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Abstract:

In this paper, we consider a Taylor-series approxima-
tion to the weighted jackknife mean squared predic-
tion error (MSPE) of an empirical best linear un-
biased predictor (EBLUP). Like the Taylor series
method, this approximation provides a closed-form
expression and saves computation. We compare var-
ious MSPE estimators using a Monte Carlo simula-
tion study.

1. Introduction

For effective planning of health, social and other ser-
vices, and for apportioning government funds, there
is a growing demand to produce reliable estimates
for smaller geographic areas and sub-populations,
called small areas, for which adequate samples are
not available. The usual design-based small area es-
timators are unreliable since they are based on a
very few observations that are available from the
area. An empirical best linear prediction (EBLUP)
approach has been found suitable in many small area
estimation problems. The method essentially uses
an appropriate mixed linear model which captures
various salient features of the sampling design and
combines information from censuses or administra-
tive records in conjunction with the survey data. For
a review of small area estimation, see Rao (2003).

The estimation of MSPE of EBLUP is a challeng-
ing problem. The naive MSPE estimator, i.e., the
MSPE of the BLUP with estimated model parame-
ters, usually underestimates the true MSPE. There
are two reasons for this underestimation problem.
First, it fails to incorporate the extra variabilities
incurred due to the estimation of various model pa-
rameters and the order of this underestimation is
O(m−1), where m is the number of the small areas.
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Secondly, the naive MSPE estimator even underesti-
mates the true MSPE of the BLUP, the order of un-
derestimation being O(m−1). Several attempts have
been made in the literature to account for these two
sources of underestimation and to produce MSPE
estimators that are correct up to the order O(m−1).
These are called second-order unbiased MSPE esti-
mators.

Jiang, Lahiri and Wan (2002) proposed a jackknife
method to estimate the MSPE of an empirical best
predictor for a general situation. Bell (2001) pointed
out that the Jiang-Lahiri-Wan jackknife MSPE esti-
mator could take negative values in certain circum-
stances. However, Chen and Lahiri (2002, 2003)
found that this is not a severe problem in their sim-
ulation studies and can be easily rectified by con-
sidering an alternative bias correction formula. For
the well-known Fay-Herriot model, Chen and Lahiri
(2003) provided an approximation to the jackknife
MSPE estimator using a Taylor series approxima-
tion. Like the Prasad-Rao formula, this provides a
closed-form formula. In this paper, we follow up on
Chen and Lahiri (2003) and obtain the Taylor series
approximation to the jackknife MSPE formula for a
general case.

In section 2, we define the BLUP and EBLUP of
a general mixed effect. We provide a Taylor series
approximation to the jackknife method in section
3. In section 4, the method is illustrated using the
simple but important Fay-Herriot model (see Fay
and Herriot 1979). To demonstrate the efficiency of
our proposed method, results from a Monte carlo
simulation study are reported in section 5.

2. The BLUP and EBLUP

Consider the following general normal mixed linear
model in small area estimation considered in Prasad
and Rao (1990) and Datta and Lahiri (2000) :

yi = Xiβ + Zivi + ei, i = 1, ..., m, (1)

where Xi (ni × p) and Zi (ni × bi) are known ma-
trices, vi and ei are independently distributed with
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vi
ind∼ Nbi

(0, Gi) and ei
ind∼ Nni

(0, Ri), i = 1, ..., m.
We assume that Gi = Gi(ψ) (bi × bi) and Ri =
Ri (ψ) (ni×ni) possibly depend on ψ = (ψ1, ..., ψq)′,
a q × 1 vector of fixed variance components. Write
y = col1≤i≤myi, e = col1≤i≤mei, X = col1≤i≤m(Xi),
Z = diag1≤i≤m(Zi), G(ψ) = diag1≤i≤mGi, v =
col1≤i≤mvi and R(ψ) = diag1≤i≤mRi. We assume
that X has full column rank p. Let Σ(ψ) = R(ψ) +
ZG(ψ)Z ′, the variance-covariance matrix of y. Note
that we can write (1) as

y = Xβ + Zv + e,

where v and e are independently distributed with
v ∼ Nb(0, G), e ∼ Nn(0, R), n =

∑m
i=1 ni and b =∑m

i=1 bi.
As in Datta and Lahiri (2000), we are interested

in predicting a general mixed effect of θ = h′β +
λ′v, where h and λ are known vectors of order p ×
1 and b × 1 respectively. When ψ is known, the
BLUP of θ is given by θ̂(y; ψ) = h′β̂(ψ) + s′(ψ)[y −
Xβ̂(ψ)], where s(ψ) = Σ−1(ψ)ZG(ψ)λ and β̂(ψ) =
[X ′Σ−1(ψ)X]−1[X ′ Σ−1(ψ)y].

In practice ψ is unknown and is estimated from
the data. Let ψ̂ be a consistent estimator of ψ
considered in Fay and Herriot (1979), Prasad and
Rao (1990) and Datta and Lahiri (2000). Then an
EBLUP of θ is θ̂(y; ψ̂) which is obtained from θ̂(y; ψ)
with ψ replaced by ψ̂.

3. A Taylor series approximation to
the jackknife MSPE estimator

The MSPE of θ̂(y; ψ̂) is defined as MSPE[θ̂(y; ψ̂)] =
E[θ̂(y; ψ̂) − θ]2, where E denotes the expectation
with respect to model (1).

Chen and Lahiri (2002) proposed the following
weighted jackknife MSPE estimator:

mseWJ

= g1(ψ̂) + g2(ψ̂)

−
m∑

u=1

wu

(
g1(ψ̂−u) + g2(ψ̂−u)− [g1(ψ̂) + g2(ψ̂)]

)

+
m∑

u=1

wu[θ̂(y; ψ̂−u)− θ̂(y; ψ̂)]2, (2)

where g1(ψ) = λ′G(ψ)λ − s′(ψ)ZG(ψ)λ, and
g2(ψ) = [h −X ′s(ψ)]′(X ′Σ−1(ψ)X)−1[h −X ′s(ψ)].
The weights satisfy wu = 1 + O(m−1). Chen and
Lahiri (2002) provided a specific weight wu = 1 −
X ′

u(X ′X)−1Xu - but note that it refers to the Fay-
Herriot model.

We now consider a Taylor series approximation
to mseWJ . To this end, we borrow notation from
Datta and Lahiri (2000). Let bψ̂(ψ) be the bias of ψ̂,
i.e., E(ψ̂)− ψ, correct up to the order O(m−1). Let
∇g1(ψ) = ( ∂

∂ψ1
g1(ψ), ..., ∂

∂ψq
g1(ψ))′ be the gradient

of g1(ψ) [see Datta and Lahiri (2000) for an expres-
sion of the gradient]. We can approximate the bias
correction in the weighted jackknife formula by

m∑
u=1

wu

(
g1(ψ̂−u) + g2(ψ̂−u)− [g1(ψ̂) + g2(ψ̂)]

)

.= b̂′WJ (ψ̂)∇g1(ψ̂)− tr[L(ψ̂)Σ(ψ̂)L′(ψ̂)vWJ ], (3)

where L(ψ) = col1≤d≤qL
′
d(ψ), Ld(ψ) =

∂
∂ψd

s(ψ)(d = 1, · · · , q), b̂WJ =
∑

wu(ψ̂−u − ψ̂),

the weighted jackknife estimator of the bias of ψ̂,
vWJ =

∑m
u=1 wu(ψ̂−u − ψ̂)(ψ̂−u − ψ̂)′, a weighted

jackknife estimator of the covariance matrix of
ψ̂ and .= means that the neglected terms are of
the order op(m−1). Following the arguments in
Datta and Lahiri (2000) it can be shown that for
the ANOVA and REML method the first term of
the right hand side of (3) is of the order op(m−1)
and hence can be neglected. For the maximum
likelihood estimator of ψ, this is, however, of the
order Op(m−1) and needs to be kept in order to be
second-order unbiased.

We approximate the last term in (2) by

m∑
u=1

wu[θ̂(y; ψ̂−u)− θ̂(y; ψ̂)]2

.= tr[L(ψ̂)[y −Xβ̂(ψ̂)][y −Xβ̂(ψ̂)]′L′(ψ̂)vWJ ]

Therefore, we can approximate mseWJ by

mseAWJ

= g1(ψ̂) + g2(ψ̂)

−b̂′WJ(ψ̂)∇g1(ψ̂) + tr[L(ψ̂)Σ(ψ̂)L′(ψ̂)vWJ ]

+tr[L(ψ̂)[y −Xβ̂(ψ̂)][y −Xβ̂(ψ̂)]′L′(ψ̂)vWJ ].

There is some possibility that the the third term
of mseAWJ could result in a negative value, resulting
in a possible negative value for mseAWJ . However,
using a Taylor series argument it can be easily seen
that the difference between b̂′WJ (ψ̂) and the bias ex-
pression given in Datta and Lahiri (2000) is of the
order o(m−1). Thus, if mseAWJ turns out to be
negative in a rare situation, we may simply replace
b̂′WJ(ψ̂) by an alternate bias term for ψ̂ (e.g., the
formula given in Datta and Lahiri 2000).
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4. An Example: The Fay-Herriot
Model

In order to estimate per-capita income for small ar-
eas (population less than 1,000), Fay and Herriot
(1979) considered an aggregate level model and used
an empirical Bayes method which combines survey
data from the U.S. Current Population Survey with
various administrative and census records. Their
empirical Bayes estimator worked well when com-
pared to the direct survey estimator and a synthetic
estimator used earlier by the Census Bureau. The
model can be written as:

yi = x′iβ + vi + ei, i = 1, · · · ,m,

where vi’s and ei’s are independent with vi
iid∼

N(0, A) and ei
ind∼ N(0, Di), Di (i = 1, ..., m) being

known. Here, ni = bi = 1, Zi = 1, ψ = A, Ri(ψ) =
Di and Gi(ψ) = A (i = 1, · · · ,m).

For the Fay-Herriot model, an EBLUP, say
θ̂i(yi; Â), of θi = x′iβ + vi is given by:

θ̂i(yi; Â) =
Di

A + Di
x′iβ̂ +

A

A + Di
yi,

where β̂ is the usual weighted least squares estimator
of β and Â is a consistent estimator of A.

It can be shown that for ANOVA and REML es-
timators of A

mseAWJ
i

= g1i(Â) + g2i(Â) +
D2

i

(Â + Di)3
vWJ(Â)

+
D2

i

(Â + Di)4
(yi − x′iβ̂)2vWJ (Â), (4)

where g1i(Â) = ÂDi

Â+Di
, g2i(Â) =

D2
i

(Â+Di)2
x′i

(∑m
j=1

1
Â+Dj

xjx
′
j

)−1

xi, vWJ =
∑

wu(Â−u − Â)2, the weighted jackknife estimator
of V ar(Â). The choice for wu is not unique. For ex-

ample, we can choose wu = 1
Du

x′u
(∑m

j=1

xjx′j
Dj

)
xu.

For the maximum likelihood and the Fay-Herriot
estimators of A, we have

mseAWJ
i

= g1i(Â) + g2i(Â)− D2
i

(Â + Di)2
b̂WJ

+
D2

i

(Â + Di)3
vWJ(Â)

+
D2

i

(Â + Di)4
(yi − x′iβ̂)2vWJ(Â), (5)

where b̂WJ =
∑

wu(Â−u − Â) is the weighted jack-
knife estimator of bÂ(A), the bias of Â. For the
Fay-Herriot estimator of A, it is interesting to com-
pare (5) with the Datta-Rao-Smith MSPE estimator
given by

mseDRS
i

= g1i(Â) + g2i(Â) + 2g∗3i

− D2
i

(Â + Di)2
m

∑
j

1
(A+Dj)2

− (
∑

j
1

(A+Dj)
)2

(
∑

j
1

(A+Dj)
)3

,(6)

where

g∗3i =
2mD2

i

(A + Di)3(
∑

j
1

A+Dj
)2

.

5. Monte Carlo Simulations

In this section, we investigate the performances
of different MSPE estimators for small m through
Monte Carlo simulations. Our simulation set-up
is similar to the one considered in Datta et al.
(2005). We consider the Fay-Herriot model with
x′iβ = 0, m = 15, and A = 1 and consider five
groups of small areas with three areas in each group.
Within each group, Di’s remain the same. We con-
sider two different patterns for the Di’s: (a) 0.2,
0.6, 0.5,0.4,0.2, [this is pattern (b) of Datta et al.
(2005)] and (b) 20,6,5,4,2. We note that Bell (2001)
reported wide variations of Di’s in the context of the
U.S. Current Population Survey and the National
Health and Interview Survey and so pattern (b) can
occur in practice.

As in Datta et al. (2005) we obtained all the
results based on 100,000 simulation runs. The
ANOVA and the Fay-Herriot methods of estimat-
ing the variance component A are considered. Ta-
bles 1 and 2 report the percent average relative
biases (ARB) for the following MSPE estimators:
the Prasad-Rao estimator (Prasad-Rao) for Table
1 (denoted by PR), the Datta-Rao-Smith estima-
tor (Datta et al. 2005) for Table 2 (denoted by
DRS), Jiang-Lahiri-Wan jackknife estimator (JLW;
see Jiang, Lahiri and Wan 2002), the Chen-Lahiri es-
timator (denoted by CL; see Chen and Lahiri 2003),
and the proposed estimator (denoted by AWJ).

For the D pattern considered by Datta et al.
(2005), i.e. pattern (a), we are able to approxi-
mately reproduce their results for both the ANOVA
and the Fay-Herriot methods of estimating A. For
this pattern, the Taylor series (i.e., PR or DRS) is
better than the CL in all but one situation. The
performance of CL, however, gets better for the Fay-
Herriot method of A and the AWJ is comparable to
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the PR or DRS. In fact, for the method of moments,
AWJ is better than PR most of the time.

The performances of different MSPE estimators
depend very much on the Di pattern. For pattern
(b), AWJ is a clear winner when A is estimated by
the ANOVA method. When the Fay-Herriot method
is used to estimate A, the percent average relative
bias for the AWJ is the least among all the MSPE
estimators. In this situation, the DRS, JLW and
CL MSPE estimators tend to overestimate the true
MSPE. In contrast, AWJ suffers from a slight un-
derestimation problem.

6. Concluding Remarks

We have considered the case of a mixed linear normal
model. Our research indicates that it is difficult to
find one MSPE estimator which performs uniformly
better that the rest in all situations. In our simu-
lation, the approximated jackknife performed well,
although in some cases it tends to underestimate.
We have considered the case of a very small number
of small areas. The performances of the MSPE esti-
mators are expected to improve with the availability
of more small areas.
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Table 1: Percent Relative Biases of Different
MSPE Estimators

(A estimated by the ANOVA method)
Pattern a Pattern b

PR CL JLW AWJ PR CL JLW AWJ
1 30.8 21.9 28.2 0.2 573.5 34.0 39.0 5.2
2 11.7 17.5 20.4 -1.3 268.1 52.4 53.8 13.4
3 9.0 16.2 18.5 -1.5 213.8 56.8 57.3 15.6
4 7.6 15.9 17.9 -1.3 178.4 59.8 59.7 17.4
5 0.1 12.7 13.0 -2.6 47.7 61.7 59.6 15.0

Table 2: Percent Relative Biases of Different
MSPE Estimators

(A estimated by the Fay-Herriot Estimator)
Pattern a Pattern b

DRS CL JLW AWJ DRS CL JLW AWJ
1 3.4 11.3 16.5 0.0 111.1 14.8 25.7 -8.5
2 0.3 6.9 9.5 -1.5 50.0 15.5 21.0 -6.8
3 -0.1 5.9 8.0 -1.7 40.4 16.0 20.4 -5.7
4 -0.2 5.4 7.3 -1.6 34.4 16.5 20.4 -4.8
5 -1.7 2.3 3.0 -1.6 18.1 20.4 22.9 1.6
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