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Abstract:

Systematic sampling is a frequently used sampling
method in surveys, because of its ease of implemen-
tation and its design efficiency. An important draw-
back of systematic sampling, however, is that no di-
rect estimator of the design variance is available. We
describe a new estimator of the model-based expec-
tation of the design variance, under a nonparametric
model for the population. The nonparametric model
is sufficiently flexible that it can be expected to hold
at least approximately for many practical situations.
We prove the consistency of the estimator for both
the anticipated variance and the design variance un-
der the nonparametric model, and illustrate its prac-
tical properties through a simulation experiment.
KEY WORDS: anticipated variance, nonparametric
model, local polynomial regression.

1. Introduction

Systematic sampling is widely used in surveys of
finite populations due to its appealing simplicity
and efficiency. The method was first studied by
Madow and Madow (1944), in which the expression
of design-based variance for the sample mean was
developed. However, it is impossible to derive an
unbiased design-based estimator for this variance,
because systematic sampling is equivalent to clus-
ter sampling with only one cluster selected (Iachan
1982). Some less-than-perfect approaches for deal-
ing with this problem exist in literature. One is
to use biased variance estimators, and another one,
for example, is to use an auxiliary simple random
sample. For the former approach, Särndal et al.
(1992) remarked that the estimator due to Yates
and Grundy (1953) and Sen (1953) will overestimate
the variance. A more comprehensive review can be
found in Wolter (1985), where eight biased variance
estimators were described and guidelines for choos-
ing among them were given. For the latter approach,
Zinger (1980) pursued an approach, defined as par-
tially systematic sampling, that gives an unbiased
variance estimator, by mixing systematic and sim-
ple random samples together.
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The above variance estimation methods are con-
ditional on the design. In other words, they are
design-based in the way that we treat the finite pop-
ulation as fixed. There also exist some model-based
variance estimators where the populations are con-
sidered random realizations from a superpopulation
model. For the case of a linear superpopulation,
Montanari and Bartolucci (1998) proposed a model-
based variance estimator, which is approximately
unbiased for the anticipated variance, i.e. the expec-
tation of the design-based variance for the sample
mean under the superpopulation model. However,
it may lack accuracy and efficiency due to a higher
contribution of the bias if the systematic component
of the superpopulation is significantly different from
linear. A new class of unbiased estimators that in-
cludes some simple nonparametric estimators was
proposed by Bartolucci and Montanari (2005) and
was shown to be unbiased under linear superpopu-
lation models.

In this article, we propose a model-based nonpara-
metric variance estimator based on local polynomial
regression. The systematic sampling framework is
briefly described in Section 2, and Section 3 reviews
the model-based variance results under the linear su-
perpopulation model. In Section 4, we study the
properties of the proposed local polynomial variance
estimator under the nonparametric superpopulation
model. Simulation results are presented in Section
5 and conclusions are drawn in Section 6.

2. Systematic sampling

Suppose the study variable Y for a finite population
is Y1, Y2, · · · , YN . Then the population mean is

ȲN =
1
N

N∑
j=1

Yj ,

which is estimated by the sample mean. Let n de-
note the sample size and k = N/n denote the sam-
pling interval. For simplicity, we assume k to be an
integer. So the bth systematic sample (b = 1, · · · , k)
consists of the observations with the following labels

b, b + k, ... , b + (n− 1)k.
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The bth sample mean is

ȲSb
=

1
n

n∑
j=1

YSbj

and the design-based variance for sample mean ȲS ,
denoted by Varp(ȲS), is

Varp(ȲS) =
1
k

k∑
b=1

(ȲSb
− ȲN )2. (1)

3. Variance estimation under linear
models

In the model-based context, the population is con-
sidered being drawn from a superpopulation model.
Let Yj ∈ < (j = 1, 2, · · ·) be a set of independent
and identically distributed random variables. Let
Xj ∈ <d (j = 1, 2, · · ·) be vectors of auxiliary vari-
ables, which we consider as fixed. Suppose the linear
superpopulation model, denoted by L, is

Y = Xβ + ε, (2)

where EL(ε) = 0 and VarL(ε) = σ2
LΩ, with EL and

VarL denoting the expectation and variance under
the model L, respectively. For simplicity, we assume
Ω to be diagonal. i.e. Ω = diag{ω1, ω2, · · · , ωN}.

In model (2), Y = (Y1, Y2, · · · , YN )T , β =
(β0, β1, · · · , βd)T , and

X =

 1 X11 · · · X1d

...
...

...
...

1 XN1 · · · XNd

 .

We can rewrite the design variance (1) as

Varp(ȲS) =
1

kn2
YT NY, (3)

where N = MT HM, with M = 1T
n ⊗ Ik and H =

Ik − 1
k1k1T

k . Here ⊗ is the Kronecker product and
1r is a column vector of 1’s of length r.

The model anticipated variance is

EL[Varp(ȲS)] =
1

kn2
βT XT NXβ

+
1

kn2
tr(NΩ)σ2

L. (4)

Bartolucci and Montanari (2005) discuss an unbi-
ased estimator for EL[Varp(ȲS)], defined as

V̂L(ȲS) =
1

kn2
β̂T

b XT NXβ̂b − tσ̂2
Lb

+
1

kn2
tr(NΩ)σ̂2

Lb, (5)

where β̂b is the ordinary least square (OLS) esti-
mator for β for the bth sample and σ̂2

Lb is a model
unbiased estimator for σ2

L, which is defined as

σ̂2
Lb =

(Yb −Xβ̂b)T Ω−1
b (Yb −Xβ̂b)

n− rank(X)
,

where Ωb is a sub matrix of Ω corresponding to the
bth sample.

In equation (5), tσ̂2
Lb is a bias correction term with

t = 1
(kn)2

∑k
b=1 tr(PT

b XT NXPbΩb) and a choice of
Pb is Pb = (XT

b Ω−1
b Xb)−1XT

b Ω−1
b . We assume that

(XT
b Ω−1

b Xb)−1 exists.
Li (2005) shows that, under an asymptotic frame-

work in which N →∞ and a set of assumptions,

Varp(ȲS)− EL[Varp(ȲS)] = Op

(
N−1/2

)
, (6)

and

V̂L(ȲS)− EL[Varp(ȲS)] = Op(n−1/2) (7)

and hence by (6) and (7),

V̂L(ȲS)−Varp(ȲS) = Op(n−1/2). (8)

Equation (7) suggests that V̂L(ȲS) is a consistent
estimator for EL[Varp(ȲS)]. Equation (6) indicates
that the conditional variance Varp(ȲS) converges to
EL[Varp(ȲS)] in probability. So V̂L(ȲS) can be used
as a consistent predictor for Varp(ȲS), as (8) sug-
gests. Details on these results are in Li (2005).

4. Variance estimators under non-
parametric models

Parametric method are appropriate when we can
correctly specify the superpopulation model. How-
ever, if the superpopulation model is incorrectly
specified, parametric method may result in biased
or inefficient estimation. We propose a consis-
tent variance estimator under nonparametric mod-
els. We study the case where d = 1. Let X =
(X1, X2, · · · , XN ). The nonparametric superpopula-
tion model, denoted by NP , is

Y = m + ε, (9)

where ENP (Yj |Xj = xj) = m(xj) and VarNP (ε) =
σ2

NP Ω. Let m(·) be a continuous and bounded func-
tion, and define m = (m(x1),m(x2), · · · ,m(xN )).
We assume that the ωj ’s are bounded and positive,
where j = 1, ..., N .
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Under model (9), the expected value of Varp(ȲS)
is

ENP (Varp(ȲS)) =
1

kn2
mT Nm

+
1

kn2
tr(NΩ)σ2

NP . (10)

As an estimator for ENP (Varp(ȲS)), we propose

V̂NP (ȲS) =
1

kn2
(m̂T

b Nm̂b) +
1

kn2
tr(NΩ)σ̂2

NPb. (11)

Here σ̂2
NPb is defined as

σ̂2
NPb =

(Yb − m̂b)T Ω−1
b (Yb − m̂b)

n
, (12)

and m̂b = (m̂(x1), · · · , m̂(xn)) where m̂(xj) is the
local polynomial regression estimator

m̂(xj) = eT
1 (XT

bjWbjXbj)−1XT
bjWbjYb,

where e1 is the (q + 1) × 1 vector having 1 in the
first entry and all other entries 0, and

Xbj =

 1 (x1 − xj) · · · (x1 − xj)q

...
...

...
...

1 (xn − xj) · · · (xn − xj)q

 , (13)

Wbj = diag
{

K

(
xi − xj

h

)
1
h

, i = 1, · · ·n
}

, (14)

where h denotes the bandwidth, q denotes the de-
gree of local polynomial regression and K

(
xi−xj

h

)
is the kernel function. We refer to Wand and Jones
(1995) for more information on the local polynomial
regression estimator. Note that we are not including
the bias correction term tσ̂2

Lb used in equation (11)
because that term is asymptotically negligible.

To study the convergence properties of V̂NP (ȲS),
we make the following assumptions.

A 1 The errors εj’s are independent with mean zero,
variance ωjσ

2
NP and compact support, uniformly for

all N .

A 2 For each N , we consider the xj’s as fixed
with respect to the superpopulation model NP . The
xj’s are independent and identically distributed with
F (x) =

∫ x

−∞ f(t)dt, where f(·) is a density function
with compact support [ax, bx] and f(x) > 0 for all
x ∈ [ax, bx].

A 3 As N → ∞, nN−1 → p ∈ (0, 1), h → 0 and
Nh2/(log log N) →∞.

A 4 The (q + 1)th derivative of the function m(·)
exists and is bounded on [ax, bx].

Theorem 1 Under assumption A1 - A4,

Varp(ȲS)− ENP (Varp(ȲS)) = Op(N−1/2), (15)

V̂NP (ȲS)− ENP (Varp(ȲS))

= Op

(
hq+1

)
+ Op

(
1√
nh

)
, (16)

and

V̂NP (ȲS)−Varp(ȲS)

= Op

(
hq+1

)
+ Op

(
1√
nh

)
. (17)

Theorem1 shows that V̂NP (ȲS) is a consistent es-
timator for ENP (Varp(ȲS)) and a consistent pre-
dictor for Varp(ȲS) under the nonparametric model
NP . We provide an outline of proof for (16) in Ap-
pendix. The proof for (15) and (17) can be found in
Li (2005).

5. Simulation Study

To further investigate the statistical properties of the
above variance estimators and predictors, we per-
form a simulation study. For simplicity, we assume
that the errors are independently and normally dis-
tributed with homogeneous variances. Two super-
population models are examined: the linear model

yj = 5 + 2xj + εj , (18)

where j = 1, . . . , N and εj ∼ N(0, σ2
1), and the

quadratic model

yj = 5 + 2xj − 2x2
j + εj , (19)

where j = 1, . . . , N and εj ∼ N(0, σ2
2).

Let R2
1 and R2

2 denote the coefficient of determi-
nation for model (18) and (19), respectively. The co-
efficient of determination, also known as R-square,
is the fraction of variation in the response that is
explained by the model. So bigger R-square means
bigger predictive power of the model. We investi-
gated two levels of σ2

1 and two levels of σ2
2 , which

correspondingly determined two levels of R2
1 and

two levels of R2
2. Specifically, we have four different

cases: (1)R2
1 ≈ 0.75; (2)R2

1 ≈ 0.25; (3)R2
2 ≈ 0.75;

(4)R2
2 ≈ 0.25.

We compare the performance of V̂L(ȲS) and
V̂NP (ȲS) with the variance estimator for simple ran-
dom sampling (SI) design, i.e.

V̂SI(ȲS) =
1− f

n
S2

Y S
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where f = n/N and S2
Y S = 1

n−1

∑
S(Yk − ȲS)2.

We generate populations of size N = 2, 000, and
we choose three different systematic sample sizes
n = 500, 100 and 10, with corresponding sampling
intervals k = 4, 20 and 200, respectively. To draw
a systematic sample, we first sort the data by x,
from the smallest to the largest, then we randomly
choose an observation from the first k observations,
say the bth one. Then our sample consists of the
observations with the following subscripts: b, b +
k, ..., b + (n − 1)k. For each sample, we calculate
the corresponding Varp(ȲS), EL[Varp(ȲS)], V̂L(ȲS),
ENP [Varp(ȲS)] and V̂NP (ȲS) as defined in (3), (4),
(5), (10) and (11) respectively. For V̂NP (ȲS), we
calculate it using two bandwidth values: h = 0.50
and h = 0.25. Each simulation setting is repeated
B = 10, 000 times.

For each of V̂L(ȲS), V̂NP (ȲS) and V̂SI(ȲS), we
calculate the relative bias (RB), mean squared error
(MSE) and mean squared prediction error (MSPE),
which are defined as follows:

RB =
E(V̂(ȲS))− EL[Varp(ȲS)]

EL[Varp(ȲS)]
,

MSE = E(V̂(ȲS)− EL[Varp(ȲS)])2,

and MSPE = E(V̂(ȲS)−Varp(ȲS))2.

where V̂(ȲS) denotes one of V̂L(ȲS), V̂NP (ȲS) and
V̂SI(ȲS).

For all four cases, V̂L(ȲS) assumes linear trend
for the superpopulation model. So it is expected
that for case 3 and 4, which generate populations
from quadratic model (19) , V̂L(ȲS) will have poor
variance estimation results.

Table 1 reports the relative bias for V̂L(ȲS),
V̂NP (ȲS) (evaluated at two bandwidth values) and
V̂SI(ȲS). We can see that for case 3 and 4, V̂L(ȲS)
is a significantly biased estimator. And its bias is
of similar magnitude to V̂SI(ȲS) in corresponding
cases. For case 1 and 2, in which the populations
have linear trends, the relative biases of V̂L(ȲS) are
generally small, and tend to get smaller when sam-
ple size gets larger. The relative biases of V̂SI(ȲS)
in case 1 and 2 are similar to those in case 3 and
4, respectively, and behave similarly poorly. When
we use the model based variance estimator V̂L(ȲS),
assuming the wrong model can be a serious problem.

The results in Table 1 also suggest that V̂NP (ȲS)
performs better than V̂L(ȲS) in almost all cases,
especially when the superpopulation model is
quadratic. This is because V̂NP (ȲS) does not re-
quire a linear specification of the model, as it only
requires smoothness of the superpopulation mean
function. We also see that its relative biases are

generally small, except for case 3 and n = 10, where
the relative bias values are -21.49% and -18.99% for
h = 0.50 and h = 0.25, respectively. This is mostly
likely due to the extremely small sample size for lo-
cal polynomial regression. Also as far as the relative
bias is concerned, there seems to be no difference
between these two bandwidth values.

Table 2 reports the ratios of MSE and MSPE be-
tween V̂L(ȲS) and V̂SI(ȲS), and the ratios of MSE
and MSPE between V̂NP (ȲS) and V̂SI(ȲS), evalu-
ated at two different bandwidth values. MSE mea-
sures the variability of an estimator and MSPE mea-
sures the variability of a predictor. Smaller MSE and
MSPE are desired. We see that when the superpop-
ulation model is linear, i.e. case 1 and 2, V̂L(ȲS)
performs better than V̂SI(ȲS), because those ratios
are less than one. And when the linear superpopu-
lation is more precise, i.e. R2 ≈ 0.75, the advantage
of using V̂L(ȲS) is more obvious. However, when
it comes to case 3 and 4, where we incorrectly as-
sume the superpopulation model, V̂SI(ȲS) performs
slightly better than V̂L(ȲS). For V̂NP (ȲS), the ra-
tios are less than one in all categories, suggesting
that V̂NP (ȲS) is a less variable estimator and a less
variable predictor than V̂SI(ȲS).

6. Conclusions

From the above study, we conclude that V̂L(ȲS) and
V̂NP (ȲS) are consistent estimators for EL[Varp(ȲS)]
and consistent predictors for Varp(ȲS), under the
assumed models (2) and (9), respectively. The linear
estimator V̂L(ȲS) only performs well if the model is
correctly specified. The nonparametric model (9) is
less restrictive than the linear regression model (2),
and the corresponding variance estimator V̂NP (ȲS)
performs well in almost all cases. So in practice, we
recommend the nonparametric estimator V̂NP (ȲS).

7. Appendix

Outline of proof of equation (16):

V̂NP (ȲS)− ENP (Varp(ȲS))

=
1

kn2
(m̂T

b Nm̂b −mT Nm)

+
1

kn2
tr(NΩ)(σ̂2

NPb − σ2
NP )

≡ (∗) + (∗∗). (20)

We can write (∗) as

(∗) =
1

kn2
(m̂b −m)T N(m̂b −m)

+
1

kn2
mT N(m̂b −m)
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Linear Quadratic
Relative Bias (%) 1: R2

1 ≈ 0.75 2: R2
1 ≈ 0.25 3: R2

2 ≈ 0.75 4: R2
2 ≈ 0.25

V̂L(ȲS) n = 500 0.00 -0.06 318.22 31.77
n = 100 -0.18 -0.04 323.68 32.67
n = 10 1.49 1.19 376.10 38.11

V̂NP (ȲS), h = 0.5 n = 500 0.00 0.00 -0.74 -0.07
n = 100 0.01 0.01 -3.01 -0.30
n = 10 1.21 1.54 -21.49 -1.29

V̂NP (ȲS), h = 0.25 n = 500 0.00 0.00 -0.74 -0.07
n = 100 0.03 0.03 -2.99 -0.28
n = 10 3.71 4.77 -18.99 1.86

V̂SI(ȲS) n = 500 330.24 33.20 317.84 31.73
n = 100 321.65 32.96 320.82 32.39
n = 10 250.86 32.67 349.15 34.91

Table 1: Simulated relative bias for V̂L(ȲS), V̂NP (ȲS) (at two bandwidth values) and V̂SI(ȲS) for four
populations and three systematic sample sizes (in percent).

Linear Quadratic
1: R2

1 ≈ 0.75 2: R2
1 ≈ 0.25 3: R2

2 ≈ 0.75 4: R2
2 ≈ 0.25

MSE(V̂L(ȲS)) n = 500 0.00 0.03 1.00 1.00
MSE(V̂SI(ȲS)) n = 100 0.00 0.14 1.02 1.02

n = 10 0.02 0.50 1.16 1.17
MSPE(V̂L(ȲS)) n = 500 0.06 0.85 1.00 1.00
MSPE(V̂SI(ȲS)) n = 100 0.01 0.51 1.02 1.01

n = 10 0.02 0.51 1.16 1.16
MSE(V̂NP (ȲS), h = 0.50) n = 500 0.00 0.00 0.00 0.00
MSE(V̂SI(ȲS)) n = 100 0.00 0.00 0.00 0.00

n = 10 0.00 0.01 0.01 0.00
MSPE(V̂NP (ȲS), h = 0.50) n = 500 0.79 0.68 0.82 0.69
MSPE(V̂SI(ȲS)) n = 100 0.01 0.42 0.01 0.43

n = 10 0.00 0.03 0.00 0.02
MSE(V̂NP (ȲS), h = 0.25) n = 500 0.00 0.00 0.00 0.00
MSE(V̂SI(ȲS)) n = 100 0.00 0.00 0.00 0.00

n = 10 0.00 0.03 0.00 0.01
MSPE(V̂NP (ȲS), h = 0.25) n = 500 0.06 0.85 0.06 0.85
MSPE(V̂SI(ȲS)) n = 100 0.01 0.42 0.01 0.43

n = 10 0.01 0.05 0.00 0.04

Table 2: Ratios of MSE and MSPE between V̂L(ȲS) and V̂SI(ȲS), between V̂NP (ȲS) and V̂SI(ȲS) at two
bandwidth values.
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+
1

kn2
(m̂b −m)T Nm

≡ (A) + 2(B).

Note that mT N(m̂b−m) = (m̂b−m)T Nm because
they are both scalars. By the definition of matrix N,
we can write (A) as

(A) =
1

kn2
(m̂b −m)T N(m̂b −m)

=
1
k

k∑
b=1

 1
n

∑
j∈sb

(m̂(xj)−m(xj))

− 1
N

∑
j∈U

(m̂(xj)−m(xj))

2

=
1
k

k∑
b=1

{(a1) + (a2) + (a3)} ,

where

(a1) =
1
n2

[
∑
j∈sb

(m̂(xj)−m(xj))]2,

(a2) =
1

N2
[
∑
j∈U

(m̂(xj)−m(xj))]2,

and (a3) = − 2
nN

∑
j∈sb

(m̂(xj)−m(xj))

·
∑
j∈U

(m̂(xj)−m(xj)) .

Note that

m̂(xj)−m(xj) = sbjYb −m(xj)
= sbj(mb + εb)−m(xj)
= bb(xj) + sbjεb.

Here sbj is the smoother matrix and sbj =
eT
1 (XT

bjWbjXbj)−1XT
bjWbj , where Xbj and Wbj are

defined as in (13) and (14), respectively. For simplic-
ity, we will use Kij to denote K

(
xi−xj

h

)
in future

notation.
Now expand the parentheses in (a1), we have

E(a1) =
1
n2

∑
j∈sb

b2
b(xj) +

1
n2

E

∑
j∈sb

sbjεbε
T
b sT

bj


+

1
n2

∑
j∈sb

∑
l∈sb,j 6=l

bb(xj)bb(xl)

+
1
n2

E

∑
j∈sb

∑
l∈sb,j 6=l

sbjεbε
T
b sT

bl

 . (21)

The right-hand side of (21) contains four terms. We
will calculate them one by one.

(i) First let us investigate 1
n2

∑
j∈sb

b2
b(xj). We

will use a technique similar to Ruppert and Wand
(1994). Let mb = (m(x1),m(x2), · · · ,m(xn)). By
Taylor’s theorem,

mb = Xbj

(
m(xj)
Dm(xj)

)
+ Rm(xj),

where Dm(xj) = (m′(xj), 1
2m′′(xj), · · · , 1

q!m
(q)(xj))

and Rm(xj) is a vector of Taylor series remainder
terms. So

bb(xj) = sbjmb −m(xj) = sbjRm(xj)
= eT

1 (XT
bjWbjXbj)−1XT

bjWbj

·


1

(q+1)!m
(q+1)(x∗j1)(x1 − xj)q+1

...
1

(q+1)!m
(q+1)(x∗jn)(xn − xj)q+1



= eT
1

 z11j · · · z1(q+1)j

...
...

...
z(q+1)1j · · · z(q+1)(q+1)j


−1

·

 t1j

...
t(q+1)j


≡ eT

1 Z∗−1
j T,

where

zstj =
1

nh

n∑
i=1

Kij(xi − xj)s+t−2,

tkj =
1

nh

n∑
i=1

Kij(xi − xj)k+q
m(q+1)(x∗ji)

(q + 1)!
,

with s, t = 1, 2, · · · q + 1, k = 1, 2, · · · q + 1 and x∗ji is
some point between xi and xj .

Under assumptions A2 and A3, by Lemma 2 (ii)
of Breidt and Opsomer (2000), for a certain point
xj , there are at least q + 1 points in the interval
[xj − h, xj + h]. So Z∗j is invertible.

Lemma 1 Assume that the kernel function Kij is
bounded above, then

1
nh

n∑
i=1

Kij(xi − xj)r = O(hr),

where r = 0, 1, 2, · · · .
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The proof of Lemma 1 is provided by Li (2005).
Thus, suppose assumption A4 holds, by Lemma 1,
we have zstj = O(hs+t−2) and tkj = O(hk+q).

So

bb(xj) = eT
1

 O(1) · · · O(hq)
...

...
...

O(hq) · · · O(h2q)


−1

·

 O(hq+1)
...

O(h2q+1)

 .

Note that the order of a matrix is the same as its
inverse. So

bb(xj) = O(hq+1) + · · ·+ O(h3q+1) = O(hq+1), (22)

and thus
1
n2

∑
j∈sb

b2(xj) =
1
n2

∑
j∈sb

O(h2q+2)

= O

(
h2q+2

n

)
. (23)

(ii) Secondly, let us compute
1

n2 E
(∑

j∈sb
sbjεbε

T
b sT

bj

)
in (21).

1
n2

E

∑
j∈sb

sbjεbε
T
b sT

bj

 =
1
n2

∑
j∈sb

sbjΩbsT
bj

=
1
n2

∑
j∈sb

eT
1 (XT

bjWbjXbj)−1XT
bjWbjΩbWT

bjXbj

·(XT
bjWbjXbj)−1e1

≡ 1
n2

∑
j∈sb

eT
1 Z∗−1

j C∗
jZ

∗−1
j e1,

where Ωb is the variance-covariance matrix of model
(9) and Ωb = diag(ω1, ω2, · · · , ωn), and

C∗
j =

 c11j · · · c1(q+1)j

...
...

...
c(q+1)1j · · · c(q+1)(q+1)j


with

cstj =
1

n2h2

n∑
i=1

K2
ijωi(xi − xj)s+t−2

= O

(
hs+t−3

n

)
by Lemma 1.

Li (2005) shows that

eT
1 Z∗−1

j C∗
jZ

∗−1
j e1 = O

(
1

nh

)
,

and thus

1
n2

E

∑
j∈sb

sbjεbε
T
b sT

bj

 = O

(
1

n2h

)
. (24)

(iii) Thirdly we will calculate
1

n2

∑
j∈sb

∑
l∈sb,j 6=l bb(xj)bb(xl) in (21). Using

the result in (22), we get

1
n2

∑
j∈sb

∑
l∈sb,j 6=l

bb(xj)bb(xl) = O
(
h2q+2

)
. (25)

(iv) The last term on the right-hand side of (21)
is 1

n2 E
(∑

j∈sb

∑
l∈sb,j 6=l sbjεbε

T
b sT

bl

)
, and Li (2005)

shows that

1
n2

E

∑
j∈sb

∑
l∈sb,j 6=l

sbjεbε
T
b sT

bl

 = O

(
1
n

)
. (26)

Assumption A3 implies that nh → ∞, and by
(23), (24), (25) and (26),

E(a1) = O
(
h2q+2

)
+ O

(
1
n

)
. (27)

Similarly, we can calculate E(a2) and E(a3). Un-
der A3, nh →∞, so

E(a2) = O
(
h2q+2

)
+ O

(
1
N

)
(28)

and E(a3) = O
(
h2q+2

)
+ O

(
1
n

)
. (29)

Also note that (A) > 0, so |(A)| = A. Thus, by
(27), (28) and (29),

E|(A)| = E(A) =
1
k

k∑
b=1

{E(a1) + E(a2) + E(a3)}

= O
(
h2q+2

)
+ O

(
1
n

)
,

which implies

(A) = Op

(
h2q+2

)
+ Op

(
1
n

)
.

Next, using a similar technique to that of (A),

(B) = Op

(
hq+1

)
+ Op

(
1√
n

)
.
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Thus,

(∗) = (A) + 2(B)

= Op

(
hq+1

)
+ Op

(
1√
n

)
. (30)

Now let us calculate (∗∗) = 1
kn2 tr(NΩ)(σ̂2

NPb −
σ2

NP ) in (20), where σ̂2
NPb is defined as in (12). So

σ̂2
NPb − σ2

NP

=
1
n

n∑
j=1

(Yj −m(xj))2

ωj
− σ2

NP

+
1
n

n∑
j=1

(m̂(xj)−m(xj))2

ωj

+
2
n

n∑
j=1

(Yj −m(xj))(m̂(xj)−m(xj))
ωj

.

Li (2005) shows that

1
n

n∑
j=1

(Yj −m(xj))2

ωj
− σ2

NP = Op

(
1√
n

)
, (31)

1
n

n∑
j=1

(m̂(xj)−m(xj))2

ωj

= Op

(
h2q+2

)
+ Op

(
1

nh

)
, (32)

and

2
n

n∑
j=1

(Yj −m(xj))(m̂(xj)−m(xj))
ωj

= Op

(
hq+1

)
+ Op

(
1√
nh

)
. (33)

Since 1
kn2 tr(NΩ) = O(1), and by (31), (32) and

(33), we have

1
kn2

tr(NΩ)(σ̂2
NPb − σ2

NP )

= Op

(
hq+1

)
+ Op

(
1√
nh

)
. (34)

Therefore by (30) and (34),

V̂(ȲS)− ENP (Varp(ȲS))

= Op

(
hq+1

)
+ Op

(
1√
nh

)
.
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