss the effects of 
reclassification of sample units.  We suspect that the 
combination of all of these factors explains the poor 
performance of the DAGE method for the QFR variable 
weight estimates of SALES and NIAT.   
 
The results in Section 4.2 demonstrate marked improvements 
in all measurements for the DAGS CHANGE variances over 
the S2 estimates.  At first (and possibly second) glance, the 
decreased performance in the relative bias and stability 
measures for SALES LEVEL estimates with the DAGS over 

S2 estimates is unsettling.  More unsettling to our subject-
matter experts was the poor confidence interval coverage for 
SALES LEVEL estimates, regardless of variance estimator.   
Since, however, the corresponding measures of relative bias 
and stability for NIAT LEVEL estimates are fairly close for 
the DAGS and S2 estimates, and the DAGS NIAT confidence 
interval coverage is much closer to nominal, we suspect these 
results are an effect of the exaggerated negative bias in the 
sales estimates and are not necessarily present in QFR data, 
especially since the relative rankings of the statistics are the 
same within enumerated industry and population. 
 
Finally, we were unable to find any evidence of a “population 
size change” effect for relative bias or stability in either the 
replicate or non-replicate variance estimators.  This is a quite 
different result from the study in estimator properties 
presented in Caldwell et al (2005), which showed a negative 
bias for LEVEL estimates in non-decreasing populations and 
trivial bias in strictly decreasing populations.  Confidence 
interval coverage rates are, however, closer to nominal in the 
decreasing population scenario (Population 2). This population 
is much like the “ideal” situation described in Section 3, with 
an unbiased estimator and a biased variance estimate and the 
coverage rate comparisons are not confounded (as they are in 
the other populations). 
 
Our simulation study results demonstrated strong statistical 
advantages of using variance estimates for CHANGE 
computed with directly replicated DAGS variances and 
autocovariances over the current method.  Recall that the 
quarter-to-quarter change in sales (CHANGE) is a key 
economic statistic.  The improved results in both precision and 
confidence interval coverage for this statistic alone almost 
justify our recommendation to replace the current method with 
simple delete-a-group jackknife variance estimation.  The 
comparable results for the other estimators reinforce this 
conclusion, as does the computational simplicity.  Areas for 
future research include comparisons of the simple and 
extended delete-a-group jackknife variance estimators on a 
panel survey with negligible fpc’s and industry 
reclassification, empirical comparisons of the discussed 
variance estimation methods on QFR historic data, and an 
assessment of the effect of replicating non-response 
adjustment on QFR variance estimates. 
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