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ABSTRACT 
 A standard procedure in poststratification is to 
collapse or combine cells when the sample sizes fall 
below some minimum or the weight adjustments are 
above some maximum.  Collapsing may decrease the 
variance of an estimate but may simultaneously 
increase its bias. We study the effects on bias and 
variance of this type of dynamic cell collapsing 
through simulation using a population based on the 
2003 National Health Interview Survey.   
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1. Introduction 
 Raking and poststratification are two common 
techniques used in survey weighting.  These weighting 
methods can serve to (1) reduce variances or (2) adjust 
for deficient coverage by the sample of some groups in 
the target population.  In household surveys in the U.S. 
the second purpose is especially important because 
some demographic groups, like young Black males, are 
covered less well than others (e.g., see Kostanich and 
Dippo 2000, ch. 16).  Adjusting for undercoverage can 
lead to differential weights, which may correct for bias 
but will also increase standard errors.  Practitioners 
often avoid making extreme weight adjustments, in 
effect trading-off some bias reduction in order to keep 
variances under control. 
 One method of controlling the size of weight 
adjustments is to collapse the initial raking or 
poststratification cells together if the adjustment in a 
cell is too large.  Little (1993) and Lazzeroni and Little 
(1998) cover methods of collapsing categories of 
ordinal poststratifiers. Other strategies for how to 
collapse strata have been suggested by Kalton and 
Maligalig (1991), and Tremblay (1986).  Kim, 
Thompson, Woltman, and Vajs (1982) give some 
practical applications.  In this paper, we study the 
effects on bias and variance of combining cells, 
assuming that more finely defined cells would be 
preferable if the sample sizes and sizes of weight 
adjustments were acceptable.  This paper is a sequel to 
Kim (2004) which provides more detailed background. 
 The inverse coverage ratio is the usual statistic 
used to determine whether cells should be collapsed 
and is defined as the ratio of the control count to the 
initially weighted sample count for the row/column.  If 
the ratio is either too large or too small, a row or 

column may be collapsed with another.  The Current 
Population Survey (CPS) conducted by U.S. Bureau of 
the Census uses 2 and 0.6, respectively, for the 
thresholds for collapsing (see Kostanich and Dippo 
2000, p. 10-7).  A row or column may also be 
collapsed when its raw sample count is below some 
minimum.  Collapsing serves to restrict the range of 
weight adjustments used due to poststratification. 
 This paper demonstrates some of the weaknesses 
of the current cell collapsing procedures and proposes 
alternatives.  Section 2 discusses the effects on weights 
of collapsing cells in poststratification and raking.  
Section 3 analyzes the bias that can be introduced by 
collapsing.  Some alternative ways of restricting the 
size of weights are introduced in section 4.  Empirical 
properties of the standard and alternative methods are 
investigated through simulation in section 5.  We 
conclude in section 6 with some recommendations for 
determining whether cells can be safely collapsed or 
not. 
 
2. Effect of Weight Redistribution on 

Coverage Corrections 
 Weight redistribution due to collapsing of 
cells can have a substantial effect in poststratification 
as sketched in this section. 
 
2.1 Poststratification  
 To illustrate the effects of cell collapsing on 
coverage corrections, we first consider 
poststratification.  Suppose that there are 1, ,i I= …

iN
 

poststrata.  Let  be the control count for poststratum 

i and ( )0
iw  be the total initially weighted sample count 

for cell i.  The quantity ( )0
iw  is the sample estimate of 

the number of units in the cell in the population.  After 
poststratification using all I cells individually, the 
weighted count for cell i is 

(1) (0) (0)
(0)   i

ii i i
i

N fw w w
w

= ≡ . 

(0)
ii if N w=

2 1N cN

We will call  the initial adjustment (or 
ratio) factor (IAF) for cell i.  If cells 1 and 2 are 
collapsed and = , then the adjustment factor for 
the combined cell can be written as 
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This adjustment would be applied to the weights for all 
units in the collapsed cell.  In particular, units in cell 1 
would receive the IAF of 1f  times a collapsing 

adjustment factor (CAF) of ( )2

1 2

1
 

f c
c f f

+
+

.  Similarly, units 

in cell 2 receive the IAF of 2f  times a CAF of 
( )1

1 2

1
 
f c
c f f

+
+

.  The ratio of the CAF for cell 2 to that of 

cell 1 is simply 1 2f f , which is also the ratio of the 
coverage rate for cell 2 to that for cell 1. 
 Figure 1 graphs the CAF for units in cell 1 for 
different values of c and 1 2f f , the ratio of coverage 
rates for cells 1 and 2.  If the coverage rates are equal, 

1 2 1f f = , then collapsing does no harm as far as 
adjusting for undercoverage within cell goes.  
Assuming that 1f  is the appropriate coverage 
adjustment for cell i, CAF > 1 implies that weights for 
units in that cell are increased too much to correct for a 
coverage error.  A CAF > 1 for cell 1 corresponds to 

1 2 1f f < , i.e., to a case where cell 2 is covered less 
well than cell 1.  In general, when cell 1 is over-
corrected due to collapsing, cell 2 will be under-
corrected and vice versa.  The range of CAF’s in the 
figure is substantially larger for cell 1 over the range of 
coverage ratios when cell 2 is much larger than cell 1, 
e.g., c = 10, than when the reverse is true, e.g., c = 0.1. 
 
Example 1.  As a simple illustration of the numerical 
effect of collapsing, suppose that 1 200N = , 

, (i.e., ( )0
1 50w = 1f  = 4), , , and 

( ).  In this case, 
2 150N = ( )0

2 150w =

2 1f = 1 2 4f f =  and c = 0.75.  
Assume that an equal probability sample has been 
selected with  and  so that the initial 
weights are 10 for units in both cells 1 and 2.  If the 
two cells are collapsed, the adjustment in 

1 5n = 2 15n =

(1) is 
1 1 2 2f CAF f CAF=  = 1.75, and the implied CAF’s are 

 = 0.438 for cell 1 and  = 1.75 for cell 2.  
After collapsing the weight for each unit in cells 1 and 
2 is 17.5 (10*1.75).  The estimated population  counts 
in cells 1 and 2 are 88 and 263 rather than the 
population counts of 200 and 150.  Thus, after 
collapsing the estimated counts are about 56% too low 
in cell 1 and 75% too high in cell 2. In both cases, the 
impact is large. 

1CAF 2CAF

 
 

Figure 1.  Collapsing adjustment factors (CAF’s) for 
cells 1 and 2 plotted versus the ratio of coverage rates 
for cell 2 versus cell 1, 1 2f f .  Solid lines are for cell 
1 (CAF1); dashed lines are for cell 2 (CAF2). 
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3. Bias of Poststratified Estimators with 

Collapsing 
In computing the bias and variance of an 

estimator in the presence of nonresponse and 
undercoverage, choices have to be made about what the 
mechanism is for computing expectations.  In this 
section i denotes a poststratum and k is a unit within 
poststratum i.  We assume that ikπ  can be either the 
selection probability of unit (ik) or the propensity of 
providing data for the survey.  In the latter case, ikπ  is 
the selection probability divided by a nonresponse 
(NR) weight adjustment.  The inverse of the NR weight 
adjustment is interpreted as the propensity of 
responding given that a unit is selected for the sample. 
 We assume that calculations of expectations 
can be done using the non-interview adjusted inclusion 
probability in the same way that a selection probability 
can be used.  This, in effect, is assuming that the 
propensity of responding is correctly captured by 
whatever nonresponse adjustment is used.  On the other 
hand, the undercoverage adjustments will be treated as 
fixed for the calculations here.  This is, of course, 
unrealistic since the undercoverage adjustment is an 
estimate and will vary from one sample to another, but 
treating the adjustments as constants allows some 
simple points to be made. 
 The nonresponse-adjusted Horvitz-Thompson 

estimator is ˆ   
i

ik
i k s

ik

x
X

π∈= ∑ ∑  where is  is the set of 

sample units in cell i and ikx  is the value observed for 

unit (ik).  X̂  is clearly biased if there is either 
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undercoverage or overcoverage.  Suppose that the 
poststrata are collapsed into 1, ,g G= …  cells with gA  
denoting the set of poststrata assigned to group g.  If 

gf  is the coverage adjustment applied to units in 
collapsed cell g, then the adjusted estimator of a total is 

ˆ
g i

ik g
g i A k s

ik

x f
X

π
∗

∈ ∈=∑ ∑ ∑ . 

Treating ikπ  as described above, the design-

expectation of X̂ ∗  is ( )ˆ c
g ggE X f Xπ

∗ = ∑  where 

c
gX  is the total for units in the portion of the 

population covered by the frame.  Further, suppose that 
gN  is the number of units in the target population in 

cell g, gX  and gX  are the total and the mean per unit 

in that group, and that c
gN  and c

gX  are the 
corresponding figures for the covered population.  The 
design-bias of X̂ ∗  is  

( ) (ˆ c )g g ggE X X f X Xπ
∗ − = −∑ . 

If gf  equals ( )c c c
g g g g g gX X N X N X= , then the 

collapsed stratum estimator will be unbiased.  Since the 
coverage adjustment gf  is computed as ˆ c

g gN N  with 

ˆ 1
g i

c
g iki A k sN π∈ ∈= ∑ ∑ , the adjustment used in 

standard practice will yield unbiased estimates if 
c
g gX X= , i.e., if the mean for the covered population 

in group g is the same as the mean for the target 
population.  This is a strong assumption, and thinking 
of cases where it is dubious is not hard.  For example, 
telephone surveys in the U.S. exclude non-telephone 
and cell-phone-only households.  Internet surveys 
exclude persons without Internet access.  In both 
instances, the responding sample may be poststratified 
to the entire population, but the excluded part of the 
population may be different in many ways from the 
covered part. 
 We can also analyze the bias of X̂  with 
respect to an underlying model.  Suppose that the 
population is reasonably described by a model in which 
units do have a common mean within the original 
poststrata, i.e., ( )M ik iE x μ=  for units in both the 
covered and non-covered parts of the population.  
Then, the model-bias of X̂ ∗  is  

( ) (ˆ
g

c

where  is the estimated number of units in cell i that 
are in the covered portion of the population and  is 

the number of units in the full population.  If 

ˆ c
iN

iN
ˆ c

i iN N  
is equal to gf  for each poststratum in the collapsed 

group g, then X̂ ∗  will be model-unbiased.  However, 
the more the cell coverage ratios, ˆ c

i iN N , differ from 

the overall ratio, ˆ c
g g gf N N= , the more biased X̂ ∗  

will be as long as the cell means, iμ , differ among the 
cells collapsed into a group.  If i gμ μ≡  for each cell 
in group g, then the collapsed cell estimator will also 
be unbiased because 

( )ˆ ˆ 0
g

c c
g i i g g gi A f N N f N N∈ − = − =∑ , similar to the 

design-based result requiring c
g gX X=  for 

unbiasedness. 
 In summary, the collapsed stratum estimator 
will be  

(1) Design-unbiased if the finite population means 
for the covered population and the target 
population are equal in each collapsed group 
that is formed, and 

(2) Model-unbiased if either the cell coverage ratio 
or the cell mean is the same in each individual 
cell in a collapsed group. 

If either or both of these is violated by the collapsing 
algorithm, then biased estimates of totals will result.  
Note that if a (full population) proportion or mean is 
estimated by ˆ ˆp̂ X N∗ ∗ ∗=  where ˆ ˆ c

g ggN f∗ = ∑ N , 

the same analysis as for X̂ ∗  applies because N̂ N∗ = , 
a constant. 

 
4. Alternative Estimators and Remedies 
 We examine two alternative methods of 
weight computation when collapsing of poststrata is 
used.  The alternatives are designed to be compromises 
between (a) use of all poststrata and the potential for 
large weight adjustments and (b) collapsing of strata 
yielding less variable weights but potentially biased 
estimates.  The two alternatives presented in this 
section use cell collapsing but retain a larger share of 
the weight adjustment for individual cells than does the 
standard collapsing method.  We refer to these as 
weight restriction (WR) methods. 

)ˆ
M i g i ig i AE X X f N Nμ∗

∈− = −∑ ∑  (2) 

 The first alternative is denoted PS.WR1 and 
consists of the following algorithm.  Denote the 
maximum allowable weight adjustment by maxf . 
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(1) Compute the IAF’s for the full set of poststrata.  

Any cell with maxIAF f>  is designated as 
“sparse” and will be collapsed with another cell. 

(2) Determine the “neighbors” of the cells that should 
be collapsed, i.e., the cell(s) they will be collapsed 
with. 

(3) Censor any IAF greater than maxf  to maxf  and 
adjust each weight in the corresponding initial cell 
to .  For units in cells with maxik ikw w f=�

maxIAF f≤ , set . ik ikw w=�
(4) Cycle through the sparse cells one cell at a time.  

Collapse each sparse cell with the neighbor having 
the smallest value of the IAF. Compute the CAF 
for a collapsed group g as ( )0

g g gf N w=� �  where 
( )0

g i
g iki A k sw w∈ ∈= ∑ ∑� � . 

(5) The final adjusted weight is then  for unit 
(ik) in group g. 

ik gw f��

This method will reduce the largest values of the final 
weight adjustment below the without-collapsing 
CAF’s, though there may be one or more groups that 
have CAF’s greater than the maxf  cutoff.   
 In the two cell example in section 2.1, it can 
be shown that, if cell 1 has maxIAF f>  and cell 2 does 
not, then the collapsing adjustment factors for cells 1 
and 2 are  

( )max 2
1

1 max 2

1f f c
CAF

cf f f
+

=
+

 and ( )1
2

1 max 2

1f c
CAF

cf f f
+

=
+

. (3) 

The final adjustments to weights in cells 1 and 2 are 
then 1 1f CAF  and 2 2f CAF .  Example 2 applies 
PS.WR1 to the simple case presented in Example 1 of 
section 2.1. 
 
Example 2.  Setting  and substituting the 
values from Example 1 into 

max 2f =
(3) yields  = 0.7 and 

 = 1.4.  These compare to the initial factors of 
0.438 and 1.75 and in the earlier example.  Thus, 
PS.WR1 shrinks the collapsing adjustment factors 
toward 1, i.e., the final adjustments are somewhat 
closer to the initial individual cell adjustments before 
collapsing.  Assuming that the IAF’s are the best 
coverage corrections, PS.WR1 retains more of the 
individual cell coverage corrections than does standard 
collapsing.  In this case, the final weight adjustments 
are 

1CAF

2CAF

1 1f CAF  = 2.8 and 2 2f CAF  = 1.4 compared to a 
common weight adjustment of 1.75 with standard 
collapsing in Example 1.  As a result, PS.WR1 does 
create a disparity in weights but not as great as would 
result if the two poststrata were kept separate. 
 

 The second alternative is denoted PS.WR2 
and is intended to exercise more control over the size 
of the final weight adjustment than does PS.WR1.  In 
Example 2 the final adjustment was 2.8 for cell 1 rather 
than max 2f = .  PS.WR2 limits the final adjustment to 
2 or some other maximum set in advance.  The general 
idea is to first determine which cells should be 
collapsed together, as was done for PS.WR1. Then 
weights in the sparse cells are multiplied by maxf . The 
weights in the non-sparse cell in a collapsed group are 
then adjusted by a constant factor to bring the 
estimated population count in the group to the control 
count.  The detailed algorithm for computing weights 
for PS.WR2 is the following: 
(1) Compute the IAF’s for the full set of poststrata.  

Any cell with maxIAF f>  is designated as sparse. 
Denote the set of sparse cells as spC . 

(2) Determine the neighbors of the cells that should be 
collapsed. 

(3) Cycle through the sparse cells one cell at a time 
( spi C∈ ).  Collapse each sparse cell with the non-
sparse neighbor having the smallest value of the 
IAF. Suppose that, at step k-1, two or more cells 
were collapsed to form a group, g. If, at step k, the 
non-sparse neighbor of sparse cell i′  with the 
minimum IAF is in g, then join cell i  to group g 
to form a larger group.  

′

(4) The collapsing process terminates when all sparse 
cells are collapsed into groups. Most groups will 
have one non-sparse cell; in some cases a group 
can have only sparse cells.  Denote the set of 
sparse cells in group g as ,g spA  and the non-sparse 

cell in group g as ,g spA . 

(5) In a group containing at least one non-sparse cell, 
compute the control total in group g as 

g
g ii AN ∈= N∑  and the adjusted weight for all 

units (ik) in ,g spA  as . Compute the 

adjusted weight for all units (ik) in 
maxik ikw w f=�

,g spA  as 

( ), ,
ˆ ˆ

ik ik g g sp g spw w N N N= − ��  where 

,,
ˆ

ig sp
ikg sp i A k sN w∈ ∈= ∑ ∑  and 

,
,

ˆ
g sp i

g sp iki A k sN w∈ ∈=∑ ∑� � .  In a group with 

only sparse cells, compute the weight using regular 
poststratification, i.e., ˆ

ik ik g gw w N N=� . 

The final adjusted weight is then  for unit (ik) in 
group g. 

ikw�
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Example 3.  Continuing with the same data as in 
Examples 1 and 2, suppose the desired weight 
adjustment for units in cell 1 is .  The weight 
adjustment for units in cell 2 is 1.667.  These compare 
to a common weight adjustment of 1.75 with standard 
collapsing in Example 1 and adjustments of 2.8 and 1.4 
for PS.WR1.  Thus, the weight disparity created by 
PS.WR2 is not as great as would result if the two 
poststrata were kept separate or if PS.WR1 were used. 

max 2f =

 
5. An Empirical Investigation 
 To test some of the ideas presented earlier, we 
conducted a simulation study of the bias properties of 
alternative methods of poststratification.  We also 
examined the performance of some of the variance 
estimators that are often used in practice. 
 
5.1 Study Population 
 The population used in the simulation was 
extracted from the 2003 National Health Interview 
Survey (NHIS) person public-use file.  A subset of the 
NHIS was created with 21,664 persons.  These were 
divided into 25 strata with each having six primary 
sampling units (PSU’s).  The strata and PSU’s are 
based on those in the NHIS public use file, but sets of 
three strata were collapsed together to create new strata 
for the study population.  We used four binary 
variables (0-1 characteristics) for the simulation, each 
of which is based on a person’s self-report:  
Health insurance coverage (NOTCOV)—whether a 

person was covered by any type of health 
insurance; 

Physical, mental, or emotional limitation (LA1AR)—
whether a person was limited in any of these ways; 

Medical care delayed (PDMED12M)—whether a 
person delayed medical care or not because of cost 
in last 12 months 

Overnight hospital stay (PHOSPYR)—whether a 
person stayed overnight in a hospital in last 12 
months 

Table 1 shows the percentages of persons with these 
four characteristics in cells formed by age and sex.  
These 16 (age × sex) cells are the initial set of 
poststrata used in estimation.  The percentages can vary 
substantially among the cells, depending on the 
characteristic.  For, example, 18-24 year olds are much 
more likely to have no health insurance; children under 
age 5 and the elderly age 65 and over are much more 
likely to have had a hospital stay.  Collapsing some of 
these cells together for estimation has the potential to 
introduce bias, as noted earlier. 
 
5.2 Sample Design 
 Two sample PSU’s were selected in each 
stratum with probability proportional to size (PPS) with 

the size being the count of persons in each PSU.  
Sampling of PSU’s was done with-replacement to 
simplify variance estimation.  In each sample PSU, 20 
persons were selected by simple random sampling 
without replacement for a total of 1,000 persons in 
each sample.  For each combination of parameters 
discussed below, 2,000 samples were selected. 
 Sixteen initial poststrata were used which 
were the cross of the eight age groups, shown in Table 
2, with gender.  In each sample, we computed the 
estimators of proportions described earlier in sections 
2-4—the Horvitz-Thompson ratio estimator, 

( ) ( )ˆ 1i i ii s i sp xπ π π∈ ∈= ∑ ∑ , the poststratified 

estimator described in sec. 2.1, denoted by , that 
uses all 16 poststrata, the poststratified estimator with 
collapsing of cells, , and the two weight-
restricted estimators,  and .  Each of 
the estimators , , , and  

has the form 

1ˆPSp

2ˆPSp

. 1ˆPS WRp . 2ˆPS WRp

1ˆPSp 2ˆPSp . 1ˆPS WRp . 2ˆPS WRp

( ) ( )i i ii s i sw x w∈ ∈∑ ∑  where  is the 

weight for unit i computed from the particular method 
of poststratification.  For each of the estimators of a 
proportion, a linearization variance estimate was 
calculated.  (Note that, for the PS estimators, the sum 
of weights across the full sample is a constant—the 
population count N—and linearization is unnecessary.)  
The simulation code was written in the R language (R 
Development Core Team 2005) with extensive use of 
the R survey package (Lumley 2004). 

iw

 
5.3 Coverage mechanisms 

Four sets of coverage mechanisms were 
employed to filter the population before the PSU’s 
were sampled. The coverage ratios listed in Table 2 
varied by poststratum and were different for each of the 
four characteristics for which proportions were 
estimated. For example, if the coverage ratio in the 
poststratum of males younger than 5 years old is 0.9, 
then 90% of the population in that poststratum were 
randomly selected to stay in the sampling frame while 
the rest had a zero probability to be sampled.  The 
coverage ratios, named C1 through C4, in Table 2 were 
artificially created based on the population means for 
each age and sex group. Poorer coverage was assigned 
to groups with larger percentages with a characteristic.  
 
5.4 Collapsing rules 

We set up situations where one or both of the 
conditions for unbiasedness in section 3 can be violated 
when cells were collapsed in the simulations.  Each of 
the estimators, , , and  involve 
cell collapses. If the IAF poststratification factor in an 

initial poststratum, 

2ˆPSp . 1ˆPS WRp . 2ˆPS WRp

( )0/i i if N w= , exceeds the 
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maximum allowable adjustment, we call this 
poststratum a “sparse” cell and collapse it with the 
neighboring cell which has the smallest 
poststratification factor.  In this section, we denote the 
maximum allowable adjustment by UA , which 
corresponds to maxf  for PS2, PS.WR1, and PS.WR2.  
The neighbors of a specific cell are defined as the cells 
either horizontally or vertically adjacent to it in the age 
× sex table.  For example, the neighbors of the cell 3 
are cells 2, 4, and 7, shaded in the following, 
abbreviated table.   

1 5 
2 6 
3 7 
4 8 

 
Two different values of UA  were used in the 
simulations— UA =2 and 1.8.  Use of UA =1.8 leads to 
more collapsing of cells than UA =2 and exhibits more 
of the biases noted in section 3.1 caused by combining 
of cells with different means.  Of course, in practice 
many variations are used to decide which combinations 
of cells are allowable.  We have used just one of the 
possibilities for illustration in the simulation. 
 Once all of the sparse cells and their neighbors 
with the minimum poststratification factor are 
identified, the collapsing process proceeds sequentially 
from cell 1 using the methods in sections 3 and 4.  In a 
survey with many potential poststrata defined in 
advance, these procedures might have to be performed 
iteratively to obtain weight adjustments that respect the 
desired bounds.  In this simulation, we performed only 
one round of collapsing. 
 
5.5 Simulation Results 
 Tables 3-5 summarize results for relative 
biases of estimated proportions, variances of alternative 
estimators, and confidence interval coverage using 
linearization variance estimators. The HT estimates, 
shown in Table 3, are badly negatively biased since 
they include no correction for the undercoverage that is 
highest in cells where the population proportions are 
highest.   
 Poststratification with no collapsing of cells 
(PS1) gives unbiased estimates while the alternatives—
PS2, PS.WR1, and PS.WR2—all introduce a bias due 
to collapsing (see Table 3).  The relative biases of PS2, 
which collapses cells whose PS factor is greater than or 
equal to UA , range from -6.1% to -0.6 when UA =2 
and from -8.2 to -0.5 when UA =1.8.  The alternatives, 
PS.WR1 and PS.WR2, have biases for UA =2 that are 
intermediate between PS1 (no collapsing) and PS2 
(standard collapsing).  PS.WR2 has biases that are 

greater in absolute value than those of PS.WR1 due to 
its more extreme weight restrictions.  PS.WR1 is 
generally competitive with PS1 in terms of bias. 
 One justification that is conventionally given 
for collapsing cells is that extreme weights will be 
reduced and variances of estimates will, in turn, be 
reduced.  Table 4 shows the ratios of the empirical 
variances of estimated proportions as a proportion of 
the variance of PS1.  The HT estimates do have 
variances that are 12 to 24% smaller than those of PS1, 
but, of course, HT is badly biased.  There are some 
precision gains from using PS2.  For example, with 

UA =1.8 the variance of hospitalized with PS2 is 83.4% 
of that of PS1, but this is at the expense of a  
-8.2% bias for PS2.  PS.WR1 either reduces variances 
only slightly or increases variances by 4 to 5% 
compared to PS1.  PS.WR2 reduces variance mainly in 
cases where it introduces bias. 
 Table 5 reports the empirical coverages of 
95% CI’s computed using the estimated proportions 
and the linearization variance estimator that naturally 
accompanies each.  The HT coverage rates are 
extremely poor, as expected, ranging from 72.0% to 
84.8%.  Among the poststratified estimators, PS1 and 
PS.WR1 cover at near the nominal rate of 95%.  In 
contrast, PS2 coverage is poor for health coverage and 
hospitalization, especially when UA =1.8 where the 
coverages are 87.6% and 85.2%.  PS.WR2 has 
coverage rates nearer to 95% than PS2 and is 
competitive with PS1 and PS.WR1. 
 
6. Concluding Remarks 
 Designers of surveys of households or 
establishments often have a lengthy list of poststrata in 
mind when they develop weighting systems.  However, 
if the sample size in a poststratum is small or the 
sample estimate of the population count in a 
poststratum is much less than an external control count, 
the poststratum may be collapsed with another adjacent 
one.  The conventional justification for collapsing is 
that the possibility of creating extreme weights is 
reduced as are variances of estimates.   
 However, collapsing has at least two 
undesirable consequences: (1) deficient frame or 
sample coverage in some cells is not completely 
corrected and (2) estimates from the standard approach 
to collapsing may be quite biased.  The latter problem 
can result in confidence intervals that cover at much 
less than the nominal rate.  Because of points (1) and 
(2), retention of all individual poststrata may be 
preferable to collapsing, even though collapsing does, 
in fact, reduce the variance of estimates. 
 Practitioners should address two issues before 
implementing any collapsing procedure:   
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(1) What are the estimated means of important survey 

variables within each of the planned poststrata? 
(2) What are the estimated population coverage rates, 

ˆN N , in each of the planned poststrata? 
Collapsing cells with substantially different means or 
coverage rates can introduce bias that may not be offset 
by any reduction in variance due to cell collapsing.   
 If collapsing of cells is used, the alternative 
methods of restricting weight adjustments, PS.WR1 
and to a lesser extent, PS.WR2, are good options for 
retaining more of the bias correction afforded by full 
poststratification with no collapsing. 
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Table 1.  Percentages of persons with four health-related characteristics in groups formed by age and sex. 

  
Not covered by health 

insurance 
Physical, mental, 

emotional  limitations 
Delayed medical care 

in last 12 months 
Hospital stay in last 12 

months 
Age Male Female Total Male Female Total Male Female Total Male Female Total 

< 5 10 9 9 4 3 3 3 4 3 17 15 16 
5-17 13 14 13 10 6 8 4 4 4 2 1 2 

18-24 37 31 34 4 4 4 8 11 9 3 14 8 
25-44 28 23 25 7 7 7 9 10 9 3 10 6 
45-64 14 14 14 16 19 18 7 11 9 8 10 9 
65-69 2 1 2 24 29 27 3 8 6 15 14 14 
70-74 1 1 1 34 32 33 2 5 4 18 15 17 
75+ 1 1 1 41 48 45 2 2 2 22 22 22 

Total 18 16 17 12 13 13 6 8 7 7 10 8 
 
Table 2.  Coverage ratios used in the simulations. 

 
C1: Not covered by health 

insurance 
C2: Physical, mental, 
emotional limitations 

C3: Delayed medical care 
in last 12 months 

C4: Hospital stay in last 
12 months 

Age Male Female Male Female Male Female Male Female 
< 5 0.9 0.9 0.9 0.9 0.9 0.9 0.5 0.5 

5-17 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 
18-24 0.5 0.5 0.8 0.8 0.6 0.5 0.8 0.5 
25-44 0.5 0.5 0.8 0.8 0.6 0.5 0.8 0.5 
45-64 0.8 0.8 0.7 0.7 0.6 0.5 0.8 0.5 
65-69 0.9 0.9 0.6 0.6 0.9 0.5 0.5 0.5 
70-74 0.9 0.9 0.5 0.5 0.9 0.7 0.5 0.5 
75+ 0.9 0.9 0.5 0.5 0.9 0.8 0.5 0.5 
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Table 3.  Percentage relative biases of estimated proportions  
Characteristic Horvitz-

Thompson 
PS1 (no 

collapsing) 
PS2 (standard 

collapsing) 
PS.WR1 
(truncate 

weights then 
collapse) 

PS.WR2 
(fixed 

maximum 
weight 

adjustment) 
Adjustment bound = 2      

Health coverage -11.4 0.3 -4.2 1.1 -1.2 
Limitations -10.4 -0.1 -0.6 0.0 -0.6 
Delayed care -9.6 -0.8 -2.2 -0.3 -1.4 
Hospitalized -13.3 0.0 -6.1 0.8 -2.3 

Adjustment bound = 1.8      
Health coverage -11.5 0.1 -6.4 1.0 -3.3 
Limitations -10.2 0.1 -0.5 0.2 -0.7 
Delayed care -9.4 -0.4 -2.6 0.4 -2.0 
Hospitalized -13.1 -0.1 -8.2 0.5 -4.6 

 

Table 4.  Ratio of variances to the variance of the poststratified estimator (PS1) with no collapsing.  
Characteristic Horvitz-

Thompson 
 

PS2 (standard 
collapsing) 

PS.WR1 
(truncate 

weights then 
collapse) 

PS.WR2 
(fixed 

maximum 
weight 

adjustment) 
Adjustment bound = 2     

Health coverage 0.870 1.019 1.031 0.998 
Limitations 0.879 0.973 1.003 0.981 
Delayed care 0.831 0.966 1.045 0.977 
Hospitalized 0.760 0.905 1.036 0.944 

Adjustment bound = 1.8     
Health coverage 0.877 0.958 1.038 0.974 
Limitations 0.867 0.967 0.994 0.978 
Delayed care 0.828 0.941 1.050 0.956 
Hospitalized 0.760 0.834 1.027 0.887 

 

Table 5.  Coverage of 95% confidence intervals. 
Characteristic Horvitz-

Thompson 
 

PS1 (no 
collapsing) 

PS2 (standard 
collapsing) 

PS.WR1 
(truncate 

weights then 
collapse) 

PS.WR2 
(fixed 

maximum 
weight 

adjustment) 
Adjustment bound = 2      

Health coverage 76.4 94.1 90.2 94.7 93.6 
Limitations 76.0 94.0 94.2 94.6 94.2 
Delayed care 84.8 94.0 93.0 94.0 93.9 
Hospitalized 72.3 95.0 89.0 95.0 94.0 

Adjustment bound = 1.8      
Health coverage 76.0 93.9 87.6 94.5 92.8 
Limitations 77.7 93.8 94.0 94.0 94.1 
Delayed care 84.2 93.3 92.8 93.7 93.3 
Hospitalized 72.0 93.7 85.2 93.8 91.7 
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