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Abstract

Suppose data for a survey with multi-stage design is to be
collected in two periods of time. This paper assesses the
relative merits of keeping the same clusters in the sam-
ple vs. sampling new clusters, under different statistical
(correlation between clusters and over time) and logis-
tical (costs of survey) scenarios. The design effect of
re-using the same clusters from the master sample over
time is of the form 1 − Aρπ/n where ρ is intertempo-
ral correlation of the cluster totals, n is the number of
clusters, π is the proportion of clusters retained from the
previous round, and A > 0 is a fixed constant. As long as
the efficiency gains appear to be minor, the value of the
designs that reuse the clusters comes from the logistical
(cost of the survey) considerations. Empirical demon-
stration that uses Demographic and Health Survey (DHS)
data for Bangladesh, 1996 and 2000, is provided.

1. Introduction

A change in the population characteristic is often of in-
terest to researchers and policymakers for the purposes
of assessing the dynamics of population change, the ef-
fectiveness of economic or population health measures,
and other research questions. At the level of a country,
the data sources routinely used to address those questions
are large complex surveys. When the survey is repeated
over time, a new dimension of the sampling error com-
ponent of the total survey error is due to the patterns of
repeated observations, or sampling units. Non-sampling
components of the error, such as (potentially informa-
tive) sample attrition, or conditioning (time in the sam-
ple) effects, are beyond the scope of this paper.

The literature about sampling on multiple occasion
goes back to Jessen (1942), who considered single stage
surveys at two occasions; Yates (1949), who extended
this work into multiple occasions assuming that obser-
vations for each unit followed a stationary AR(1) pro-
cess, and Patterson (1950) who studied a single stage
survey on several occasions and estimation of the means
for each occasion. At about that time, one of the
largest regularly conducted US data collection efforts,
the Current Population Survey, was conceived, that em-
ployed a 4-8-4 rotating design (Eckler 1955, Rao &
Graham 1964, Binder & Hidiroglou 1988, U.S. Census
Bureau 2002). Singh (1968) considered multi-stage de-
signs for sampling on several occasions and discussed

how the fractions of the earlier samples should be used
in the later occasions, with application to an agricul-
tural survey subjected to heavy seasonal variations. The
area of repeated survey designs has recently achieved
a new wave of interest from the natural resources re-
search where a need arises to assess changes in foresta-
tion or agricultural health. In this area, the most pop-
ular designs are variations of the sampling with partial
replacement scheme where each wave contains elements
from all previous waves, as well as newly sampled units
(Scott 1998, Fuller 1999, McDonald 2003).

The efficiency of estimating the change in popula-
tion totals (means) implies that with observations posi-
tively correlated over time, the sampling designs allow-
ing for extensive overlap of the sampling/observation
units between waves provide more efficient estimates.
Another practical consideration is the implementation
cost (Groves 1989). An example where costs, poten-
tially varying between units, play a major role in the
sample design is Neyman-Tchuprow optimal allocation
design (Neyman 1938). Our interest lies in the costs of
repeated surveys: it can be argued that the costs of in-
terviewing individuals increase with time (primarily, due
to the costs of locating the household), while the cost of
revisiting a cluster may be lower (the maps and popu-
lation counts are already available; the cooperation with
the community leaders and/or individual respondents has
already been established; etc.).

This paper was motivated by the design of Demo-
graphic and Health Surveys1, a U.S. Agency of Inter-
national Development sponsored project that collects
the family planning, maternal health, child survival,
HIV/AIDS and other health information on over 70 de-
veloping countries. The surveys are highly standardized
(subject to translation of the instruments into the country
home languages). The sampling design includes stratifi-
cation (by region and urbanicity) and clustering (by set-
tlements). Typical sample sizes vary between 5,000 and
30,000 households. The clusters are revisited about every
5 years. A large period of time between consecutive in-
terviews makes it impractical to locate the households in-
terviewed previously, and new samples are taken at each
of the locations. Thus there is a considerable overlap in
the first stage sampling between time periods, while the
second stage samples are taken independently. We shall
refer to such designs as cluster-panel designs.

1 See http://www.measuredhs.com.

ASA Section on Survey Research Methods

3243



2. Repeated surveys in simple settings

Suppose a SRSWR survey with sample size n is con-
ducted on the population of size N .2 The survey designer
can control the amount of overlap between the two sam-
ples over time. Suppose a fraction π of units are the same
in two periods of time, so that the first (1 − π)n obser-
vations are those taken at time t = 1 and abandoned af-
ter that; then the next πn observations are those taken
at both t = 1 and t = 2 by design; and the remaining
(1− π)n observations are those taken at time t = 2 only
by sampling with replacement independently from those
retained from the previous period. Then two possible es-
timators of the mean change ∆ = Ȳ2−Ȳ1 are elementary
estimate

δ̂ = ȳ2 − ȳ1 (1)

and a (one-step) composite estimate

δ̂α =
1
n

[
(1 + πα)

(
−

(1−π)n∑
i=1

y1i +
(2−π)n∑
i=n+1

y2i

)
+ (1− (1− π)α)

n∑
i=(1−π)n+1

(y2i − y1i)
]

(2)

where α controls the relative weights given to the panel
subsample and the independent subsample. Let us as-
sume that the variances of Y1,i and Y2 are the same,
S2

1 = S2
2 = S2, and the intertemporal correlation is de-

fined as

1
N − 1

N∑
j=1

(y1i − Ȳ1)(y2i − Ȳ2) = ρS2 (3)

Then the variances of the two estimates are:

V[δ̂] =
2(1− πρ)S2

n
, (4)

V
[
δ̂α] =

2S2

n

[
(1 + πα)2(1− π) (5)

+ (1− (1− π)α)2π(1− ρ)] (6)

The optimal α that minimizes (6) is

α∗ = − ρπ

2(1− ρ(1− π))
(7)

and further variance minimization over the design pa-
rameter π gives

V
[
δ̂α∗ ] =

2S2

n

1− ρ

1− ρ(1− π)
(8)

Both (4) and (8) achieve their minima when π = 1,
i.e., in the panel setting, and the two estimators coincide
achieving variance 2(1− ρ)S2/n.

2The capital letters denote the population quantities, and the lower
case letters, the sample ones. Time periods are denoted by subscripts.

Let us now bring the cost considerations into account.
Suppose the unit cost of observing the unit at the first
stage only is c1, the unit cost of observing the unit at both
stages is c12, and the unit cost of observing the unit only
in the second stage is c2. Then the optimal design for
the elementary estimator is derived from the following
minimization problem:

2(1− πρ)S2

n
→ min

n,π

s.t. c1(1− π)n + c12πn + c2(1− π)n ≤ C0 (9)

The inequality is in fact binding (the budget of the survey
is fully used), and the minimization problem becomes

2(1− πρ)(c1 + c2 + π[c12 − c1 − c2])
C0

→ min
π∈[0,1]

(10)
If c12 6= c1 + c2, this equation gives a parabola with the
center at

π∗ =
c12 − c1(1 + ρ)− c2(1 + ρ)

2ρ(c12 − c1 − c2)
=

1
2ρ
− 1

2
[

c12
c1+c2

− 1
]

(11)
Let us now consider three special cases. If c12 < c1 + c2

(sampling new units is more costly than revisiting them;
arguably, the case of the cluster designs), π∗ > 1 gives
the location of the minimum, and hence the optimal de-
sign is the one with π = 1. If c12 = c1 + c2, there are
neither extra costs nor extra savings associated with the
panel mode of data collection. In this case the objective
function is linearly decreasing with π, and the optimal
solution to it is π = 1. If c12 > c1 + c2 (sampling new
individuals is cheaper than tracking them; arguably, the
most realistic case in panel studies), the objective func-
tion in (10) is a parabola with downward branches, and
the minimization problem has a corner solution at either
1 or 0, depending on which of those two points is further
from the maximum:

π =

{
0, c1 + c2 < (1− ρ)c12

1, c1 + c2 > (1− ρ)c12

(12)

When c1 + c2 = (1 − ρ)c12, both sample designs with
π = 0 and π = 1 give the same variance.

For the one-step composite estimator of change, the
analogous minimization problem is

2S2

C0

(1− ρ)(c1 + c2 + π(c12 − c1 − c2))
1− ρ(1− π)

→ min
π

(13)
and it turns out to have the same optimality conditions as
(10), since the optimal designs under the latter one are ei-
ther independent sampling, or panel study, in which case
both the elementary estimate and the composite estimate
coincide.
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3. Repeated surveys with cluster sampling

Most large multistage surveys are collected using cluster
sampling at certain stages where a groups of observa-
tion units, rather than units themselves, are sampled at
the early stages of sampling, possibly with varying prob-
abilities (say probability proportional to size). In DHS
studies that are our main motivation, the clusters are set-
tlements, such as villages in rural areas, or city districts
in urban areas. For the analysis in this section, we con-
sider a two-stage cluster equal probability of selection
(epsem) design where the finite population corrections
may be ignored. More complicated probability designs
will produce conceptually the same results attenuated by
weights and fpcs.

Let us denote the clusters by i, so that there are N
clusters in the population and n clusters in the sample.
Let us enumerate the observations within i-th cluster by
j, so that j = 1, . . . ,Mi for i-th cluster in population,
and j = 1, . . . ,mi in the sample. j-th observation in
i-th cluster is denoted as Yij in the population or yij in
the sample. The totals and their estimates are denoted
by T [Y ] and t[y] in population and in the sample, re-
spectively. The means per observation units are ratios of
the corresponding totals of Y or y, and the totals of 1’s,
in the clusters or populations. The total variance of the
response variable is S2, the variance within i-th cluster,
S2

wi, and the variance between clusters, S2
b .

Derivation of the variances of the totals and means can
be found in a number of standard textbooks (Hansen,
Hurwitz & Madow 1953, Kish 1965, Thompson 1992,
Särndal, Swensson & Wretman 1992):

V[t··] = N2 1− fI

n
S2

b + N/n

n∑
i=1

M2
i

1− fi

mi
S2

wi (14)

Suppose now that the survey is repeated over time, so
that there are at least two waves of data. Denote the time
by an upper index: Y

(t)
ij , t = 1, 2, . . .

The quantity of interest to the researcher would be the
difference in population totals or, more often, averages
per observation unit of characteristic Y :

D[Ȳ (2) − Ȳ (1)] =
T [Y (2)]
T [1(2)]

− T [Y (1)]
T [1(1)]

(15)

For general ratio estimators of y/x, the estimator of
(15), although biased in finite samples, is the difference
of the corresponding ratio estimators:

d[ȳ(2) − ȳ(1)] =
t[y(2)]
t[x(2)]

− t[y(1)]
t[x(1)]

= d
(
t[y(2)], t[y(1)], t[x(2)], t[x(1)]

)
(16)

and its variance is

V
[
d[y(2) − y(1)]

]
= V

[T [Y (2)]
T [X(2)]

]
+ V

[T [Y (1)]
T [X(1)]

]
− 2 Cov

[T [Y (2)]
T [X(2)]

,
T [Y (1)]
T [X(1)]

]
(17)

In terms of the previous section, it corresponds to the ele-
mentary estimate of the change. The composite estimates
do not seem to be frequently used in large surveys, as
computing those estimates will either require supplying
a new set of weights by the institution collecting the data,
or estimating the intertemporal correlation coefficient by
the user of the data. Any of those procedures will be spe-
cific to the difference being estimated, and will tend to
be rather cumbersome.

The linear approximations for the first two terms of
(17) can be found using (14) and linearization technique.
If the samples in different periods are taken indepen-
dently of one another, then the third term is zero. The
case we are interested in, however, is when the clusters
from the first sample are reused, at least partially, in the
second sample.

In computing the linearization approximation to the
last covariance term, it should be noted that for the
cluster-panel designs the covariances across time can be
simplified as follows:

Cov
[
t[ξ(2)], t[ζ(1)]

]
=

= EI

{
CovII

[
t[ξ(2)], t[ζ(1)]|I

]}
+ CovI

{
EII

[
t[ξ(2)]|I

]
, EII

[
t[ζ(1)]|I

]
=

N2πn

n2
Cov

[
Ξ(2)

i· ,Z(1)
i·
]

=
πN2

(N − 1)n

N∑
i=1

(Ξ(2)
i· − Ξ̄(2)

i· )(Z(1)
i· − Z̄(1)

i· )
}

(18)

where indices I and II represent the first and the second
stages of the sampling, respectively. The first conditional
covariance on the second line is zero, as long as sampling
at the second stage is performed independently across
waves.

In computing the means per unit, xij = 1. Let us also
make a simplifying assumption that the design is fixed
size, so V

[
t[1(t)]

]
= 0, t = 1, 2, . . .. Then the covari-

ance term in (17) is comprised only of the covariances
between y’s in two time periods:

Cov
[ t[y(2)]
t[x(2)]

,
t[y(1)]
t[x(1)]

]
≈

Cov
[
t[y(2)], t[y(1)]

]
T [X(1)]T [X(2)]

≈

≈
N2π Cov

[
Y

(2)
i· , Y

(1)
i·
]

(NM̄)2n
=

π Cov
[
Y

(2)
i· , Y

(1)
i·
]

M̄2n
(19)
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Then the variance of the difference can be found as

V
[
d[y(2) − y(1)]

]
≈ 1

N2M̄2 V
[
t[y(2)]

]
+

1
N2M̄2 V

[
t[y(1)]

]
− 2

π Cov
[
Y

(2)
i· , Y

(1)
i·
]

M̄2n
(20)

If the last covariance is positive (i.e., the clusters with
higher values of Y in the first period continue to have
higher values in the second period), then the re-use of
clusters will be decreasing variance: the higher the pro-
portion of reused clusters π, the lower the total variance
(20). Again, if the sampling is performed independently
in the two waves of data collection, the last term is zero.
Setting it to zero also corresponds to the naı̈ve estimator
of the difference variance that does not account for the
longitudinal nature of the data collection process. Thus
the design effect of repeated sampling that compares the
naı̈ve estimate with the appropriate one is

DEFFr = V[repeated design]
V[independent sampling]

= 1− 2
π Cov

[
Y

(2)
i· , Y

(1)
i·
]

n(V
[
t[y(1)]

]
+ V

[
t[y(2)]

]
)/N2

(21)

so the correction is in fact of the order O(n−1), and
the repeated sampling design effect is going to be small
unless the number of clusters is small (say 20 or less),
which is against the standard clustered design recom-
mendation of having many clusters with few observa-
tions per cluster. The naı̈ve variance estimator is con-
servative for positive Cov

[
Y

(2)
i· , Y

(1)
i·
]
, and is consistent

when n →∞.

4. Costs for repeated cluster samples

This section will analyze the cost efficiency of clustered
samples when one wants to estimate the difference be-
tween two sample means from two different periods.

Some discussion of the costs of cluster sampling is
given in Thompson (1992, Sec. 12.5), and more mathe-
matical details are available in Hansen et. al. (1953, Vol.
II, Sec. 6.11) with the variance formulas corrected for
finite populations.

Let us assume the following cost structure: cI
1 is the

cost of sampling and collecting the community data at
time t = 1 for the clusters that are used in the first wave
only; cII

1 is the cost of sampling and interviewing an in-
dividual at time t = 1; cI

2 is the cost of sampling a new
cluster at time t = 2; cII

2 is the cost of sampling and in-
terviewing an individual at time t = 2; cI

12 is the cost
of sampling and collecting the data for clusters that have
the data collected in both periods t = 1 and t = 2.

Let the population consist of N clusters in both time
periods, and each cluster consist of M individuals. Let

the number of clusters used in only the first time period
be n1, only in the second period, n2, and the number of
clusters used in both waves, n0. Let the number of units
sampled in each cluster be m1 in the first wave and m2

in the second wave. Then the total variable cost of the
survey is

C0 = cI
1n1+cI

12n0+cI
2n2+cII

1 (n1+n0)m1+cII
2 (n2+n0)m2

(22)
The sample designer wishes to minimize the variance

of the elementary difference estimator (17):

{n0, n1, n2,m1,m2} = arg min V
[ t[y(2)]
t[1(2)]

− t[y(1)]
t[1(1)]

]
(23)

Note that this is objective function focuses solely on the
difference between the two sample means, while in the
practical situation, the design should also allow for effi-
cient estimation of the contemporary means.

Note that the design is of the fixed size, so
V
[
t[1(t)]

]
= 0, t = 1, 2. From the results in two pre-

ceding sections, the variance of (23) is

V
[ t[y(2)]
t[1(2)]

− t[y(1)]
t[1(1)]

]
=

N − (n1 + n0)
(n1 + n0)NM2

S2
1b +

1
NM

M −m1

m1
S̄2

1w

+
N − (n2 + n0)
(n2 + n0)NM2

S2
2b +

1
NM

M −m2

m2
S̄2

2w

−2
n0ρ

IS1bS2b

(n1 + n0)(n2 + n0)M2
(24)

where the variance (14) was used for the first two terms,
and

ρI =
∑N

i=1

(
Y

(2)
i· − Ȳ

(2)
i·
)(

Y
(1)
i· − Ȳ

(1)
i·
)

(N − 1)M2S1bS2b
(25)

is the intertemporal correlation of the cluster totals.
The minimization constraints are:

cI
1n1 + cI

12n0 + cI
2n2

+ cII
1 (n1 + n0)m1 + cII

2 (n2 + n0)m2 ≤ C0, (26)
n0 ≥ 0, n1 ≥ 0, n2 ≥ 0 (27)

and with the corresponding Lagrange multi-
pliers λ, λ0, λ1, λ2, the Lagrangian function
L(n0, n1, n2,m1,m2;λ, λ0, λ1, λ2) can be written
down as a combination of (24), (26) and (27). For details
and derivations, see Kolenikov & Angeles (2005).

The necessary conditions for this minimization prob-
lem will be considered for three cases of the greatest in-
terest.
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Case 1: independent sampling n0 = 0, λ1 = λ2 = 0,
n1, n2 > 0. No common clusters are sampled
in two periods of time; all of the sampling is per-
formed independently.

Case 2: cluster-panel design λ0 = 0, n1 = n2 = 0.
All of the clusters sampled in the first period are
reused again in the second period.

Case 3: mixed design λ0 = λ1 = λ0 = 0, n0, n1,
n2 > 0. At each time period, the sample con-
tains both clusters common to the two observation
periods, and independent wave-specific clusters.

Other cases, such as n1, n0 > 0, n2 = 0, will not arise
because of the symmetry of the problem with respect to
time t = 1, 2.

4.1 Independent sampling

If the optimal design is such that the samples are taken
independently in two periods of time, so that n0 = 0,
then also the Lagrange multipliers for constraints on n1

and n2 are zero. Substituting this to the necessary condi-
tions, one obtains the following set of equations:

n1 =
S2

1bNm2
1c

II
1

M2S̄2
1w(cI

1 + cII
1 m1)

(28)

n2 =
S2

2bNm2
2c

II
2

M2S̄2
2w(cI

2 + cII
2 m2)

(29)

cI
1n1 + cI

2n2 + cII
1 n1m1 + cII

2 n2m2 = C0, (30)

S̄2
1w

m2
1c

II
1 n1

=
S̄2

2w

m2
2c

II
2 n2

(31)

Simpler answers can be obtained assuming equal con-
ditions, i.e., that the costs and variances do not change
between the two periods:

S2
1b = S2

2b = S2
b , S̄2

1w = S̄2
2w = S̄2

w,

cI
1 = cI

2 = cI, cII
1 = cII

2 = cII (32)

Then the number of clusters and cluster size are

m = M

√
C0S̄2

w

2NcIIS2
b

, n =
C0

2
[
cI + M

√
C0cIIS̄2

w/2NS2
b

]
(33)

so both m and n increase as C0
1/2 for large surveys (al-

though n ∝ C0 for smaller ones).
From (24), the variance of the difference estimator is

Ve,i[d] ≈
4S2

b

[
cI +

√
M2C0cIIS̄2

w/2NS2
b

]
C0M2

(1− ρI)

+ 2

√
2cIIS2

b S̄2
w

NC0M2
(34)

where the (conservative) approximation is made by set-
ting the finite population corrections to zero (i.e., n �
N , m � M ), and the subindex e, i stands for “equal
conditions — independent samples”.

4.2 Cluster-panel design

If the design with n1 = n2 = 0 is optimal, then λ0 = 0,
and the system of necessary conditions leads to

m1 =
√

C0/U, m2 = κ
√

C0/U,

n0 =
C0

cI
12 + cII

1 m1 + cII
2 m2

, κ =

√
S̄2

2wcII
1

S̄2
1wcII

2

,

U =
(S2

1b + S2
2b − 2ρIS1bS2b)Nκ(cII

1 cII
2 )

1
2

M2S̄1wS̄2w
(35)

Again, the number of units per cluster increases with
the budget as

√
C0, and the number of clusters sampled

increases as C0 for small surveys, and as
√

C0, for large
ones. The variance of the difference estimator can now
be found simplifying (24) as

V[d] ≈ U
1
2

NC0
1
2

(
S̄2

1w + S̄2
2w

)
+

S2
1b + S2

2b − 2ρIS1bS2b

C0M2

(
cI
12 +

C0
1
2

U
1
2

(cII
1 + κcII

2 )
)

(36)

Under equal conditions assumption (32),

κ = 1, U =
2S2

b (1− ρI)NcII

M2S̄2
w

,

Ve,p[d] ≈ 2

√
2S2

b S̄2
w(1− ρI)cII

M2NC0

+
2S2

b (1− ρI)
C0M2

(
cI
12 + 2

√
M2S̄2

wC0cII

2S2
b (1− ρI)N

)
(37)

where the subindex e, p stands for “equal conditions —
panel clusters”.

4.3 Comparison of the independent
and panel-cluster designs

The difference of two variances (34) and (37) is

Ve,p[d]− Ve,i[d] =
2S2

b (1− ρI)
C0M2

(cI
12 − 2cI)

−2

√
2S̄2

wS2
b cII

M2NC0

(
1−

√
1− ρI

)2
(38)

The last term is always negative, and the cluster-panel
design is guaranteed to be more efficient when cI

12 ≤ 2cI,
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i.e., when revising the clusters indeed provides cost sav-
ings. Note also that as ρI → 1 (i.e., the characteristic
is persistent and does not change much between rounds),
the first term goes to zero, while the second term con-
veres to a fixed negative quantity, so the cluster-panel
design is more efficient even when the re-use of clusters
is more expensive than sampling new clusters. Also, the
second term decreases slower than the first one with the
size of the survey, and the cluster-panel design may be
more variance-efficient even when it is slightly more ex-
pensive to collect the data in that manner:

cI
12 < 2cI +

√
2S̄2

wM2cIIC0

S2
b N(1− ρI)2

(
1−

√
1− ρI

)2
(39)

This preference for a panel-cluster designs will be
stronger for larger surveys with higher total budget C0.

4.4 Intermediate case

The design satisfying the first order that has all of
n0, n1, n2 > 0 is difficult to characterize. Under the
equal condition assumption (32), the results are:

S2
b (n + n0 − 2n0ρ

I)
M2(n + n0)2

=
S̄2

w(cI + cIIm)
Nm2cII

, (40)

2S2
b (n + n0 + ρI(n− n0))

M2(n + n0)2
=

S̄2
w

Nm2cII
(cI

12 + 2cIIm)

(41)

2cIn + cI
12n0 + 2cII(n + n0)m = C0 (42)

Introducing

ν =
n0

n
, π−1 = 1 + ν−1 (43)

and dividing the first equation by the second one, one
gets

m =
A + Bν

C + Dν
,

A = cI(1 + ρI)− cI
12, B = cI(1− ρI)− cI

12(1− 2ρI),

C = cII(1− ρI), D = cII(1− 3ρI) (44)

Analyzing the range of ρI and ν where m from (44)
can be positive, the following existence result can be
established: there exist characteristics values of the in-
tertemporal correlations

∃ ρ1 :
cI
12 − cI

2cI
12 − cI

< ρ1 <
1
3

∃ ρ2 :
cI
12 − cI

cI
< ρ2 < 1 (45)

so that in the range ρ1 < ρI < ρ2, the first order condi-
tions can be satisfied.

For ρI < ρ1, the necessary conditions of the Lagrange
multiplier problem are incompatible with one another,
and hence the optimal design is one of the independent
sampling or panel-cluster designs. Also for ρI > 1/2,
the optimal design has ν < 1, i.e., n0 < n, which seems
counterintuitive. This tends to indicate that this design
may correspond to the local maximum rather than the lo-
cal minimum of the variance.

4.5 Numerical illustration

A short numerical example illustrates the above formulae
and results. Consider the population defined the follow-
ing set of parameters:

N = 2000, M = 200, Sb = 1.5, Sw = 1,

cI = 1, cI
12 = 1.7, cII = 0.25, C0 = 500

The number of clusters sampled is shown on Fig. 1.
The characteristic intertemporal correlations relevant for
the mixed design are: ρ1 = 0.292, ρ2 = 0.997. The de-
sign optimal for estimation of the mean on half budget,
or the elementary estimate (the independent clusters de-
sign) has 10 clusters with 96 units per cluster (the solid
horizontal line on the plot).

As ρI increases, the cluster-panel design tends to sac-
rifice n0 in favor of m, so that the cluster means and
differences are more accurately estimated. In the limit
of ρI → 1, it suffices to have 1 cluster to estimate
the change; however n0 = 5 clusters are sampled for
ρI > 0.72 as long as the optimal cluster size hits the re-
striction m ≤ M . The mixed design has only slightly
varying number of clusters (n + n0 fluctuates between
27 and 31), with the changes in ρI influencing allocation
between the independent and the panel portions of the
clusters.

The total sample sizes are between 891 and 918 for
mixed designs, and between 970 and 985 for cluster-
panel designs.

Finally, the most important plot is that of the variance
of the elementary estimate given on Fig. 2. It clearly
shows the advantage of the cluster-panel design over
other options. The design effects follow a similar pat-
tern, with the reference line of DEFF for the independent
cluster design being 14.3, and the DEFF for the cluster-
panel design falling from that figure down to 0.12.

As an overall conclusion of this small numerical illus-
tration, it appears that the cluster-panel design is the most
variance-efficient for a given cost.

4.6 Remarks

One of the assumptions used in deriving the above results
was that (the composition of) the population itself does
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not change: no units leave the population, and no new
units appear. This is quite a restrictive assumption for
many practical situations, and the sample designer might
still want to include new clusters into the second wave
of data collection if the population has changed between
the two waves. Then the new clusters can be joined into
a separate stratum, and a clustered sample can be taken
from that stratum. Also, the dynamic measurement ef-
fects such as conditioning and time in sample lead to ro-
tation bias, so it might be beneficial to provide at least
some rotation of the PSUs. For the DHS studies, in par-
ticular, the first argument (coverage) is likely to be more
important than the second one (time in sample) due to a
substantial time between the waves of the survey (about
5 years).

5. Empirical illustration

The empirical illustration of the differences in designs is
carried out with DHS data from Bangladesh, 1996 and
2000 data. Table 1 lists the results for different designs,
and for two different measures, one of which (contracep-
tive use in married women) has a lot of individual level
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Figure 1: Number of clusters as a function of ρI.
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Figure 2: V d[ȳ(2) − ȳ(1)] as a function of ρI.

Table 1: Differences in variance estimates in different
design specifications.

Item Estimate S.e. DEFF
Contraceptive use
1996 49.24% 1.098% 4.072
2000 53.77% 0.941% 3.466
∆-naı̈ve 4.53% 1.446% 3.789
∆-design 4.53% 1.431% 3.714
Estimated
longitudinal effect 1.020
Access to tap water
1996 5.24% 0.946% 85.77
2000 6.17% 1.039% 101.24
∆-naı̈ve 0.928% 1.422% 95.91
∆-design 0.928% 1.405% 93.56
Estimated
longitudinal effect 0.976
Source: Bangladesh DHS, 1996 and 2000.

variability with little between cluster variability, and thus
moderate design effects, and the other one (access to tap
water) has extremely strong patterns among communi-
ties. ∆-naı̈ve estimator of difference is the one that does
not take into account the same clusters. ∆-design is the
estimator that does take into account that the same clus-
ters were used in two years. The line “Longitudinal ef-
fect” is the difference in variances of the ∆-naı̈ve and
∆-design estimators. There does not seem to be much
difference between the two, as it is within 3% for both
measures. This is in accordance with the above theoreti-
cal argument that the design effect is close to 1 for a study
with a large number of clusters. Also, there is relatively
modest overlap in clusters: out of 313 clusters in the first
study, only 137 were used for the consecutive study, and
there were 204 new clusters.

5.1 Outline of Stata code

The substantial part of Stata code (version 8) does the follow-
ing:

1. creates year variable for two time periods;

2. sets the survey data configuration appropriately for the
∆-naı̈ve estimator:
egen psuXyear = group(psu year)

svyset [pw=weight] , psu(psuXyear)

3. the difference of interest can be obtained in two possible
ways: (i) as the difference in means,
svymean depvar, by(year) deff

lincom depvar[2000] - depvar[1996],
deff
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or (ii) as the regression coefficient of a dummy variable:

xi : svyreg depvar i.year, deff

4. sets the survey data configuration appropriately for the
∆-design estimator:
svyset [pw=weight] , psu(psu)

5. repeats step 3 for this design setting.

6. The longitudinal design effect is finally obtained as the
ratio of two estimators of the variance.

6. Conclusions

This paper has analyzed the effect of re-using the clusters
in repeated clustered surveys. The two main results of the
paper are (i) that the design effect of correctly specifying
the repeated use of clusters vs. assuming the two sam-
ples were taken independently are of the order O(ρπ/n)
where n is the number of clusters, ρ is the intertemporal
correlation of cluster means, and π is the degree of over-
lap between two consecutive samples; and (ii) that for a
given budget of the survey, the the designs that reuse the
master sample clusters (referred to as cluster-panel de-
signs) are more variance efficient for difference estima-
tions than the design where the samples are taken anew.
The difference in variances depends on the intertemporal
correlation and the size of the survey. The considera-
tions in favor of the panel-cluster designs come from the
logistical side rather than from variance considerations,
and a sample designer who knows that the characteristic
of interest is going to have some degree of persistence
over time will choose the cluster-panel design, unless it
is known that the cost of re-visiting the first wave clusters
are prohibitively high.
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