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Abstract 
 
Our goal is to find the best estimator for the eligibility rate of the 
sampling units whose eligibility statuses are unknown.  In this 
project, we focus on evaluating the survival analysis method 
proposed by Brick, Montaquila, and Scheuren (2000, 2002) in 
comparison to the method suggested by the Council of American 
Survey Research Organizations (CASRO) in 1982.  The 
survival-analysis-based method is relatively new so its behavior 
is not yet completely understood. On the other hand, the CASRO 
method is typically thought of as the survey research industry’s 
standard method.  We compare the two estimation methods in 
terms of bias via simulation.  We conclude that the bias in the 
survival-analysis-based method tends to be smaller than that in 
the CASRO method.  
 
Keywords: Call history, Eligibility rate, Response rate, Survival 
analysis, Working residential number 
 
 

1. Introduction 
 
Our goal is to find the best estimator for the eligibility rate of the 
sampling units whose eligibility statuses are unknown.  In this 
project, we focus on evaluating the survival analysis method 
proposed by Brick, Montaquila, and Scheuren (2000, 2002) in 
comparison to the method suggested by the Council of American 
Survey Research Organizations (CASRO) in 1982.  Since the 
survival-analysis-based method is relatively new, its behavior is 
not yet completely understood.  On the other hand, the CASRO 
method is typically thought of as the survey research industry’s 
standard adjustment method.  Using simulation techniques, we 
will compare the two methods with respect to bias within a 
simple but reasonable context. 
 
It is important how and how well we estimate the eligibility rate 
for sampling units whose eligibility statuses are unknown; i.e., 
the estimation affects the response rate calculation.  For a given 
sample, let E = the number of sampling units observed to be 
eligible, I = the number of sampling units observed to be 
ineligible, and U = the number of sampling units whose 
eligibility statuses could not be determined ( nUIE =++ , 
some fixed total sample size).  And, let u = the estimated 
eligibility rate of the sampling units of unknown eligibility status.  
Then, the estimated response rate is written as: 
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+
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where C is the number of eligible sampling units that responded 
( EC ≤ ). 
 
The true eligibility rate of the unknown eligibility status, γ , 

depends on the true nature of U.  Since nUIE =++ , U is 

determined by E + I for a given n.  C also depends on E.  E + I are, 
in turn, a result of a particular data collection method and effort 
applied to a population of interest (e.g., sampling of telephone 
numbers and some calling rules associated with screening for 
interview eligibility) where E is defined by survey-specific 
requirements.  Meanwhile, statistical properties of u are defined 
by a particular estimation method. 
 
Given data C, E, and U, we define the error in the estimated 
response rate as: 
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As we can see, u affects this error in a rather complicated way.  
(Trivially, however, D = 0 for any u, if C = 0 or U = 0.) 
 
Consider a residential telephone survey.  A typical set of calling 
rules generates eligible, ineligible, and undetermined sampling 
units.  For each phone number sampled, calls are often attempted 
until the number is determined to be a working residential 
number (WRN) or otherwise (non-WRN); i.e., until eligibility is 
determined.  However, since a maximum number of callbacks is 
often pre-specified, eligibility invariably fails to be resolved for 
some phone numbers.  (We say calling rules are “full” calling 
rules, if all undetermined phone numbers are called until the 
maximum number is reached.) 
 
Facing this situation, “in spite of many callbacks, eligibility 
status cannot be determined,” CASRO (1982) suggests: “For 
purposes of estimating the number of eligible sampling units, this 
unknown remainder should be distributed between eligibles and 
ineligibles in the same proportion as exists among the working 
numbers.”  In other words, the CASRO method assumes cases of 
unknown eligibility are eligible WRN’s in the same proportion as 
cases for which WRN status can be determined and it simply 
uses: 

 
                         Number of known WRN                                 
Number of known WRN + Number of known non-WRN 
 
as the estimate of the WRN rate for the telephone numbers whose 
WRN statuses are unknown. 
 
When the call history (call-level data) is available and when there 
is a variation in the WRN rate over call attempts, there is a 
promising alternative to the CASRO method.  Brick, Montaquila, 
and Scheuren (2000, 2002) proposed the application of survival 
analysis in estimating the WRN rate among the undetermined 
cases.  Their approach presupposes some random censoring of 
the number of call attempts for a given phone number, as the 
survival analysis estimate would be equivalent to the CASRO 
estimate without censoring.  Thus, a proper comparison would be 
between the survival analysis method with justifiable 
“random-censoring” calling rules and the CASRO method with 

ASA Section on Survey Research Methods

3390



“full” calling rules. 
 
A topic-contributed session on the application of survival 
analysis method in analyzing call history data was organized at 
the 2004 Joint Statistical Meetings in Toronto.  Luo and Minato 
(2005) theoretically compared, for some special cases, the bias in 
the survival analysis estimate versus the bias in the CASRO 
estimate.  As we continue on that path, we provide some 
simulation results that indicate the circumstances under which 
the former bias is smaller than the latter bias. 
 
 

2. Options for Fair Comparisons 
 
If there are no numbers with undetermined eligibility at the end 
of eligibility screening (using “full” calling rules), there is 
nothing to do or to estimate.  Also, if there are relatively few 
numbers left with undetermined eligibility, no additional 
attempts may be necessary or meaningful with respect to 
increasing the number of resolved or eligible cases.  Nor would 
we need to apply a complicated estimation method for such cases.  
In fact, under these circumstances we might reasonably use the 
CASRO method or assume that all such cases are ineligible (or 
even assume that they are eligible, to be most conservative in 
calculating the response rate).  In other words, if U is small, the 
impact of u on D would be relatively small. 
 
Even when the number of resolved or eligible cases is not 
sufficiently large, if the resolution rate has decreased almost to 
zero by the end of screening, then there is little hope of increasing 
the number of such cases by accumulating further call attempts.  
In this situation, we might just stop screening and resort to using 
the CASRO method for estimating the eligibility rate among the 
undetermined cases.  Note, in general, that when we have a large 
number of undetermined cases that cannot easily be resolved, we 
cannot do much or do well in terms of estimation as we usually 
have little or no information about their eligibility rates. 
 
The alternative method of survival analysis becomes a reasonable 
option when (1) the number of resolved (and eligible) cases is not 
sufficiently large after using “full” calling rules and (2) further 
call attempts could bring in the sufficient number of resolved 
(and eligible) cases necessary to make up for the shortage.  To 
compare the survival analysis method and CASRO method fairly, 
we may also need to fix the budget in terms of the total number of 
phone calls.  As mentioned before, if the number of undetermined 
cases is large, neither method is expected to do well in taming 
bias. 
 
First, suppose that a population consists of three types of phone 
numbers: for the first type of phone number ( 1t ), eligibility can be 

resolved by making one call; the second type ( 2t ) requires 

exactly two calls for resolution; and the third type ( 3t ), three calls.  

Let 1ρ , 2ρ , and 3ρ  be the resolution rates for the first, second, 

and third call attempts, respectively.  1ρ  and 2ρ  must be greater 

than 0 but less than 1 so that 1t , 2t , and 3t  are all non-empty.  3ρ  

is set to 1 so that the union of 1t , 2t , and 3t  is the entire 

population.  The eligibility rates (WRN rates) associated with 1t , 

2t , and 3t are written as 1ω , 2ω , and 3ω , respectively, where 

iω can take on any value between 0 and 1, inclusively. 

 
Assuming eligibility resolution for a population of phone 
numbers as defined above, the “full” calling rule can be reduced 
to a call-every-number-only-once rule.  Now, subsequent to the 
first round of calls, consider the following two options: (1) call all 
the unresolved numbers one more time, or (2) censor out some of 
the unresolved numbers (at the rate 1c ) and call the remaining 
numbers one more time. 
 
If we let 2c  be the censoring rate after the second round of calls, 

then Option 1 can be expressed by setting 01 =c  and 12 =c  

while Option 2 can be expressed by setting 10 1 << c  and 12 =c .  

Note that 3t  cannot be observed because we assume a third call 
attempt would never be made under Options 1 and 2.  In fact, it is 
reasonable to assume that some part of the population could 
never be reached using a realistic calling rule.  Here, the first 
round of call attempts represents the part of the population for 
which eligibility can be resolved using “full” calling rules, while 
the second round of call attempts represents the part of the 
population for which additional calling attempts might prove 
promising. 
 
Note that under Option 2, because fewer calls are made, cost will 
be lower.  However, consequently you will end up with fewer 
resolved cases.  Thus, we present the four-call-attempt scenario 
and a third option (see Table 1) that allows for a “fair” 
comparison between the CASRO method and the survival 
analysis method.  Specifically, by dividing the second call 
attempt group into two groups, Option 2 can be extended such 
that two extra call attempts are made, therefore fixing the total 
number of resolved cases to be the same for both Options 1 and 3. 
 
Assuming a finite population ( ∞<1N ), the total number of calls 

made for Option 1 would be )1( 111 ρ−+ NN , while the total 
numbers of calls for Option 3 would be 

)1)(1)(1)(1()1)(1( 322311131111 ccNcNN −−−−+−−+ ρρρ .  The 
total number of resolved cases for Option 1 would be 

21111 )1( ρρρ −+ NN , and the total number of resolved cases for 
Option 3 would be 

332231112311111 )1)(1)(1)(1()1)(1( ρρρρρρ ccNcNN −−−−+−−+ .  
Thus, constraining the cost (i.e., the total number of calls) and the 
return (i.e., the total number of resolved cases), we might set: 

)1)(1)(1)(1()1)(1(

)1(

322311131111

111

ccNcNN

NN

−−−−+−−+=
−+

ρρρ
ρ

 

and 

.)1)(1)(1)(1(

)1)(1(

)1(

33223111

2311111

21111

ρρρ
ρρρ

ρρρ

ccN

cNN

NN

−−−−+
−−+=

−+
 

For Option 3, 10 1 << ρ , 10 2 << ρ , and 10 3 << ρ ; 10 31 << c  

and 10 32 << c .  So, under these constraints, the solution to the 
system of equations is:  

32 ρρ =         [1] 
and 

)1)(1(

)1)(1(

313

31313
32 c

cc
c

−−
−−−=

ρ
ρ

      [2]. 
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Obviously, 32 ρρ =  is a rather limiting and somewhat unrealistic 
condition.  However, in order to fairly compare Options 1 and 3 
constraining the cost and return, it is necessary to make such an 
assumption. 
 
 

3. Estimating γ  
 
In this section, we give the CASRO and survival analysis 
estimates of γ  under Options 1 and 3, respectively.  Since the 
undetermined cases are generated in different ways by the two 
calling options (even though each assumes the same number of 
calls), we have two parameters to consider.  Let 1γ  be the true 
eligibility among the undetermined cases under Option 1, and let 

3γ  be the true eligibility rate under Option 3.  Note that under 

Option 3 with up to four call attempts, 01 >N , 10 1 << ρ , 

10 2 << ρ , 10 3 << ρ , 14 =ρ , 10 1 ≤≤ ω , 10 2 ≤≤ ω , 

10 3 ≤≤ ω , and 10 4 ≤≤ ω , we have  

4433

444333
1 ρρ

ωρωργ
NN

NN

+
+= , where )1)(1( 2113 ρρ −−= NN  and 

)1)(1)(1( 32114 ρρρ −−−= NN , 
 
or 

)1)(1)(1()1)(1(

)1)(1)(1()1)(1(

321321

43213321
1 ρρρρρρ

ωρρρωρρργ
−−−+−−
−−−+−−=  with 

14 =ρ . 

Further, with the censoring rates 10 1 << c , 10 2 << c , and 

13 =c  (dropping the option index),    

444433322

444443333222
3 )()(

)()(

ρρρ
ωρωρωργ

NNNNNN

NNNNNN
′′′+′′+′+′′+′+′
′′′+′′+′+′′+′+′

= ,  

where 1112 )1( cNN ρ−=′ , )1()1( 21113 ρρ −−=′ cNN , 

221113 )1)(1)(1( ccNN ρρ −−−=′′ , 

)1)(1()1( 321114 ρρρ −−−=′ cNN , 

)1()1)(1)(1( 3221114 ρρρ −−−−=′′ ccNN , and 

33221114 )1)(1)(1)(1)(1( cccNN ρρρ −−−−−=′′′ ,  
or 

)]1)(1)(1)(1)(1(

)1()1)(1)(1()1)(1()1(
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with 14 =ρ  and 13 =c . 
 
Letting n’s, r’s, w’s as the sample notation of N’s, ρ ’s, and ω ’s, 

respectively, the CASRO estimate of 1γ  is: 

2211

222111
1 rnrn

wrnwrn

+
+=γ) , where )1( 112 rnn −= , 

or 

211

22111
1 )1(

)1(

rrr

wrrwr

−+
−+=γ) . 

 
The survival analysis approach described by Brick, Montaquila, 
and Scheuren (2000, 2002) takes advantage of the relationship 
between the level of difficulty (number of call attempts) in 
reaching a household and the WRN rate (the eligibility rate).  
Provided that number of calls to a given phone number is 
censored randomly, phone numbers left with undetermined 
eligibility at the end of data collection can be considered 
right-censored observations.  The survivor function for such data, 
which describes the probability of a number being resolved at 
each call attempt, can be partitioned into separate functions for 
WRN (eligible) and non-WRN (ineligible).  Using similar 
notation to that in Brick et al. (2000, 2002), the mode-specific 
survivor functions are written as 

∑
≥′

′
′

′
=

tt

WRN
WRN tS

tn

td
tS )(ˆ

)(

)(
)(ˆ  

and 

∑
≥′

′
′

′
=

tt

nonWRN
nonWRN tS

tn

td
tS )(ˆ

)(

)(
)(ˆ , 

where )(tdWRN
′  and )(td nonWRN

′  are the number of cases resolved 

to be WRN and nonWRN at the th-t′  call attempt, respectively, 
)(tn ′  is the number of cases available for the th-t′  call attempt, 

and 

∏
<

+−=
tt

nonWRNWRN

tn

tdtdtn
tS

' )'(

))'()'(()'(
)(ˆ  

is the Kaplan-Meier estimate of the marginal survivorship 
function.  The overall WRN rate is then computed as 

)0(ˆ)0(ˆ
)0(ˆ

ˆ
nonWRNWRN

WRN

SS

S
r

+
=∞ . 

 
Finally, the WRN rate of the cases with undetermined eligibility 
is estimated as 

UN

WRNTOT
UN n

nnr
r

−⋅= ∞̂ˆ , 

where TOTn  is the total number of cases, WRNn  is the number of 

cases resolved as WRN, and UNn  is the number with 
undetermined eligibility. 
 
The survival analysis estimate of 3γ  in our sample notation is:   

]
13212121121

1332121221111

1

321

332122111
3
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(Note that the observed rates of 1r , 2r , 1w , and 2w  are not the 

same with those in 1γ)  because the data are different.)   
 
An inspection of the formulas for 1γ , 1γ) , 3γ , and 3γ(  suggests 
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that 3γ(  is a more reasonable estimate for 3γ  than 1γ)  is for 1γ .  

1γ  contains 1ρ , 2ρ , 3ρ , 3ω , and 4ω , but 1γ)  consists of 1r , 2r , 

1w , and 2w .  That is, 1γ)  not only lacks 3r , 3w , and 4w  but also 

contains 1w  and 2w  that are irrelevant in 1γ .  On the other hand, 

3γ(  is a function of 1r , 2r , 3r , 1w , 2w , and 3w , while 3γ  is a 

function of 1ρ , 2ρ , 3ρ , 2ω , 3ω , and 4ω (with 1c  and 2c  being 

constants in both functions).  Thus, 3γ(  includes all relevant 

parameter estimates except for 4w , which no estimator can 

include as there is no data for 4ω  (unless 4ω  is assumed to be 

some function of 1ω , 2ω , or/and 3ω ).  1w  is found both in 1γ)  

and 3γ( , and this could therefore be a common source of bias. 
 
 

4. Simulations of Squared Asymptotic Biases 
 
We conducted straightforward simulations for the above 
four-call-attempt scenario using calling and estimation Options 1 
and 3.  We specified the following sets of parameters values: 

}0.9 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1,{1 =ρ , 

0.4} 0.3, 0.2, {0.1,32 == ρρ      , 

14 =ρ         ,  

1} 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, {0,1 =ω , 

1} 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, {0,2 =ω , 

1} 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, {0,3 =ω , 

1} 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, {0,4 =ω , 

1)1)(1(

)1)(1(

22

22
1 +−−

−−=
ρ

ρ
c

c
c  (from [2]), and 

}0.9 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1,{2 =c . 
Thus, there are 4,743,684 parameters combinations.  Using the 
Maple (symbolic computation) software, we computed the 
squared asymptotic biases for each combination of parameters 
and counted (1) the number of combinations such that 

)s(Sq.Asy.Bia)s(Sq.Asy.Bia 31 γγ () > , (2) the number of 

combinations such that )s(Sq.Asy.Bia)s(Sq.Asy.Bia 31 γγ () = , and 
(3) the number of combinations such that 

)s(Sq.Asy.Bia)s(Sq.Asy.Bia 31 γγ () < .  The distribution of the 
squared asymptotic bias is also computed for each estimator.  The 
simulation results can be found in Table 2. 
 
In this particular simulation, we can see that 

)s(Sq.Asy.Bia)s(Sq.Asy.Bia 31 γγ () >  occupies about two thirds of 

the frequency distribution.  If we use 3γ(  instead of 1γ)  when 

)s(Sq.Asy.Bia)s(Sq.Asy.Bia 31 γγ () > , then the reduction of the 
squared asymptotic bias would be about 47% ((549,978.2 - 
291,456.9) / 549,978.2 � 100%).  Meanwhile, if we use 1γ)  

instead of 3γ(  when )s(Sq.Asy.Bia)s(Sq.Asy.Bia 31 γγ () < , then the 
reduction of the squared asymptotic bias would be about 34% 
((141,917.4 - 93,121.9) / 141,917.4 � 100%).   
 
If we always make the right choice of estimator, i.e., if we pick 
the estimator that gives us a smaller squared asymptotic bias, then 
the total squared asymptotic bias would be reduced by 40% 
((647,964.2 - 389,442.9) / 647,964.2  � 100%), compared to 

always using 1γ) , and by 11% ((438,238.4 - 389,442.9)/ 

438,238.4 � 100%), compared to always using 3γ( . 
 
Next, we ask if there are any systematic patterns in the parameter 
combinations that characterize each of the outcomes 

)s(Sq.Asy.Bia)s(Sq.Asy.Bia 31 γγ () > , 

)s(Sq.Asy.Bia)s(Sq.Asy.Bia 31 γγ () = , and 

)s(Sq.Asy.Bia)s(Sq.Asy.Bia 31 γγ () < .   
Studying the simulation results has led us to propose the 
following conjecture and theorem.   
 
Conjecture 1.  )s(Sq.Asy.Bia)s(Sq.Asy.Bia 31 γγ () >  for all 1ω , 

2ω , 3ω , and 4ω  in [0, 1] such that 

{ 1ω , 2ω } > { 3ω , 4ω } or { 1ω , 2ω } < { 3ω , 4ω },   

where { 1ω , 2ω } means 1ω  > 2ω , 1ω  = 2ω , or 1ω  < 2ω  and { 3ω , 

4ω } means 3ω  > 4ω , 3ω  = 4ω , or 3ω  < 4ω ,  

whenever 01 >N , 10 1 << ρ , 10 2 << ρ , 10 3 << ρ , 14 =ρ , 

10 1 << c , 10 2 << c , and 13 =c  satisfy 

)1()1)(1)(1)(1()1)(1( 1122111111 ρρρρ −=−−−−+−− NccNcN  
and 

.)1(

)1)(1)(1)(1()1)(1(

211

3221112111

ρρ
ρρρρρ

−=
−−−−+−−

N

ccNcN
 

 
This conjecture is a refinement of Conjecture 2 in Luo and 
Minato (2005, p. 3935).  Notice the strict inequality in { 1ω , 2ω } 

> { 3ω , 4ω } or { 1ω , 2ω } < { 3ω , 4ω }.  And, the strongly 

monotonic relations 1ω  < 2ω  < 3ω  < 4ω  and 1ω  > 2ω  > 3ω  > 

4ω  meet the hypothesis.  
 
Chart 1 shows simulation results using: 

5.032 == ρρ , 2.01 =c , 5.02 =c  (=>  the same numbers of 
total phone calls and the same numbers of resolved cases) and 
( 1ω , 2ω , 3ω , 4ω ) = ( 0.2, 0.4, 0.6, 0.8), (0.8, 0.6, 0.4, 0.2), (0.1, 

0.3, 0.7, 0.9), and (0.9, 0.7, 0.3, 0.1).  1ρ  is varied on (0, 1), and 

the plot is smoothed as if 1ρ  is continuously varied.  We can 
observe the following: 
1. As Conjecture 1 suggests, the squared asymptotic bias under 
the CASRO option is larger than that under the survival analysis 
method option: green vs. red and blue vs. yellow. 
2. The relationships between 1ρ  and the squared asymptotic bias 

are identical for 1ω  < 2ω  < 3ω  < 4ω  and 1ω  > 2ω  > 3ω  > 4ω .  
That is, there is some symmetry.  This, however, may not be 
totally surprising, given the symmetry in Conjecture 1. 
3. The squared asymptotic bias is larger when ω ’s are more 
spread out: green vs. blue and red vs. yellow. 
4. As 1ρ  increases, the squared asymptotic bias increases.  Also 

note that as 1ρ  increases, the number of undetermined cases 
decreases and thus that the impact of the bias on the response rate 
computation might be attenuated.  (Recall the formula for D.) 
 
When the eligibility rate is uniform in the population, we have the 
following theorem. 
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Theorem 1. )s(Sq.Asy.Bia)s(Sq.Asy.Bia 31 γγ () =  for all 1ω , 2ω , 

3ω , and 4ω  in [0, 1] such that 

1ω  = 2ω  = 3ω  = 4ω ,  

whenever 01 >N , 10 1 << ρ , 10 2 << ρ , 10 3 << ρ , 14 =ρ , 

10 1 << c , 10 2 << c , and 13 =c  satisfy 

)1()1)(1)(1)(1()1)(1( 1122111111 ρρρρ −=−−−−+−− NccNcN  
and 

.)1(

)1)(1)(1)(1()1)(1(

211

3221112111

ρρ
ρρρρρ

−=
−−−−+−−

N

ccNcN
 

 
Proof. Given the conditions, we can directly show with algebra 
that 0)s(Sq.Asy.Bia)s(Sq.Asy.Bia 31 =− γγ ()

.  »« 
 
This result is rather intuitive, because if the eligibility does not 
vary, the survival analysis method is not expected to gain or lose 
any more information than the CASRO method.   
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Tables 
 
Table 1: Four-call-attempt scenario 
 

Call 
Attempt 

Number of Calls 
Resolution 

Rate 
Resolved 

Observed 
Eligibility Rate 

Eligible Non-eligible Unresolved 
Censoring 

Rate 
Censored 

      1 1N  1ρ  11ρN  1ω  111 ωρN  )1( 111 ωρ −N  )1( 11 ρ−N  1c  111 )1( cN ρ−  

      2 2N )1)(1( 111 cN −−= ρ  2ρ  22 ρN  2ω  222 ωρN  )1( 222 ωρ −N  )1( 22 ρ−N  2c  

222 )1( cN ρ−
 

      3 3N )1)(1)(1)(1( 22111 ccN −−−−= ρρ  3ρ  33 ρN  3ω  333 ωρN  )1( 333 ωρ −N  )1( 33 ρ−N  1 )1( 33 ρ−N  

      4 
 

1 
 4ω  

     

 
Table 2: Simulation results 
 

 
 

 

Frequency 
(%) 

Sum of 
)s(Sq.Asy.Bia 1γ)

 (%) 

Sum of 
)s(Sq.Asy.Bia 3γ(

 (%) 

Sum of minimum of 
( )s(Sq.Asy.Bia 1γ) ,  

)s(Sq.Asy.Bia 3γ( ) 
(%) 

)s(Sq.Asy.Bia)s(Sq.Asy.Bia 31 γγ () >
 

3,070,836  
(64.7%) 

549,978.2  
(84.9%) 

291,456.9  
(66.5%) 

291,456.9  
(74.8%) 

)s(Sq.Asy.Bia)s(Sq.Asy.Bia 31 γγ () =
 

43,758  
(0.9%) 

4,864.1  
(0.8%) 

4,864.1  
(1.1%) 

4,864.1  
(1.2%) 

)s(Sq.Asy.Bia)s(Sq.Asy.Bia 31 γγ () <
 

1,629,090  
(34.3%) 

93,121.9  
(14.4%) 

141,917.4  
(32.4%) 

93,121.9  
(23.9%) 

Total 4,743,684  
(100%) 

647,964.2  
(100%) 

438,238.4  
(100%) 

389,442.9  
(100%) 
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Charts 
 
Chart 1: Squared asymptotic bias 
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